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Cell encapsulation is a bioengineering technology that provides live allogeneic or

xenogeneic cells packaged in a semipermeable immune-isolating membrane for

therapeutic applications. The concept of cell encapsulation was first proposed almost

nine decades ago, however, and despite its potential, the technology has yet to deliver

its promise. The few clinical trials based on cell encapsulation have not led to any

licensed therapies. Progress in the field has been slow, in part due to the complexity

of the technology, but also because of the difficulties encountered when trying to prevent

the immune responses generated by the various microcapsule components, namely

the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors

used to genetically engineer encapsulated cells. While the immune responses induced

by polymers such as alginate can be minimized using highly purified materials, the need

to cope with the immunogenicity of encapsulated cells is increasingly seen as key in

preventing the immune rejection of microcapsules. The encapsulated cells are recognized

by the host immune cells through a bidirectional exchange of immune mediators,

which induce both the adaptive and innate immune responses against the engrafted

capsules. The potential strategies to cope with the immunogenicity of encapsulated cells

include the selective diffusion restriction of immune mediators through capsule pores

and more recently inclusion in microcapsules of immune modulators such as CXCL12.

Combining these strategies with the use of well-characterized cell lines harboring the

immunomodulatory properties of stem cells should encourage the incorporation of cell

encapsulation technology in state-of-the-art drug development.

Keywords: alginate, cell encapsulation, microcapsule, immune response, therapeutic delivery, damage-

associated molecular patterns, cytokines

INTRODUCTION AND BRIEF HISTORY OF CELL
ENCAPSULATION

Cell microencapsulation is a strategy that allows the implantation of allogeneic and xenogeneic
cells, while keeping the cells isolated from the host immune response by semipermeable membrane
permitting the diffusion of gases, nutrients and therapeutics but not of host immune cells (Orive
et al., 2003). The birth of encapsulation technology can be dated back to the 1934 report of Vincenzo
Bisceglie describing the encapsulation of tumor cells in a polymer and transplanting the capsules
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into the abdominal cavity of a pig (Bisceglie, 1933). Later
in 1964 Thomas Chang described the “artificial cell” concept
and the idea of using semipermeable microcapsules to deliver
therapeutics (Chang, 1964). Subsequently a pioneer preclinical
trial was conducted using encapsulated pancreatic islets for
diabetes (Lim and Sun, 1980). The islets stayed viable and showed
in vivo therapeutic effect for 3 weeks in rats. Additional diabetes
studies followed (Calafiore et al., 2006). The method has also
been explored to deliver therapeutics for many other conditions:
central nervous system delivery (Aebischer et al., 1996; Zurn
et al., 2000; Garcia et al., 2010; Kuramoto et al., 2011; Luo et al.,
2013), cancer (Lohr, 2001; Lohr et al., 2002; Dubrot et al., 2010),
metabolic disorders (Hortelano et al., 1996; Garcia-Martin et al.,
2002; Wen et al., 2006, 2007; Piller Puicher et al., 2012; Diel
et al., 2018), and anemia (Orive et al., 2005) among multiple
other conditions. Altogether, many applications of encapsulated
cells have been described (Chang, 2019), leading to the creation
of several biotechnology companies developing encapsulation
devices (Orive et al., 2019).

In parallel, a wide variety of implantation sites have
been explored, including intraperitoneal (Elliott et al., 2007),
intratumoral (Lohr, 2001; Lohr et al., 2002), intrathecal
(Aebischer et al., 1996), intraventricular (Ross et al., 2000), and
intraocular (Orive et al., 2019), among others. Implantation
sites are selected based on the needs of each specific medical
condition, such as implantation of encapsulated mesenchymal
cells secreting BMP-2 for bone regeneration (Turgeman et al.,
2002; Tai et al., 2008). Encapsulation of pancreatic islets has
been particularly explored, with numerous preclinical and
clinical trials, several most remarkable examples of which are
described below.

One of the first clinical trials to employ cell encapsulation
demonstrated that insulin independence persisted for 9 months
after intraperitoneal injection of encapsulated human islets in
a type 1 diabetic patient (Soon-Shiong et al., 1994). In a
different study, seven type 1 diabetes patients reached stable
insulin independence after transplantation of encapsulated islets
(Shapiro et al., 2000). Elliott et al. demonstrated the long-term
viability and functionality of transplanted encapsulated islets
in a 41-year old diabetic patient (Elliott et al., 2007). Veriter
et al. co-encapsulated pig islets with mesenchymal stem cells
(MSCs) and describe the improvement in implant oxygenation
and neoangiogenesis (Veriter et al., 2014). One of the most recent
studies reported a safe and successfull transplantation of porcine
islets with a bioartificial pancreas device in diabetic primates in
the absence of immune suppression (Ludwig et al., 2017).

THE CHALLENGES ENCOUNTERED BY
THE CELL ENCAPSULATION
TECHNOLOGY

Despite its attractive nature, no clinical licensed therapeutic
product based on cell encapsulation technology has yet seen the
market. While there are multiple reasons that explain why the
technology has failed to deliver its promise, one of the greatest
challenges has arguably been the host immune response elicited

by both the implanted capsule and the encapsulated cells (De Vos
et al., 1999; Paredes-Juarez et al., 2014b). The first contact of the
capsule with the host occurs at the level of the polymer protecting
the encapsulated cells (Figure 1). Next, the encapsulated cells
themselves play a key role in inducing immune responses
through antigen shedding and secretion of soluble immune
mediators (Hu and de Vos, 2019; Figure 1). Additionally, the
transgenes expressed and secreted by the encapsulated cells are
often recognized as foreign by the host, while the expression
vector used to genetically engineer encapsulated cells may
contain immunogenic sequences and moieties. Importantly, the
cumulative effect of these elements may exceed the simple
additive effect of the individual components.

THE CAPSULE POLYMER: CHEMICAL
COMPOSITION AND IMMUNOGENICITY

Although numerous polymers have been described to protect
encapsulated allo- or xenogeneic cells (de Vos et al., 2014; Hu and
de Vos, 2019), alginate has been used the most, either alone or in
combination with other polymers (de Vos et al., 2006; Goh et al.,
2012). Alginate is a natural polysaccharide purified from algae
(though it can also be produced by some bacteria), with excellent
biocompatibility and biodegradability (Murua et al., 2008; Lee
and Mooney, 2012; Gasperini et al., 2014) and a sound safety
record (Orive et al., 2006). Alginate microcapsules implanted
intraperitoneally in immunocompetent mice remain free and
unattached to host tissues for months, and can be recovered using
a simple spatula (Hortelano et al., 1996). Nevertheless, despite its
biocompatibility, any impurities and endotoxins remaining after
the purification process will act as adjuvants to trigger and/or
enhance immune responses resulting in pericapsular fibrotic
overgrowth post-implantation (Tam et al., 2006; Paredes-Juarez
et al., 2013; Calafiore and Basta, 2014).

Alginate
Alginate is a block copolymer made of combinations of
mannuronic acid (M) and guluronic acid (G) subunits (de
Vos et al., 2014). Many different types of alginate are now
commercially available. Factors such as the ratio of M/G, the
length of the copolymers, the molecular weight and the alginate
viscosity are important in determining the properties of the
polymer (Tam et al., 2011; Kummerfeld et al., 2016). For instance,
alginates that have high G content have been shown to have
better compatibility and are thus best suited for cell encapsulation
applications (Uludag et al., 2000; Bhujbal et al., 2014; Paredes-
Juarez et al., 2014b).

The crosslinking of anionic alginate with cationic compounds
such as poly-L-lysine (PLL) allows a more controlled pore size
of the microcapsules (de Vos et al., 2002; van Hoogmoed et al.,
2003; Tam et al., 2011; Kendall and Opara, 2017). In addition
to PLL alternative crosslinking compounds such as barium (Liu
et al., 2013; Paredes-Juarez et al., 2014b) or strontium (Morch
et al., 2006) have also been described. However, unbound PLL
affects the capsule biocompatibility (Paredes-Juarez et al., 2014b;
Hajifathaliha et al., 2018) as shown by the presence of the
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FIGURE 1 | Immune response to encapsulated cells. This cartoon depicts the complex interaction of microcapsules with the immune system and surrounding tissue

environment. DAMPs, damage-associated molecular patterns; PAMPs, pathogen associated molecular patterns (see Table 1 and text for more detail).

pro-inflammatory cytokine tumor necrosis factor (TNF) in the
supernatant of monocytes cultured with PLL (Strand et al., 2001).

Polymer Immunogenicity
The innate immune system recognizes pathogen associated
molecular patterns (PAMPs) in alginate preparations through the
pattern recognition receptors (PRR) (Paredes-Juarez et al., 2014a;
Krishnan et al., 2017), resulting in proinflammatory cytokine
release and adverse anti-capsular immune responses (Dorrington
and Fraser, 2019). Toll-Like Receptors (TLRs) on the cell surface
or within the intracellular endosomal compartment is one PRR
type recognizing the PAMPs originating from non-mammalian
cells. Despite extensive purification, alginates can still contain
lipopolysaccharide that is recognized by TLR4 (Vaure and Liu,
2014), peptidoglycan and lipoteichoic acid sensed by TLR2
(Paredes-Juarez et al., 2014a) and small molecular poly-M
residues detected by TLR2 and TLR4 (Flo et al., 2002). Thus, high
quality purification of alginate becomes crucial for the long-term
survival of encapsulated cells, and strategies to achieve high level
of alginate purity have been described elsewhere (Paredes-Juarez
et al., 2014a).

ENCAPSULATED CELLS vs. THE HOST:
EXCHANGE OF SIGNALING MOLECULES

Capsule Permeability
The type of molecules that can pass through the capsular
membrane is dictated by multiple factors, including the
distribution and size of the capsule pores (e.g., alginate gel
pores range from 5 to 150 nm) and biochemical characteristics
of the molecules, such as the molecule’s molecular weight, size,
shape and presence of charged groups. While the weight of the
molecule is only partially responsible for the molecule’s ability to
diffuse in and out of the capsules, it is a useful parameter when
comparing the ability of different signaling agents to influence
the immune response against the capsules (Table 1). However,
there is substantial heterogeneity in the literature regarding the
permeability of alginate capsules. Thus, some researchers indicate
that proteins up to∼250 kDa and polysaccharides up to∼50 kDa
can diffuse through the pores of alginate capsules (Vaithilingam
et al., 2011, 2013), while others report that their capsules are
impermeable to proteins weighing∼25 kDa such as highmobility
group box (HMGB)1 (Paredes-Juarez et al., 2015) or antibodies
(Cui et al., 2009). This heterogeneity could at least in part be
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TABLE 1 | Intra- and Extra-cellular molecules that modulate immune responses to encapsulated cells.

Molecule category Molecular weight (kDa) Sources (EC/HC/ECM#) Receptors References

Intracellular DAMPs

Advanced glycation end products (AGE)

Low molecular weight AGEs <12 EC, HC cytoplasm RAGE Hudson and Lippman, 2018

High molecular weight AGEs >12

Chromatin and nucleic acids

(DNA, RNA)

100* EC, HC nucleus,

mitochondria

TLR9 Lamphier et al., 2006

Galectins 14–38 EC, HC nucleus, cytosol,

mitochondria

Unknown Sato et al., 2009

Heat shock proteins 10–100 EC, HC cytosol CD14, CD91, TLR2, TLR4,

CD40

Srivastava, 2002

Histones 11–25 EC, HC nucleus TLR2, TLR4, NLRP3 Xu et al., 2011

HMGB1 25 EC, HC nucleus,

autophagosome

TLR2, TLR4, TLR9, CD44,

RAGE

Bianchi and Manfredi, 2007

Monosodium urate, uric

acid

0.170 EC, HC cytosol NALP3/NLRP3, TLR2,

TLR4, CD14

Martinon et al., 2006

Purine metabolites, e.g.

ATP, adenosine

0.5 EC, HC cytoplasm, nucleus P1, P2X, P2Y receptors Mariathasan et al., 2006

S-100 (calgranulins) 10–12 EC, HC cytosol TLR4, RAGE Foell et al., 2007

Thioredoxin 12 EC, HC cytoplasm Unknown Bertini et al., 1999

Extracellular DAMPs

Aggrecan Fragments of variable length ECM Proteoglycans TLR2 Kono and Rock, 2008;

Schaefer, 2010

Biglycan TLR2, TLR4, NLRP3

Decorin TLR2, TLR4

Versican TLR2, TLR6, CD14

LMW-HA ECM Glycosaminoglycan TLR4

Heparan sulfate

Tenascin-C ECM glycoprotein TLR4

Fibrinogen TLR4, integrins

Fibronectin TLR4

Other molecules

Complement components

C3, C4

192 ECM Complement receptors Kobayashi et al., 2006

Immunoglobulins 150 B cells/plasma cells Fc receptors

Cytokines

IFN-γ 20 T cells IFN-gR Kobayashi et al., 2006

IL-10 18 EC, HC IL-10R

IL-1a 17–31 EC, HC IL-1R Halle et al., 1993; de Vos

et al., 2003; de Haan et al.,

2011

IL-6 21 EC, HC IL-6R

IL-33 18 EC, HC ST2/IL-1R Haraldsen et al., 2009

IL-4 12–20 HC IL-4R Vaithilingam et al., 2013

IL-5 40–50 HC IL-5R

IL-8 2.5 HC IL-8R

MCP-1 (CCL2) 11.0 EC CCR2 Yi et al., 2003

MIP-1α (CCL3), MIP-1β

(CCL4)

8.0 EC CCR1, CCR4, CCR5, CCR8 Kobayashi et al., 2006;

Vaithilingam et al., 2013

TNF 51 HC TNF-R on immune cells Vaithilingam et al., 2013

*Fragmented molecules’ approximate average weight. #EC, encapsulated cells; HC, host cells; ECM, extracellular matrix; CD, cluster of differentiation; DAMP, damage-associated

molecular pattern; HMGB1, high-mobility group protein B1; MCP, monocyte chemoattractant protein; LMW-HA, low molecular weight hyaluronan; IL, interleukin; TLR, toll-like receptor;

NALP3, NACHT, LRR, and PYD domains-containing protein 3; NLRP, NOD-like receptor pyrin domain-containing; RAGE, receptor of advanced glycation end products.
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due to the inter-laboratory differences in capsule preparation
protocols and cell encapsulation techniques resulting in variable
biochemical characteristics and diameter of capsule pores. In
practical terms this means that encapsulated cells can both
produce immune mediators and respond to mediators from the
host with critical implications for the success of the technology.

Danger Signals Produced by Encapsulated
Cells
Live cells secrete numerous products of metabolism, some
of which, such as advanced glycation end products (AGE)
and uric acid can be recognized as damage-associated
molecular patterns (DAMPs) by the host (Matzinger, 2002,
2007). When encapsulated cells undergo apo- or pyroptosis,
they release other DAMPs, such as ATP, nucleic acids and
chromatin fragments (Kono and Rock, 2008). In addition to
macrophages, transplanted microcapsules attract granulocytes
and myofibroblasts, which adhere to the capsule surface, and
other immune cells such as natural killer (NK) cells, CD4+ T
cells, and B cells (Candinas et al., 1996; Lin et al., 1997; Kobayashi
et al., 2006; Cui et al., 2009; Figure 1).

Notably, the double stranded DNA used to genetically
engineer cells is a DAMP recognized by TLR9 (Table 1). This
recognition initiates a signal transduction pathway mediated
throughMyD88 that leads to the expression of pro-inflammatory
cytokines such as interleukin (IL)-6, IL-8, TNF, as well as IFNα

and IFN-inducible genes. A successful strategy to minimize this
activation of the innate immune system is to eliminate the
unmethylated CpG sequences present in the vector DNA, which
led to a significant reduction in the titer of antibodies to the
transgene (Reyes-Sandoval and Ertl, 2004). Thus, care should be
taken to genetically engineer encapsulated cells with vectors that
minimize DAMP generation.

Our understanding of the immune mechanisms causing
encapsulated cell rejection is still incomplete. Therefore, future
studies should aim to perform a high throughput screening of
molecules and cells in and outside the capsule using dynamic
imaging, proteomic and metabolomic assays. Meanwhile, the
type of encapsulated cells should be chosen wisely to minimize
the capsule immunogenicity.

THE TYPE OF ENCAPSULATED CELLS:
CHOICE THAT MATTERS

Ideal candidates for encapsulation would be non-immunogenic,
non-tumorigenic, free from ethical controversies, easy to obtain
and plentiful, well-characterized and reproducible. A plethora of
different cell types has been used for encapsulation, each with its
unique advantages and limitations (Uludag et al., 2000; Tomaro-
Duchesneau et al., 2013). The first consideration in cell selection
is its immunogenicity, arguably the most critical factor. At times,
the choice of cells is limited by the ability to express a unique
therapeutic molecule. The use of encapsulated cells for diabetes
is a good example, since the sophisticated regulation of insulin
expression in response to glucose is restricted to pancreatic
β cells (Kieffer et al., 2017; Vaithilingam et al., 2017; Zhong

and Jiang, 2019). The existing autoimmune response against
pancreatic islets in diabetic patients makes these cells highly
immunogenic, and thus a formidable challenge to overcome
(Alagpulinsa et al., 2019).

The Case of C2C12 vs. G8 Myoblasts
Our group previously evaluated the immunogenic nature
of encapsulated C2C12 murine myoblasts expressing human
coagulation IX (FIX), which is considered a rather weak
antigen. Compared with mice immunized with FIX protein in
complete Freund’s adjuvant (a standard for immunization), mice
transplanted with microencapsulated cells had a much higher
antibody titer to FIX (Gomez-Vargas et al., 2004). Furthermore,
encapsulated cells also stimulated vigorous cellular immune
responses to FIX, including cytotoxic T lymphocytes (CTL), and
induced neutralizing antibodies, a feat Freunds’ adjuvant was
unable to achieve. The unique ability of the microcapsules to
allow the permeability of immunemediators but not of cells leads
to a continuous supply of transgene that stimulates the immune
system (Gomez-Vargas et al., 2004).

When the C2C12 cell line was substituted with G8 murine
myoblasts of fetal origin, mice receiving G8 cells expressing FIX
did not develop antibodies to FIX, showing instead a sustained
systemic delivery of FIX (Wen et al., 2007). These contrasting
results indicate the critical importance of the cell type used,
and the need to seek non-immunogenic cells. Fetal cells do
not express MHC class antigens like adult differentiated cells
(Machado Cde et al., 2013), and thus are not able to induce a
comparable immune response.

The Transgene
On the other hand, the immunogenicity of each transgene used to
engineer encapsulated cells is unique, and results obtained with
a given transgene cannot be extrapolated to other transgenes.
Microencapsulated G8 myoblasts did not elicit antibodies to FIX
(Wen et al., 2007), but they did induce antibodies to FVIII, amore
immunogenic protein (Garcia-Martin et al., 2002). In contrast,
encapsulated C2C12 resulted in effective long-term release of
erythropoietin in mice, which induced increased hematocrit level
for more than 100 days (Orive et al., 2005). Therefore, the
immunogenicity of the cells and the transgene are not necessarily
independent from each other and the development of antibodies
against the transgene cannot be easily generalized or assumed.

Cell Proliferation Inside Microcapsules
Another important consideration is the proliferation of cells
in the polymeric matrix. Ideally, cells should be proliferative
but would have contact inhibition to prevent uncontrolled
proliferation. Excessive proliferation and high cell density affects
nutrient permeability, which reduces cell viability. In this regard,
myoblasts can proliferate temporarily in alginate capsules, after
which they become quiescent (Hortelano et al., 1999, 2001),
while fibroblasts continue to proliferate long after encapsulation
(Liu et al., 1993). Pancreatic islet cells represent a unique case
since they do not proliferate once encapsulated (Dufrane and
Gianello, 2012). Ultimately this lack of proliferation reduces
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cell viability and the therapeutic efficacy of the microcapsules
(Barkai et al., 2016).

Using Encapsulated Stem Cells
Recent exciting protocols for obtaining stem cells or inducing
pluripotent stem cells from adult cells have opened new
possibilities for encapsulation (Tabar and Studer, 2014). Stem
cells have attractive immunomodulatory properties (Liu et al.,
2017), are not highly proliferative and are suitable for long-
term transplantation (Goren et al., 2010; Mandal et al., 2019).
However, the viability of human mesenchymal stem cells
(hMSCs) in alginate microcapsules is not optimal. We, and
others, have decorated alginate with peptides or proteins that
improve the cellular attachment of hMSCs on alginate (Yu
et al., 2010; Sayyar et al., 2012, 2014, 2015). The addition
of the amino acid residue RGD, fibrinogen or fibronectin
enhanced cell viability, proliferation and/or transgene expression,
as well as modulate stem cell differentiation. Therefore, stem
cells are now seen upon as a very promising option for
encapsulation. The recent use of a human stem cell line for
encapsulation (Alagpulinsa et al., 2019) opens the possibility to
genetically engineer an immortal cell line that can be thoroughly
characterized and used as an off-the-shelf drug for a variety
of patients.

Novel Strategies to Reduce
Immunogenicity of Microcapsules
Recently, the incorporation of chemokine (C-X-C motif)
ligand (CXCL12) into alginate by Alagpulinsa et al. (2019)
remarkably resulted in no pericapsular fibrotic overgrowth after
the xenotransplantation of human stem cells differentiated into
pancreatic β cells (SC-β cells) in immunocompetent mice for
>150 days without the need for immunosuppression. CXCL12
(or stromal cell-derived factor-1α, SD-1) is the ligand for a
transmembrane chemokine receptor CXCR4 (Klein and Rubin,
2004; Guyon, 2014; Janssens et al., 2018) that plays a key
role in many biological processes including tumor metastasis,
as well as cell angiogenesis, survival and migration (Liekens
et al., 2010). CXCL12 attracts regulatory T cells (Tregs) and can
modulate immune responses by abrogating immune surveillance

(Susek et al., 2018; Yu et al., 2019) and repelling effector
immune cells from the capsules (Chen et al., 2015). This novel
strategy may open new horizons for therapeutic applications of
encapsulated cells.

CONCLUSION AND FUTURE OUTLOOK

The concept of transplanting cells with therapeutic potential
enclosed in polymeric microcapsules is highly relevant for the
modern pharmaceutical industry. However, a major barrier to
implementing cell encapsulation technology in the clinical setting
is the immune response generated against the microcapsules
and their contents. Therefore, a thorough characterization of
the immune mechanisms involved in anti-capsular response
is important for successful in vivo implementation of the
technology. Despite the challenges, the recent use of immune
modulators to avoid fibrotic overgrowth is an exciting and
potentially game-changing development. Together with the
rigorous polymer purification protocols available today and
the use of human stem cell lines it may provide the final
missing element for successful cell encapsulation applications.
These recent developments should encourage clinical trials with
renewed hopes for the field of cell encapsulation.
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