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Zeeman gyrotropic scatterers:
Resonance splitting, anomalous
scattering, and embedded eigenstates

Constantinos Valagiannopoulos1, S Ali Hassani Gangaraj2,
and Francesco Monticone2

Abstract
Anomalous scattering effects (invisibility, superscattering, Fano resonances, etc) enabled by complex media and meta-
materials have been the subject of intense efforts in the past couple of decades. In this article, we present a full analysis of
the unusual and extreme scattering properties of an important class of complex scatterers, namely, gyrotropic cylindrical
bodies, including both homogeneous and core–shell configurations. Our study unveils a number of interesting effects,
including Zeeman splitting of plasmonic scattering resonances, tunable gyrotropy-induced rotation of dipolar radiation
patterns as well as extreme Fano resonances and non-radiating eigenmodes (embedded eigenstates) of the gyrotropic
scatterer. We believe that these theoretical findings may enable new opportunities to control and tailor scattered fields
beyond what is achievable with isotropic reciprocal objects, being of large significance for different applications, from
tunable directive nano-antennas to selective chiral sensors and scattering switches, as well as in the context of non-
reciprocal and topological metamaterials.
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Introduction

The emerging area of topological electromagnetics and

photonics is stimulating renewed interest in natural and

artificial gyrotropic (meta)materials to achieve anomalous

propagation effects,1,2 including unidirectional, defect-

immune, wave-guiding structures, and robust radiating sys-

tems.3–6 Relatively less attention has instead been devoted

to gyrotropic scattering systems and their unusual scatter-

ing effects.7,8 Indeed, several of the conventional symme-

tries of scattering systems (time-reversal symmetry,

angular symmetries of the radiation pattern, etc) are broken

when certain materials are biased by a static magnetic field

(or other quantities, e.g. angular momentum,9,10 that mimic

the effect of a magnetic bias). For example, in a biased

plasma, magneto-optic effects are due to the interaction

of a harmonic electric field with free electrons in circular

motion due to the applied static magnetic bias, which alters
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the usual plasma-like response of a gas of free electrons. As

a result, the electric permittivity becomes a non-symmetric

non-diagonal tensor, whose off-diagonal elements (propor-

tional to the applied magnetic bias) are responsible for

several important nonreciprocal effects, including the

well-known Faraday rotation.11 The properties of gyrotro-

pic media may open novel and unexplored possibilities to

control and tailor the scattering response of material bodies

for several applications, including cloaking, sensing, tag-

ging, filtering, and so on.

Within this context, this work offers a complete analysis

of scattering from individual gyrotropic wires and core–shell

configurations. In particular, our goal is to elucidate the

different resonant effects that arise when a nonzero bias is

applied to the scatterer, with particular focus on the spectral

splitting of resonances (Zeeman effect),12,13 the ability to

modify and rotate the dipolar scattering pattern, and the

connection of these results with recent investigations on

Fano resonances14 and embedded eigenstates.15–18 The

designed scatterers may also serve as meta atoms for non-

reciprocal and topological metasurfaces and metamaterials,

tunable and reconfigurable by varying the biasing field.

Single gyrotropic rod

Mathematical formulation

Consider an infinite wire with circular cross section of

radius b filled with a generic gyrotropic material. In Carte-

sian coordinates ðx; y; zÞ, defined in Figure 1(a), the relative

permittivity tensor of the gyrotropic medium is11

½e� ¼
et jeg 0

�jeg et 0

0 0 ea

2
64

3
75: ð1Þ

The scatterer is illuminated by a plane wave traveling

in the x� y plane, forming an angle q with the þx axis,

with transverse-electric polarization with respect to the

cylinder axis (TEz wave, with unitary amplitude 1

A=m), so that the wave “feels” the dielectric anisotropy

of equation (1). A time-harmonic dependence

eþj!t ¼ eþjk0ct is assumed for all field quantities and sup-

pressed. While our derivation is general, we will focus our

analysis on scatterers that are electrically thin, namely,

Figure 1. (a) A gyrotropic rod of radius b is excited by an incident TEz plane wave propagating along the direction defined by the angle
q. (b and c) Scattering patterns pðfÞ of the rod (q ¼ 0�) for several cyclotron frequencies !c=!p, at the frequency !=!p of maximum
pattern rotation given by equation (7), for (b) b ¼ 0:02lp and (c) b ¼ 0:06lp. Black dashed lines indicate the corresponding scattering
patterns in the unbiased case (!c ¼ 0). All results are obtained by exact Mie-theory calculations.
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k0b� 1. In this article, the symbols k0, h0, and c denote

the free-space wavenumber, wave impedance, and speed

of light, respectively, and ! is the oscillation frequency.

The ideal permittivity model (1) can be realized as a cold

plasma magnetized by a static magnetic field along the z

axis. In this case, the elements of the permittivity tensor

are frequency-dispersive and, in the lossless limit, are

given by Bittencourt19

et ¼ 1�
!2

p

!2 � !2
c

; eg ¼
!2

p!c

!ð!2
c � !2Þ ; ð2Þ

where !p is the plasma frequency and !c the cyclotron

frequency proportional to the magnetic bias.

For a given material, the quantities et; eg can be con-

trolled by two variables: the operational frequency !=!p

and the cyclotron frequency !c=!p normalized by the

plasma frequency !p of that material. The rod exhibits

plasmonic features (et < 0) for !c=!p < !=!p <
1þ !c=!p, which is the frequency range of interest for

our analysis. For typical gyrotropic materials (e.g. bis-

muth iron garnet or n-doped indium antimonide under

magnetic bias), the amplitude of the off-diagonal permit-

tivity elements eg (strength of nonreciprocity) is typically

two orders of magnitude smaller than the diagonal ele-

ments et (e.g. see Fang’s work20), which is however suf-

ficient to observe relevant magneto-optic effects in

suitably designed configurations.

Despite the anisotropic properties of the cylinder, for a

TEz normally-incident plane wave, Maxwell equations can

be decoupled; therefore, the radial profile of the canonical

Helmholtz-equation solutions, inside the gyrotropic

medium, is a linear combination of fJuðk0
ffiffiffiffiffiffiffi
eeff
p

rÞ;
Huðk0

ffiffiffiffiffiffiffi
eeff
p

rÞg, where Ju;Hu are the Bessel and second-

kind Hankel function of u th order (eþjuf azimuthal depen-

dence),7 and the effective permittivity of the gyrotropic

material is defined as eeff ¼ ðe2
t � e2

gÞ=et. The correspond-

ing cylindrical coordinate variables are denoted by ðr;f; zÞ.
As usually done, the scattered field by the wire into free

space can be represented as a discrete sum of cylindrical

harmonics, Hz; scat ¼
Pþ1

u¼�1SuHuðk0rÞejuðf�qÞ and, after

imposing the necessary boundary conditions, we obtain the

scattering coefficients Su as follows

Su ¼ �j�u Juðk0bÞ
Huðk0bÞ

J
0
uðrÞ

JuðrÞ
� ffiffiffiffiffiffiffi

eeff
p J

0
uðk0bÞ

Juðk0bÞ
� u

eg

ret

� �

J
0
uðrÞ

JuðrÞ
� ffiffiffiffiffiffiffi

eeff
p H

0
uðk0bÞ

Huðk0bÞ
� u

eg

ret

� � ; ð3Þ

where r ¼ k0b
ffiffiffiffiffiffiffi
eeff
p

.

The simplicity of this solution is partially related to the

invariance of the permittivity tensor with respect to Carte-

sian/cylindrical transformations, which would not be the

case if the two diagonal elements of equation (1) were

not equal.21 The power scattered by the rod, normalized

by the incident power (per unit length of the z-axis)

P inc ¼ 2b
h0

2
� ð1 A=mÞ2, corresponding to the aperture

of width 2b (equal to the cylinder diameter), is found to

be equal to P scat=P inc ¼ 2
k0b

Pþ1
u¼�1jSuj2. We can also

define the radiation pattern pðfÞ of this scatterer as

1
2p

Z p

�p
pðfÞ df � P scat=P inc.

Thin-wire approximation

Since we are mainly interested in the role of a gyrotropic

rod as a small scatterer or meta-atom, we assume k0b� 1

and apply the well-known quasi-static dipole approxima-

tion.22,23 In this regime, we retain only the monopolar

(omnidirectional) term (u ¼ 0) and the dipolar terms

(u ¼+1) of the cylindrical harmonic expansion of the

scattered field Hz; scat (corresponding to two circularly

polarized dipoles of opposite helicity), which are the domi-

nant scattering contributions in most cases of interest.

Then, for observation points ðr;fÞ in the far-field region

(k0r!1), one can write Hz; scat ffi
ffiffiffiffiffiffiffi

2j

pk0r

q
e�jk0r½S0

þjS1ejðf�qÞ � jS�1e�jðf�qÞ�, using a large-argument

approximation of the Hankel function.24

By approximating the monopololar and dipolar scatter-

ing coefficients, given by equation (3), for small electrical

size k0b, we obtain

S0 ffi �j
p
32
ðeeff � 1Þðk0bÞ4; ð4Þ

S+1 ffi+
ðk0bÞ2p

4

eg+ð1� eeff Þet

eg+ð1þ eeff Þet

� 1þ j
ðk0bÞ2p

4

eg+ð1� eeff Þet

eg+ð1þ eeff Þet

2
4

3
5
: ð5Þ

Note that, in this regime, the dipolar coefficients S+1

are significantly larger than the monopolar term S0, due

to the different dependence on the scatterer electrical

size k0b. Physically, such a difference is attributed to

the electric nature of the obstacle (it constitutes a spatial

discontinuity for the permittivity) combined with the

magnetic nature of the excitation (H inc parallel to the

axis of the infinite cylinder). It should also be stressed

that S0 is almost purely imaginary and S+1 almost

purely real (for a lossless medium, et; eg 2 R, the resi-

dual imaginary part is purely due to radiation loss).

Most importantly, we notice that the magnetic bias

makes the dipolar coefficients S�1 and Sþ1 different,

whereas in the reciprocal case with no bias, that is

eg ¼ 0, they are equal in magnitude and opposite

S�1 ¼ �S1. The fact that this degeneracy is lifted by

breaking reciprocity (by biasing the system with a quan-

tity that is odd under time reversal) is responsible for a

number of interesting scattering effects as discussed in

the next sections.

Valagiannopoulos et al. 3



Maximal rotation of the scattering pattern

Under the aforementioned thin-wire assumption, it is pos-

sible to show that the radiation pattern pðfÞ, as defined

above, takes the following form with real coefficients

pðfÞ ffi F0 þ Fc
2 cos

�
2ðf� qÞ

�
þ Fs

2 sin
�

2ðf� qÞ
�
:

ð6Þ

The first term gives the omnidirectional monopolar

response, and the second term is the conventional dipolar

radiation pattern corresponding to an electric dipole normal

to the direction of the incident wave (parallel to the y-axis

for q ¼ 0�), determined by the separation of charges in the

scatterer by the incident electric field. Interestingly, the

third term, which is absent in the unbiased (reciprocal)

case, corresponds to the radiation from an electric dipole

parallel to the incidence direction (parallel to the x-axis for

q ¼ 0�). This term arises as a result of the electrons’ cir-

cular motion (cyclotron motion) due to the static magnetic

bias, which, combined with the harmonic electric field,

forces the electron to accumulate and oscillate on an axis

tilted to the right/left with respect to the y axis (for q ¼ 0�),
creating a horizontal (x-oriented) component of the induced

dipole. In other words, such a term expresses the influence

of the gyrotropy on the scatterer’s response, which leads to

a rotation of the radiation pattern as further discussed

below.

Maximizing such a pattern rotation, making the effect

of the third term in equation (6) substantial, is rather

counterintuitive since the dipolar response of the structure

would become orthogonal to the one expected from its

excitation. A suitable metric for this effect is the ratio of

the (squared) amplitude of the odd function in equation (6)

over the sum of the (squared) amplitudes of the even

functions, that is, ðFs
2Þ

2=½ðF0Þ2 þ ðFc
2Þ

2�. For a given

!c=!p, the condition to maximize this quantity with

respect to !=!p reads

ð!c=!pÞ4 ¼ ð!=!pÞ4 �
3

2
þ 1

ð!=!pÞ2
� 3

16 ð!=!pÞ4
; ð7Þ

which can be satisfied only for !=!p > 1=
ffiffiffi
2
p

. As an

aside, we note that, at the frequency ! ¼ !p=
ffiffiffi
2
p

, the per-

mittivity of the gyrotropic material is et ¼ �1 in the

unbiased case, which corresponds to the condition for

localized surface-plasmon resonance in a subwavelength

cylinder.25,26

In Figure 1(b) and 1(c), we show the radiation patterns

(for incidence angle q ¼ 0�) of a gyrotropic cylinder for

various cyclotron frequencies !c=!p, at operational fre-

quencies !=!p that give maximal rotation according to

equation (7). In Figure 1(b), we consider an ultrathin wire

with b ¼ 0:02lp (lp is the free-space wavelength at the

plasma frequency !p). Rather remarkably, as the cyclo-

tron frequency is increased, the scattering pattern indeed

tends to the pattern of a horizontal (parallel to the x-axis)

electric dipole. This fact implies suppression of the con-

ventional dipolar term Fc
2 in equation (6), which becomes

much smaller than Fs
2 (a small monopolar term F0 may

still be present). As far as the scattered power P scat=P inc is

concerned, the overall scattering is weak since k0b! 0,

and it decreases as the induced dipole becomes more and

more tilted with respect to the unbiased case (denoted with

black dashed lines). In this context, we would like to note

that an incident electric field cannot induce a perfectly

orthogonal electric dipole in the scatterer, otherwise the

forward scattering would be identically zero (correspond-

ing to the null of the dipole radiation pattern) even though

the total scattered power is nonzero, which would directly

violate the optical theorem for passive scatterers27 (this

general theorem of scattering theory, which is a conse-

quence of energy conservation, dictates that the total

power scattered by a lossless object is identically zero if

the forward scattering is zero, namely, if the object casts

no shadow). Finally, in Figure 1(c), we show the scatter-

ing pattern, under maximum-rotation condition (7), of a

thicker cylindrical rod (b ¼ 0:06lp), which gives higher

P scat=P inc. However, due to the increased size, the terms

F0;F
c
2 are larger, and the dipole rotation is less extreme

than in the case of the thinner cylinder.

Resonant scattering and Zeeman effect

In order to obtain maximal scattering from the subwave-

length gyrotropic cylinder, the operational frequency needs

to correspond to a resonance of the object. In other words,

we aim at maximizing the quantity

P scat=P inc ¼ 2
k0b
ðjS0j2 þ jS1j2 þ jS�1j2Þ, which, for small

k0b and after dropping the negligible S0 term, takes the

form

P scat

P inc

ffi 2p5 b

lp

0
@

1
A

3

ð!=!pÞ3

� 1þ 4ð!=!pÞ2½ð!=!pÞ2 � 1þ ð!c=!pÞ2�
f1þ 4ð!=!pÞ2½ð!=!pÞ2 � 1� ð!c=!pÞ2�g

2

: ð8Þ

The scattering resonance of this cylinder occurs when

the denominator of equation (8) vanishes (in reality, due to

the presence of radiation loss, the scattered power never

actually diverges, as extensively discussed, e.g. in the study

by Monticone et al.28; quasi-static expressions, such as

equation (8) typically neglects radiation loss). From equa-

tion (8), we obtain the quasi-static dipolar resonance

condition

ð!c=!pÞ2 ¼ ð!=!pÞ2 � 1þ 1

4ð!=!pÞ2
: ð9Þ

Contrary to equation (7), the condition (9) can be satis-

fied for any !=!p > 0. Most importantly, it possesses two

branches of solutions, associated with the individual

4 Nanomaterials and Nanotechnology



resonances of the dipolar terms Sþ1 and S�1, with a degen-

erate solution at ! ¼ !p=
ffiffiffi
2
p

and !c ¼ 0, corresponding to

the conventional dipolar resonance of an unbiased isotropic

cylinder. Also note that !c, unlike !, can be negative since

the sign simply indicates the direction of the magnetic bias.

To confirm these quasi-static results, we report in Figure

2 the normalized scattered power P scat=P inc of a gyrotropic

cylinder (b ¼ 0:1lp), on the ð!=!p; !c=!pÞ plane, obtained

by exact Mie-theory calculations. The solid black line cor-

responds to condition (7) for maximal scattering pattern

rotation, and the dashed white lines to the resonant condi-

tion (9) for maximal scattering. The exact calculations are

in good agreement with the quasi-static analytical

predictions. In particular, we indeed observe a bifurcated

pattern for the scattered power in this parameter space,

associated with the effect of the static bias that lifts the

degeneracy of the dipolar resonances of Sþ1 and S�1. This

can be considered as a scattering manifestation of the well-

known Zeeman effect,12,13 which occurs when an external

magnetic field results in the splitting of spectral lines.

Indeed, a magnetic bias gives “rotational preference” to the

system and makes the moving electrons behave differently

depending on their sense of direction. Such a splitting is

relatively well captured by the predictions of equation (9);

the differences are attributed to the non-negligible size of

the cylinder (b ¼ 0:1 lp) and the presence of radiation loss,

which is neglected by equation (9). The estimation given by

equation (9) of the left resonant branch (! < !p=
ffiffiffi
2
p

) is

more accurate compared to the right resonant branch

(! > !p=
ffiffiffi
2
p

), because the former corresponds to lower

frequencies, hence the rod is electrically thinner. However,

both branches overestimate the operational frequencies

supporting the maximal scattering for a given !c=!p.

Furthermore, the decrease of P scat=P inc as the cyclotron

frequency is increased (which is also observed in Figure

1(b) and (c)), is clearly confirmed by the results of Figure 2.

To offer more physical insight, four characteristic

designs, indicated by different points in Figure 2, have been

numerically simulated (full-wave finite-element simula-

tions using a commercial software COMSOL (5.3)).29 The

spatial distributions of the scattered magnetic field (z-com-

ponent) are shown in the corresponding insets, under TEz

plane-wave incidence propagating toward the positive

x-axis. For an unbiased cylinder (!c ¼ 0), we select the

frequency giving maximum P scat=P inc, and obtain the con-

ventional dipolar resonance of a plasmonic cylinder, asso-

ciated with the excitation of a localized surface-plasmon

polariton.30,31 The resulting scattering pattern (bottom left

inset) is that of a y-oriented induced dipole, as dictated by

the incident electric field. The other three considered cases

have the same bias, !c ¼ 0:25!p, but different frequency.

The two resonant branches of the split surface-plasmon

resonance correspond to circularly polarized induced

dipoles with opposite sense of rotation, which yield a heli-

cal distribution of scattered field (two upper insets) with

different angular momentum, similar to the response

observed by Eskin et al.8 This unusual scattering response

is attributed to the fact that one of the two coefficients S+1

becomes much larger than the other according to equation

(5). Indeed, when practically only one of S+1 is present, the

response is dominated by a circularly polarized dipole of

certain helicity or, equivalently, two orthogonal linear

dipoles oscillating out-of-phase (+p=2). Conversely, when

both of the coefficients S+1 are non-negligible—but

unequal—more complicated scattering field distributions are

obtained. For example, by operating near the black line in

Figure 2, corresponding to the condition for maximally

rotated radiation pattern (7) (bottom right inset), we can

clearly see the tilt in the induced dipole, which produces a

Figure 2. Normalized scattered power P scat=P inc, as a function of
operating frequency !=!p and cyclotron frequency !c=!p for an
infinite cylinder with b ¼ 0:1lp and Im½et� ¼ �0:02 (obtained by
exact Mie-theory calculations). The solid black line corresponds
to condition (7) for maximal rotation of dipolar radiation pattern,
and the dashed white lines indicate the condition (9) for maximal
resonant scattering. The four insets show the spatial distributions
(time-snapshot) of the normalized scattered magnetic field for
four characteristic designs indicated by different points on the
contour plot.
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skewed bipolar pattern; such a near-field distribution corre-

sponds to far-field signatures of the type in Figure 1(c).

We also note that the monopolar term S0 may also

diverge according to equation (4), yielding an additional

scattering peak. In fact, by inspection of equation (4),

we have S0 !1) eeff !1) et ¼ 0. This resonance

condition is analogous to the so-called volume-plasmon

resonances for e ¼ 0,32 and it occurs in our case for

!2 ¼ !2
p þ !2

c . This resonance is absent for an unbiased

cylinder where eeff ¼ et, whereas, in the presence of

nonzero bias, a vanishing et gives an unbounded eeff .

However, this resonance has very high quality factor,

hence it is completely damped in the presence of very

small losses, as in the case considered in Figure 2 with

Im½et� 6¼ 0.

Core–shell gyrotropic cylinder

Quasi-static analysis

The same mathematical formulation used above can be

applied to the relevant case of core–shell gyrotropic

cylinders. The scatterer is composed of a core cylinder

of radius a and permittivity tensor with parameters

(et1; eg1), as in equation (1), and cyclotron frequency

!c1, which is covered by a gyrotropic cladding of thick-

ness (b� a) and respective parameters (et2; eg2; !c2). For

simplicity, we assume a common plasma frequency !p

for both core and cladding materials and consider the

two cases in which only one of the two bias fields

(!c1; !c2) is nonzero, namely, either the cladding or the

core is gyrotropic.

When only the internal cylinder is biased (!c1 ¼ !c and

!c2 ¼ 0), the dominant scattering coefficients (dipolar

terms, u ¼+1) of an electrically small particle

(k0b� 1) take the form

S+1 ffi p3 b

lp

0
@

1
A

2

!

!p

0
@

1
A

2

�

!c
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a

b

0
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2

� 1

2
4

3
5 1� 2

!
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0
@

1
A
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3
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8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
ð10Þ

Instead, when only the coating layer is magnetically

biased (!c1 ¼ 0 and !c2 ¼ !c), the corresponding quasi-

static expressions can be written as

S+1 ffi p3 b

lp

0
@

1
A

2

!

!p

0
@

1
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�
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0
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1
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22
4

3
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0
@

1
A

22
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3
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ð11Þ

As in the previous section, the poles of equations (10),

(11) give the scattering resonances of the core–shell parti-

cles. The analysis of the anomalous behavior of these reso-

nances is the main goal of this study. As expected, when

a=b ¼ 1 for equation (10) (isotropic shell vanishes) or

a=b ¼ 0 for equation (11) (isotropic core vanishes), both

equations become identical to equation (5) for a single gyro-

tropic cylinder, and the scatterer respects condition (9) for

Zeeman-split localized surface–plasmon resonances.

The extra parameter a=b in the core–shell case not only

provides more flexibility in controlling these plasmonic

resonances, but it also leads to the emergence of additional

resonances. Indeed, its presence makes the denominators of

equations (10) and (11) a fourth-order polynomial with

respect to ð!=!pÞ, unlike the denominator of equation

(8), which is a second-order polynomial. In the next sec-

tion, we elucidate the properties of these scattering reso-

nances of core–shell gyrotropic scatterers and discuss their

relation with so-called Fano resonances and embedded

eigenstates.

Gyrotropy-induced plasmonic resonances and Fano
resonances

In Figure 3, we consider a cylindrical core–shell scatterer

(b=lp ¼ 0:03) with biased core, and plot the “regions of

existence” of a scattering resonance in the parameter space

defined by ð!=!p; !c=!pÞ. The lighter regions (label: YES)

correspond to frequencies at which a dipolar resonance can

exist for a physical scatterer with 0 < a=b < 1 (for which

S+1 in equation (10) diverges), whereas the darker regions

(label: NO) correspond to frequencies at which scattering

resonances are not attainable for any physical value of a=b.

We note that for very low bias (low !c=!p), scattering

resonances occur at two discrete frequencies. These fre-

quencies are: (i) ! ffi !p=
ffiffiffi
2
p

, corresponding to a conven-

tional surface-plasmon resonance (eeff ffi et ¼ �1), and

6 Nanomaterials and Nanotechnology



(ii) ! ffi !p, corresponding to a vanishing volume-plasmon

resonance (eeff ffi et ¼ 0). As further discussed in the fol-

lowing, while the former resonance has a nonzero linewidth

even in the unbiased case, the latter exhibits a diverging

quality factor, and it corresponds to a non-radiating eigen-

mode, or embedded eigenstate, of the scatterer, an extreme

scattering effect extensively studied in recent years.15–18

As we increase !c, we see in Figure 3 that resonant

scattering can be attained over a wider region of the para-

meter space for a suitably chosen aspect ratio a=b. We also

note that if !c increases beyond a certain value, resonant

scattering is attainable over a very wide frequency range by

properly choosing the size of the core.

Fixing !c to a specific value (0:2!p, indicated by a

dashed line in Figure 3), we plot the normalized scattering

power P scat=P inc in the insets of Figure 3 across two dif-

ferent frequency bands, as a function of the aspect ratio

a=b. In the lower left inset, we examine the range

0:5 < !=!p < 0:9 centered at ! ffi !p=
ffiffiffi
2
p

. For a=b ¼ 1,

namely, when the entire particle is biased, we observe a

substantial Zeeman split of the resonances, which is

reduced when the core size is decreased. This result is

expected since the bias is applied to a smaller portion of

the cylinder and, therefore, the imposed rotational asym-

metry diminishes. In the lower right inset, we consider the

second resonance band, 0:9 < !=!p < 1:1, centered at

! ffi !p. Interestingly, the resonant branches in this range

are very different compared to the conventional surface–

plasmon resonances in the left inset. Both bright resonant

bands are accompanied by a dark zero-scattering band

nearby, producing an asymmetric resonant lineshape that

reveals the Fano-resonant nature of these additional scat-

tering features. Remarkably, as the geometry tends to the

extreme cases, a=b! 1 and a=b! 0, the scattering zeros

Figure 3. Regions of existence of a dipolar scattering resonance in the parameter space defined by ð!=!p; !c=!pÞ for a core–shell
cylinder with biased core. The light (dark) regions indicate that at least one physical value (none) of aspect ratio a=b exists that makes
equation (10) singular (corresponding to a dipolar scattering resonance). For !c ¼ 0:2!p, the normalized scattered power P scat=P inc is
shown in the two bottom insets with respect to frequency and aspect ratio, obtained by quasi-static calculations (lighter colors indicate
larger values). The outer radius is fixed, b ¼ 0:03lp.
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and resonances perfectly merge, determining a resonance

with diverging quality factor in the lossless limit, which

corresponds again to a non-radiating eigenmode of the

cylindrical scatterer. Of particular relevance is the region

close to a=b! 1, where two asymmetric Fano resonances

collapse into a doubly degenerate embedded eigenstate.

This analysis therefore reveals new examples of extreme

Fano resonances and embedded eigenstates, tunable by

varying the applied bias.

In Figure 4, we consider the same cylindrical particle as

in Figure 3 (b=lp ¼ 0:03), but with a biased shell and an

unbiased core. For this case, equation (11) determines the

resonances of the system. Similar considerations regarding

the regions of existence for scattering resonances apply to

this case. The logical contour is the same to that of Figure 3

with the difference that increasing bias does not always

lead to more resonances at bands around a central fre-

quency; in fact for ! ffi 0:94!p, it seems that one cannot

reach resonance for any !c within the considered range. By

observing the lower left inset of Figure 4, we note that

Zeeman splitting increases now for decreasing a=b, which

is expected because, if a=b ¼ 1, the device is completely

unbiased and a single degenerate plasmonic resonance is

obtained. Remarkably, however, the second resonance

(lower right inset) splits in the same way as in the biased-

core case in 3, namely, the two branches get separated as

a=b is decreased. This shows that what counts for the

“shape” of the second resonance is mostly the interaction

between the two different layers of various size, rather than

the fact that either one or the other is biased.

To further elucidate the behavior of this second pair of

scattering resonances, we show in Figure 5 the scattering

spectrum for a core–shell cylinder with a=b ¼ 0:95 and the

same bias as in the insets of Figure 3, as a function of !=!p

in a very narrow frequency range in the vicinity of ! ¼ !p.

As mentioned above, for a large aspect ratio (almost the

entire cylinder is biased with a thin unbiased shell around

it), the object exhibits an extreme scattering signature: two

ultrasharp asymmetric Fano resonances on the verge of

merging into a doubly degenerate embedded eigenstates.

Figure 4. Similar to Figure 3 but for a core–shell cylinder with biased shell. The poles of equation (11) determine the dipolar scattering
resonances.
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As a result, we observe two resonant peaks at very close

wavelengths, each one of them accompanied by a scattering

dip at slightly lower frequencies. By changing ! by a frac-

tion (0:2%) of the common plasma frequency, the scatter-

ing response varies dramatically as seen in the bottom

insets of Figure 5, which shows the spatial distribution of

Hz; scat. At the minimum of this curve, extremely weak

dipolar scattering is obtained; conversely, at the maximum,

the scattered power is orders of magnitude larger, and the

scattered field is associated with a circularly polarized

induced dipole, as in the upper insets of Figure 2 (opposite

handedness is obtained at the other peak of Figure 5). Such

a substantial change in the behavior of a small scatterer in a

very narrow frequency range—from high scattering, to zero

scattering, to high scattering again but with opposite angu-

lar momentum—may be employed in highly selective

(chiral) sensors and switching applications.

Conclusion

In summary, we have studied the scattering properties of

homogeneous and core–shell gyrotropic cylinders, an

important class of complex scatterers of large relevance

in the context of novel nonreciprocal and topological meta-

materials. We have showed that the presence of an external

bias splits the dipolar scattering resonances into distinct

resonances for circularly polarized dipoles of opposite heli-

city, an effect analogous to the Zeeman splitting of atomic

spectral lines. We have also discussed the possibility of

using the external bias to rotate the orientation of the dipo-

lar scattering pattern of the gyrotropic cylinder, until it

becomes almost orthogonal to the incident electric field.

This effect may be useful to tune and direct the scattered

field in desired directions. Finally, we have also studied the

presence of multiple ultrasharp Fano resonances in the

spectrum of core–shell gyrotropic cylinders, which can also

be merged into doubly degenerate embedded eigenstates.

These sharp scattering signatures may find applications in

tunable scattering switches and sensors.

We believe that all these intriguing effects may enable a

new degree of freedom in the design of anomalous and

extreme scatterers, with large potential implications in dif-

ferent practical scenarios.
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