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Optimally Sharp Energy Filtering 
of Quantum Particles via 
Homogeneous Planar Inclusions
Constantinos Valagiannopoulos

Some of the most influential players from academia and industry have recently expressed concrete 
interest for quantum engineering applications, especially for new concepts in controlling and processing 
the quantum signals traveling into condensed matter. An important operation when manipulating 
particle beams behaving as matter waves concerns filtering with respect to their own energy; such 
an objective can be well-served by a single planar inclusion of specific size and texture embedded 
into suitable background. A large number of inclusion/host combinations from realistic materials are 
tried and the optimally sharp resonance regimes, which correspond to performance limits for such a 
simplistic structure, are carefully identified. These results may inspire efforts towards the generalization 
of the adopted approach and the translation of sophisticated inverse design techniques, already 
successfully implemented for nanophotonic setups, into quantum arena.

Quantum interactions of particle beams with crystalline matter are present in numerous and diverse effects with 
significant quantum engineering potentialities. One can indicatively refer to matter waves tunneling through 
arbitrary potential distributions that support complex interference schemes1 or controllable transitions between 
vibrational states, crucial in quantum sensing2. Importantly, proper coupling between impinging particles and 
materials has been utilized for emulation of exotic electronic properties in heterojunctions3 and led to the system-
atic formulation of cavity quantum electrodynamics illustrating fundamental aspects of measurement theory4.

All these inherently fascinating phenomena being vital in disruptive quantum applications, have recently 
attracted huge funding interest; indeed, along with 5G communications and Artificial Intelligence, is one of the 
technologies that presidents of both, countries and companies, love to cite5. In particular, impressive State ini-
tiatives have been taken6, echoing major investments from Google, IBM, Intel, Microsoft and other industry 
giants, that are expected to ignite extensive quantum engineering research efforts in the near future. Already, 
National Science Foundation (NSF) is efficiently supporting research teams in quest of suitable hybrid materials 
used in quantum signal processing and computing7 while US Army Research Office (ARO) is currently fund-
ing studies on growing of matter for noise suppression towards high fidelity qubit operations8. Finally, several 
Multidisciplinary University Research Initiatives (MURIs) are executed with main objective to reformulate the 
range of light-matter interactions for quantum optics and photonic configurations9.

There are various alternative media employed in setups hosting the aforementioned effects; more specifically, 
one can use from isolated elements (germanium, silicon, carbon etc) and semiconductors (arsenides, antimon-
ides, tellurides etc) to arbitrary alloys, mixtures and heterojunctions10. Not only reliable measurements and com-
putational simulation models for the effective parameters11 describing the transport of quantum particles12 are 
available, but also several fabrication processes can be implemented for constructing, measuring and testing the 
corresponding prototypes. In particular, simple chemical precipitation methods have been adopted towards the 
synthesis of sulfide nanocomposites in graphene oxide building solar cell devices13 while exfoliation approaches 
are followed in growing telluride multilayers supporting preferential scattering observable through transport 
measurements14.

In addition, the coupling between arsenide quantum dots and an external fiber-mirror-based microcavity can 
be investigated by using mostly self-assembly techniques15 while quantum interference between single photons 
heralded from two independent micro-ring resonators has been measured fully-integrated onto a monolithic sili-
con photonic chip16. Diamond-based quantum layouts like nanowires into polycrystalline diamond fabricated via 
top-down methods allow for large collection efficiency of emitted photons17; moreover, unprecedented coherence 
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of atoms combined with the scalability of a solid-state platform has been achieved by creating suitable defects 
into diamond18. It should be noted that diamond nanophotonic structures are additionally used for efficient light 
collection in hybrid integration with other material subsystems19 but, mainly, as solid-state quantum sensors 
exploiting nitrogen defects20.

One of the most typical objectives in modeling a quantum setup is the efficient energy filtering of the incident 
matter waves, namely the fabrication of a planar structure letting the impinging particles pass only if they possess 
a specific amount of energy, otherwise it blocks them21. Over thirty years ago, solutions based on sequential tun-
neling exploiting the, well-known from Photonics, Fabry-Perot mechanism22 led to tunable wavelength-selective 
detectors23. Moreover, systematic efforts towards filter design based on matter waves interference into potential 
superlattices by manipulating the emerged resonances have been recorded24, with the obtained results being 
experimentally tested25. Since then, interference-based energy filters have been used to perform very accurate 
scanning tunneling spectroscopic measurements26 and to execute electron counting with high resolution and 
sensitivity27. Most significantly, similar potential distributions with increased selectivity have played the role of 
modules in interferometric experiments complementing the field of electron holography28 and controlling the 
quantum transport phenomena in nanoscale systems via time -dependent fields29. It should be finally remarked 
that energy filtering plays a crucial role in nanostructured thermoelectric generators30, where the output power 
can be further boosted with help from Fabry-Perot cavities31 or in coolers with increased coefficient of perfor-
mance32. Similarly, response selectivity with respect to the impinging energy of the beams is important in the 
operation of magnetic tunnel junctions with band pass utilities33 and quantum Hall setups34 considering the 
electron-nuclear spin flip-flops in the parametric vicinity of interest.

In this work, our aim is to provide realistic quantum designs with sharp response that can work as energy fil-
ters for the impinging matter waves. The structure is the simplest possible: a planar homogeneous slab embedded 
into a suitable environment; however, our search for optimal sizes and material combinations is exhaustive. In 
particular, we try and test every single quantum medium from a long directory in the role of host or inclusion and 
we conclude to the best designs that are transparent to a specific level of incoming particles energy, while being 
opaque to all the others energies belonging to an extensive band around it. Several alternative optimized designs 
are presented whose selectivity scores constitute performance limits of the considered simplistic setup provided 
the list of available media; similar conclusions have been drawn for different type of inclusions serving alternative 
purposes35. Fabry-Perot resonances of different orders, in proportion to what is the level of selected energy and 
the used materials, are activated at each filter layout giving different inclusion thicknesses and oscillation frequen-
cies. The selectivity robustness of the designs with respect to fabrication defects of the slab size or engineering 
flaws influencing the effective parameters of the media is also found substantial even though shifts at the centrally 
filtered energies are noted.

This study reports numerous highly selective setups that deploy actual quantum matter and thus provides the 
interested experimentalists with additional degrees of freedom in fabrication of sharp energy filters for quantum 
particles and their respective matter waves. This primitive library of optimal setups performing such a ubiquitous 
operation at each selected energy level can be also useful in integrated systems design with state-of-the-art quan-
tum engineering applications of a huge range spanning from attosecond time resolution36 and all-optical particle 
acceleration37 to optimal field detection38 and quantum signal processing39,40.

Results
Proposed setup.  We consider the physical configuration depicted in Fig. 1, where the employed Cartesian 
coordinate system (x, y, z) is also defined, comprising a planar inclusion of thickness d into a specific background, 
scattering a normally incident electron beam (e-beam) of energy E. The periodic crystals into the two regions 
excite Bloch waves following certain band structures affecting the particles moving within41; such an interaction 
is approximated by assuming that the motion of electrons is in free space with a different mass. In this way, the 
effective mass characterizing the travel into background is m0 and the corresponding quantity describing the 
particle trip into the cavity is denoted by m.

The macroscopic potential energy in each medium is defined as the minimal energy needed to extract an 
electron from the material into vacuum. It is taken spatially invariant into each of the two regions, namely the 
transition from the background (potential V0) to the filter (potential V) is assumed abrupt; note also that only the 
difference in the energy levels counts and thus we can use as reference the energy into the background (V0 ← 0). 
In this sense, we may take V ← V − V0 ≡ −ΔV and E ← E − V0, namely E will, from now on, denote the difference 
of the incoming particle energy from the host potential level. It should be also remarked that when considering 
the interface between two materials (like the ones normal to z axis), the potential-energy difference is not in 
general given by (V − V0). In particular, there is a charge redistribution across the boundaries, paving the way 
to bipolar charge development and causing an additional potential drop; such band offsets are neglected in the 
followed approach.

If the incident matter wave is described by the wave function Ψinc = exp(ik0z), the response of the slab from the 
other side is expressed by a similar matter wave with Ψ = Texp(ik0z), where =k m E2 /0 0  is the wave vector 
norm into the background material and  is the reduced Planck constant. It is straightforward to find that the 
transmissivity τ = |T|2 is given by:

τ =
+ − −
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w he re  = + Δk m E V2 ( ) / .  L e t  u s  c on f i ne  ou rs e lve s  to  qu antu m  we l l  c on f i g u r at i ons 
(V0 > V ⇒ ΔV > 0 ⇒ k > 0), as indicated in the schematic of Fig. 1, since we aim at observing interfering particles 
of arbitrarily small energy E higher than the potential level of background. By inspection of (1), it is clear that the 
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transmissivity takes its maximal (unitary, τ = 1) value when cos(kd) = 1 ⇒ kd = nπ for n ∈ ℕ*, under the obvious 
constraint of k > 0. Accordingly, the quantity in (1) is minimized for cos(kd) = 0 ⇒ kd = nπ − π/2 (for positive 
integers ∈ ⁎n ) with minimal values τ = [2k0mkm0/(k0

2m2 + k2m0
2)]2.

If one demands full transmissivity (τ = 1) at a single incoming particle energy level E = E0, defined by the 
application, it becomes feasible for specific sizes of the homogeneous planar inclusions: π= + Δd n m E V/ 2 ( )0  
for ∈ ⁎n . Our aim is to propose designs working as effective particle energy filters for a pre-determined energy 
across an E-range around the operational point E = E0. In particular, if we take this band to start from vanishing 
energies (E = 0), it is natural to assume a maximum level E = 2E0, symmetric with respect to E = E0. Needless to 
say that the followed approach can be also used for alternative functional ranges or multiple filtering energy levels. 
A typical graph τ(E) for 0 < E < 2E0 is illustratively depicted in Fig. 1, where the transmissivity gets trivially nul-
lified for E = 0, it exhibits a single resonant peak at E = E0 with maximal value τ = 1 and decreases for E0 < E < 2E0; 
the half-of-maximum response τ = 1/2 is produced for two energies differing by B, which defines the resonance 
bandwidth. The merit of our filter is judged based on how suppressed is the response at the right extremum of the 
operational range E = 2E0 and how rapidly decays far from E = E0. With reference to Fig. 1, we are in search of 
designs possessing tiny residual transmissivities τ2 = τ(2E0) and as narrow half-power bands B(E0)/E0 as possible, 
at a given E0 each time.

Optimal designs.  This quest concerns an exhaustive search of all possible material combinations picked from a 
long list of quantum materials filling either the planar cavity42 or the background environment10, for a given level of 
selecting energy E0 that can vary within an interval 0.1 eV < E0 < 2 eV; once again, the range of E0 is just indicative and 
can be modified at will. The effective parameters of the used media are shown in Fig. 1(c), namely the combinations 
of effective masses m normalized by the inertial mass of electron me and their macroscopic potential energies V (in 
eV) are depicted on a plane. In our quest for optimal pairing of quantum media, we consider isolated semiconducting 
elements from group IV of the periodic table and various compounds between two elements of different groups (pairs 
of III and V or pairs of II and VI). Note that there is a proportional relation between the two represented quantities 
(m/me, V) with the II-VI compounds possessing the middle values of both features, while the rest semiconductors 
cover much larger ranges. In this way, a coherent and extensive parametric area on (m/me, V) map is occupied solely 
by regarding realistic and simple quantum texture, which can definitely serve as constituent in our optimization with 

Figure 1.  (a) The setup of the presented energy filter comprising a homogeneous planar inclusion with effective 
mass m, macroscopic potential energy V and thickness d into a specific background of effective parameters (m0, 
V0). The structure is excited by a normally incident electron beam of kinetic energy E. The considered structures 
correspond to quantum well configurations as shown in the schematic, namely to V < V0 . (b) Indicative 
variation of the transmissivity of the filter τ(E) for 0 < E < 2E0, where E0 is the selecting energy. The residual 
transmissivity τ2(E0) at E = 2E0 and the half-power energy bandwidth B(E0) are also defined. (c) Combinations 
of relative effective masses m/me and macroscopic potential energies V (in eV) of the materials populating our 
list used in the followed optimization.
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respect to the effective quantities m and V. One major novelty of the present work is that these parameters are not 
taken as free continuous variables but correspond to actual quantum media and thus the proposed layouts, carry-
ing certain beneficial characteristics, can be directly fabricated. As far as the evaluation of (m, V) is concerned, the 
potential energies V are derived through identifying the electronic energy-band structure for each material, where the 
quasi-cubic band model is employed10; on the other hand, the effective masses m are computed via estimating slopes 
of effective Hamiltonian for conduction and valence bands assisted from a theory of invariants43.

It should be stressed that the variation of τ(E) within a specified 0 < E < 2E0 is obviously more rapid when the 
thickness d becomes larger, namely the integer n gets higher as long as the condition τ(E0) = 1 is imposed44. For 
this reason, we have to select the integer n as big as possible but with care of retaining increasing transmission 
for 0 < E < E0 and decreasing for E0 < E < 2E0, otherwise queues from neighboring peaks will intrude into the 
considered energy interval 0 < E < 2E0. In Methods Section, it is shown that the optimal order of the occurred 
Fabry-Perot resonance is given by:
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It should be also stressed that if we demand only selectivity around an energy level E = E0, without caring 
about what is happening across a much broader range (like 0 < E < 2E0), the obvious optimal resonance order is 
n → +∞. Indeed, for a giant n, which implies a huge thickness d, the response will be extremely sharp but with 
many other peaks at neighboring energies.

Some of the results from this trial-and-error process that correspond to a maximum d provided that a single 
resonance is “entrapped” into our parametric box, are shown in Table 1, where E0 = 0.1 eV; the rows of the Table 
refer to different background media while its columns indicate the employed quantum material of the planar 
inclusion. Only those cases that lead to sufficiently low τ2 are presented, meaning that numerous additional quan-
tum texture combinations have been tested and rejected; note also that the best scores (in terms of τ2) are reached 
when the contrast between the potential energies of the two materials is substantial ( V V0 ). By inspection of 
Table 1, one observes extremely suppressed τ2 for most of the considered scenarios while the half-power bands B 
are tiny fractions of E0, designating very sharp filtering designs. There is a clear correlation between low τ2 and 
shrunk B/E0; importantly, the best filters are thicker, demanding slabs of several dozen of nanometers. Diamond, 
with its huge potential energy (V0 ≅ 15.3 eV), makes deep quantum well configurations and, when loaded by 
suitably-sized cavities, it creates ultra-performing quantum energy selectors. Indeed, diamond with certain 
nitrogen-based inclusions of significant stability in their electronic level structure has been additionally found to 
possess remarkable properties for quantum sensing applications18,20.

In Table 2, we show the results of our optimization when the central filtering energy is tenfold higher: E0 = 1 eV.  
Obviously, the size of the structures is shrunk compared to the corresponding ones of Tables 1 since the propagat-
ing wavenumber in the background medium k0 is higher. Furthermore, the performance of the optimal designs 
is certainly lower as both the relative half-power bandwidth B/E0 and the residual transmissivity τ2 at E = 2E0 are 
much more substantial. The empty box indicates poor performance, namely τ2 climbs above 20% preventing the 
planar slab to work as an efficient energy quantum filter.

In Fig. 2, we select specific material combinations and represent the two basic figures of merit (τ2, B/E0) for all the 
considered amplitudes of filtering energies E0; in other words, the content of each box in Tables 1 and 2 correspond 
to a single point in the graphs of Fig. 2. In particular, Fig. 2(a) shows the variation of residual transmission τ2 with 
respect to operational energy E0 for four characteristic pairs of quantum media. There is a clear increasing trend of τ2 
with E0 as also indicated by comparing Tables 1 and 2; it is thus demonstrated the much higher selectivity scores by 
such a simple setup when the energy of the propagating matter waves is low. One also directly notices the jumps of 
the curves at specific energy levels E0 which correspond to change of resonance orders n so that the appearance of a 
second peak within the considered energy range 0 < E < 2E0 is avoided. Note that the represented quantity exhibits 
stability between two successive discontinuities, while the jump turns larger when E0 gets more significant.

E0 = 0.1 eV

Indium
Antimonide
(InSb)

Indium
Arsenide
(InAs)

Indium
Nitride
(InN)

Gallium
Antimonide
(GaSb)

Cadmium
Telluride
(CdTe)

Silicon
Carbide
(SiC)

τ2 ≅ 0.003
B/E0 ≅ 0.05
d ≅ 145.0 nm

τ2 ≅ 0.006
B/E0 ≅ 0.07
d ≅ 105.2 nm

τ2 ≅ 0.008
B/E0 ≅ 0.08
d ≅ 92.7 nm

τ2 ≅ 0.010
B/E0 ≅ 0.09
d ≅ 81.1 nm

τ2 ≅ 0.026
B/E0 ≅ 0.15
d ≅ 50.1 nm

Magnesium
Oxide
(MgO)

τ2 ≅ 0.004
B/E0 ≅ 0.06
d ≅ 149.0 nm

τ2 ≅ 0.007
B/E0 ≅ 0.08
d ≅ 108.1 nm

τ2 ≅ 0.010
B/E0 ≅ 0.09
d ≅ 95.4 nm

τ2 ≅ 0.012
B/E0 ≅ 0.10
d ≅ 83.4 nm

τ2 ≅ 0.031
B/E0 ≅ 0.16
d ≅ 51.8 nm

Boron
Nitride
(BN)

τ2 ≅ 0.017
B/E0 ≅ 0.04
d ≅ 149.9 nm

τ2 ≅ 0.003
B/E0 ≅ 0.05
d ≅ 108.8 nm

τ2 ≅ 0.004
B/E0 ≅ 0.06
d ≅ 96.1 nm

τ2 ≅ 0.006
B/E0 ≅ 0.07
d ≅ 84.0 nm

τ2 ≅ 0.014
B/E0 ≅ 0.11
d ≅ 52.2 nm

Diamond
τ2 ≅ 0.001
B/E0 ≅ 0.02
d ≅ 209.5 nm

τ2 ≅ 0.001
B/E0 ≅ 0.03
d ≅ 153.1 nm

τ2 ≅ 0.002
B/E0 ≅ 0.04
d ≅ 136.0 nm

τ2 ≅ 0.002
B/E0 ≅ 0.04
d ≅ 119.1 nm

τ2 ≅ 0.005
B/E0 ≅ 0.06
d ≅ 76.2 nm

Table 1.  Optimal combinations of planar inclusions media (columns) and background materials (rows) that 
block all the impinging quantum particles except those of energy E0 = 0.1 eV. The transmissivity τ2(E0) at 
E = 2E0, the half power energy band B(E0)/E0 and the optimal thickness d of the slab are shown in each box.
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In Fig. 2(b), we show the relative half-power band B/E0 as function of E0 for the same texture combinations 
considered at Fig. 2(a). The selectivity of the filter certainly worsens for increasing E0 while the jumps to different 
resonance order n occur at the same E0-levels as in Fig. 2(a). Due to the waveform τ(E), and unlike with what is 
happening to τ2 at Fig. 2(a), the quality factor B/E0 of the filtering peak increases between two consecutive discon-
tinuities. By inspection of Fig. 2(a,b), one can again understand the excellent job done by diamond as a host; the 
corresponding designs when loaded with dielectrics (InSb or InN) of specific thicknesses d work almost flawlessly 
as energy filters, especially at small magnitudes E0.

Sharp energy filtering.  It is meaningful to test the energy response for some of the best filter designs picked 
from Tables 1, 2 and Fig. 2. Therefore, in Fig. 3(a), we show the variation of τ(E) for several layouts with filtering 
energies of level E0 = 0.25 eV. We notice very rapid drops away from the central energy E = E0, given the fact that 
the vertical axis is logarithmic. One can find even better performing designs that are not examined in these set of 
results since our aim is to show the variety of material combinations. In fact, we have also considered a structure 
of moderate performance (SiC in diamond) not included in the Tables 1 and 2 (which, of course, are referring to 
different central energies) in order to show that a diamond host is not always enough for a super-selective output. 
Note also that the transmissivity vanishes for E = 0 ⇒ k0 = 0, as becomes obvious from (1).

In Fig. 3(b), we test three of the best designs from Table 2 (with E0 = 1 eV) recommending suitably grown 
slabs into diamond background and again the extremely sharp response of our reported setups is demonstrated. 
Our finding regarding the positive correlation of residual transmissivity τ2 and the half-power energy band B/E0 
originating from graphs of Fig. 2 and Tables 1 and 2 is also verified; indeed, the more selective are the bell-shaped 
curves τ(E), the lower is the response at the right extremum E = 2E0 of the regarded energy interval 0 < E < 2E0. 
Finally, the positive influence of the contrast, either in terms of potential energies ΔV or regarding the effective 
masses m/m0, between the two utilized media on the filtering operation can be identified (InSb has a smaller 
potential V and a tinier effective mass m than the ones of InN).

Apart from the energy profile of the device response, it is also important to observe the variation of the wave 
function Ψ(z) across the propagation axis of the considered matter wave. In Fig. 4(a), we pick a specific optimal 
design (InSb planar inclusion into diamond with E0 = 0.5 eV) and evaluate the spatial distribution of squared 
magnitude |Ψ(z)|2 (which is proportional to the probability of finding the particle at position z) for three different 
impinging energies. When the filter is fed by an e-beam of energy exactly equal to the operational one (E = E0), 
the particles penetrate the cavity (whose boundaries are notated by dashed lines) with probability one. On the 

E0 = 1 eV

Indium
Antimonide
(InSb)

Indium
Arsenide
(InAs)

Indium
Nitride
(InN)

Gallium
Antimonide
(GaSb)

Cadmium
Telluride
(CdTe)

Silicon
Carbide
(SiC)

τ2 ≅ 0.03
B/E0 ≅ 0.16
d ≅ 15.0 nm

τ2 ≅ 0.05
B/E0 ≅ 0.21
d ≅ 11.2 nm

τ2 ≅ 0.06
B/E0 ≅ 0.23
d ≅ 10.1 nm

τ2 ≅ 0.08
B/E0 ≅ 0.30
d ≅ 7.8 nm

τ2 ≅ 0.18
B/E0 ≅ 0.45
d ≅ 5.5 nm

Magnesium
Oxide
(MgO)

τ2 ≅ 0.03
B/E0 ≅ 0.18
d ≅ 14.6 nm

τ2 ≅ 0.06
B/E0 ≅ 0.25
d ≅ 10.9 nm

τ2 ≅ 0.07
B/E0 ≅ 0.27
d ≅ 9.9 nm

τ2 ≅ 0.09
B/E0 ≅ 0.31
d ≅ 8.7 nm

Boron
Nitride
(BN)

τ2 ≅ 0.02
B/E0 ≅ 0.12
d ≅ 14.6 nm

τ2 ≅ 0.03
B/E0 ≅ 0.17
d ≅ 10.8 nm

τ2 ≅ 0.03
B/E0 ≅ 0.19
d ≅ 9.8 nm

τ2 ≅ 0.04
B/E0 ≅ 0.21
d ≅ 8.7 nm

τ2 ≅ 0.11
B/E0 ≅ 0.35
d ≅ 5.3 nm

Diamond
τ2 ≅ 0.01
B/E0 ≅ 0.07
d ≅ 21.4 nm

τ2 ≅ 0.01
B/E0 ≅ 0.10
d ≅ 15.9 nm

τ2 ≅ 0.01
B/E0 ≅ 0.12
d ≅ 13.4 nm

τ2 ≅ 0.02
B/E0 ≅ 0.13
d ≅ 8.0 nm

τ2 ≅ 0.04
B/E0 ≅ 0.20
d ≅ 12.0 nm

Table 2.  Same as in Table 1 but for increased selecting energy E0 = 1 eV. Empty box indicates poor 
performance.

Figure 2.  Optimal scores. (a) The residual transmissivity τ2(E0) at E = 2E0 and (b) The normalized half 
power energy bandwidth B(E0)/E0 of the resonances as functions of selecting energy E0, for several inclusion/
background combinations optimized at every single level E0.
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contrary, when the energy of the incoming matter waves is perturbed by only a small fraction of E0 (5%), the 
transmissivity drops substantially (to almost 10%) accompanied by sizeable reflections for z < 0. However, in 
all the three cases, the represented quantity oscillates many times within the planar slab (0 < z < d) which is the 
outcome of suitable matter waves interference in order for the desired behavior at E = E0 to be achieved. The 
principles behind this effect are identical to the ones giving photonic22 and quantum23 Fabry-Perot resonators. In 
Fig. 4(b), we examine the same material combination (InSb in diamond) as in Fig. 4(a) but optimized for different 
filtered energy E0 = 1 eV, namely has the size indicated by Table 2. As expected, the thickness is smaller since k0 is 
higher while the performance is deteriorated. Indeed, the transmissivities for E = E0(1 ± 5%) reach the quarter of 
its maximal value (25%); they are also almost equal each other (as happens in Fig. 4(a) too) revealing the locally 
quasi-symmetric nature of resonance around E = E0.

It should be remarked that not only the magnitude of the wave function Ψ(z) has a physical meaning but 
also its real and imaginary parts are quantities employed in quantum signal processing39,45 and computing46,47. 
Therefore, in Fig. 5, we depict the signal Re[Ψ(z)] for two characteristic optimal designs as a function of position z.  
In Fig. 5(a), we consider a selected energy E0 = 0.1 eV (Table 1) and the structures are fed by an e-beam possessing 
random mixture of energies, where the optimal E0 participates with unitary magnitude. One can clearly observe 
that the chaotic input signal pattern for z < 0 is transformed into a harmonic output in both the considered 
designs propagating into the region right to the dashed boundaries of respective color (z > d in each case). Such 
a feature demonstrates the ability of the structure to let the matter waves of E = E0 pass, while blocking all the 
others with 0 < E < 2E0. The output signals are not identical; there are always some bi-products (unequal in the 
two scenarios) of small amplitudes corresponding to non-optimal incident energies.

In Fig. 5(b), we consider the same material combinations as in Fig. 5(a) but the structure is optimized for 
E0 = 1 eV (designs included in Table 2). Once again, the filtering operation exhibits a decreased efficiency com-
pared to the cases working at smaller E0; however, the output of the devices still reminds us of a harmonic tone 
exp(ik0z) with specific spatial frequency k0 (different in the two graphs). Of course, the amplitude of the transmis-
sive matter wave exhibits an envelop fluctuation being bigger in the less successful design that uses BN as host. 
Special mention should be made to the lower number of complete oscillations into the slab when the impinging 
energy E0 is more substantial, despite the fact that the operational wavelengths 2π/k0 of the incoming particles are 
smaller; the physical thickness d of the filter shrinks more. Note finally that the change of Re[Ψ(z)] signal into the 
planar filter resembles damped oscillations, indicating the asymmetry between the two oppositely propagating 
waves within the inclusion.

Figure 3.  Transmissivity τ(E) as a function of the e-beam energy level E for (a) several optimal setups with 
E0 = 0.25 eV and (b) several optimal cavities hosted into diamond with E0 = 1 eV (included in Table 2).

Figure 4.  Spatial distribution of squared magnitude of the wave function |Ψ(z)|2 as a function of position 
z when the particle has energy exactly equal to the selected one (E = E0) and when E = E0(1 ± 5%) for InSb 
optimal planar inclusions into diamond with: (a) E0 = 0.5 eV, (b) E0 = 1 eV (included in Table 2). Black dashed 
lines denote the vertical boundaries of the filter.
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Fabrication and engineering defects.  As has been pointed out, there are several reliable fabrication 
methods of constructing quantum setups as the considered one in Fig. 1(a), namely creating in a specified host a 
planar cavity of certain thickness. The alternative approaches involve chemical characterization techniques com-
bined with surface functionalization13 top-down lithographic fabrication17, plasma-sintering nano-structuring 
processes, or even self-assembled inclusions coupled with cavities15. Most of the aforementioned methodologies19 
can give fine nanometer-sized48 structures; however, it is important to examine how differently the proposed fil-
ters are behaving under imperfect growing of sample thickness d. We also assume that the traveling of the matter 
wave into the background can be perfectly modeled, namely the parameters (m0, V0) and the energy E are exactly 
selected; accordingly, it would be interesting to investigate scenarios of wrongly estimated effective mass m or 
falsely engineered macroscopic potential V for the slab material.

In Fig. 6, we regard the most successful design of Table 2, namely the InSb planar inclusion into diamond (for 
E0 = 1 eV). We consider various thicknesses d′, effective masses m′ and potentials V′ around the optimal value d 
and the measured or simulated parameters (m, V) from standard textbooks10; wherever none or more than one 
τ = 1 peaks appear within the permissible interval 0 < E < 2E0, the design is labeled as infeasible and white color is 
used in the corresponding maps. Once such imperfections occur, the transmissivity maximum is usually observed 
at a different energy E = E′≠E0 and thus a quantity we selected to represent is the relative difference between the 
two peaks, denoted as (E′ − E0)/E0 = ΔE/E0.

In Fig. 6(a), we show this indicator ΔE/E0 as function of misselected thickness d′/d and incorrectly estimated 
effective mass m′/m. We observe several forbidden parametric regions followed by zones of feasible designs that 
form a rather periodic pattern with respect to both d′/d and m′/m as an outcome of the undamped oscillatory nature 
of the phenomenon. Indeed, we have lossless Fabry-Perot interference resulting to periodic waveforms for the device 
response as d′ is being swept; since infinite resonances (each one of a different order n), namely infinite slab sizes, 
give the desired τ(E0) = 1, the same happens for all the other values of transmissivity τ, which makes a periodic var-
iation with respect to d′. Between two successive infeasible sections, large shifts of the peak transmission energy are 
recorded covering the entire working range 0 < E′ < 2E0; in particular, the energy E′ gets smaller than E0 for thinner 
slabs and greater effective masses. Note also that the boundaries between acceptable and non-acceptable parametric 
sets are not smooth due to the discrete nature of the resonances, similarly to Fig. 2; importantly, these boundaries are 
parallel to the smooth isocontours (into the colored region) demanding the size of the filters to decrease combined 
with a proper (almost linear) increase of the effective mass, to keep the represented quantity constant.

In Fig. 6(b) we represent across the same parametric plane (d′/d, m′/m) the half-power band B of the peak, 
expressed in dB. We notice that the infeasible regions are slightly more extended since we reject the designs whose 
range E′ − B/2 < E < E′ + B/2 does not fully belong in the permissible energy span; not just demanding 0 < E′ < 2E0 
as in Fig. 6(a). One directly notices the small values of B since, in the worst (maximum B) case, the energy range is 
as short as 0.1 eV; such a feature demonstrates that the selectivity of our designs remains high under fabrication or 
engineering defects even though the peak occurs at another e-beam energy E′≠E0. Mostly surprisingly, the band B, 
within which the transmissivity falls at half, can be even better (smaller) than in the optimal design (for E′ = E0) 
yielding a sharper filtering. Such a finding does not question the followed optimization since it happens around 
very small energies ′ E E0 where our best scores are much more substantial (like in Table 1).

In Fig. 6(c,d), we examine the effect of improper estimation for the macroscopic potential V of the planar 
inclusion, which is found mild given the fact that the isocontour lines are almost vertical. Such a feature is attrib-
uted to the huge potential of diamond V0 compared to that of InSb; whatever relative change it experiences, we 
always obtain V V0 . In Fig. 6(c), where the difference ΔE/E0 is depicted, the trade-off between thicker designs 
and higher peak energies E′ is again noticed. Similarly, in Fig. 6(d), the half-power band B is larger when the peak 
energy E′ (at which τ = 1) increases, while keeping small values below 0.1 eV.

In Fig. 7, we repeat the evaluations of the quantities of Fig. 6 but for a less efficient design from Table 1, namely 
CdTe into diamond; cadmium telluride is an isotropic noncentrosymmetric material with interesting properties 

Figure 5.  The quantum wave function signal Re[Ψ(z)] as a function of position z for a random mixture of 
various energies in two designs optimized for: (a) E0 = 0.1 eV and (b) E0 = 1 eV (included in Table 2), where 
the excitation includes a unitary matter wave operated at the optimal level of energy. Dashed lines denote the 
vertical boundaries of the filters (painted black for the common one at z = 0 and in the corresponding color for 
z = d).
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exploited in photonic applications too49. The variations are similar with those of Fig. 6; the only difference is the 
wilder dependence of the represented quantities from the potential energy into the inclusion since V for CdTe is 
much higher than this into InSb. Finally, the values for the half-power energy band B are higher, a property related 
to the diminished performance of the considered layout as a filter.

Discussion and Conclusions
Selecting matter waves with respect to the energy they carry is a significant operation in quantum signal process-
ing, namely when e-beams are channeled, guided and funneled at different modules of an integrated quantum 
engineering setup. In this work, a simple configuration of a single planar inclusion into a dense background 
is used to filter an impinging particle beam via a maximally sharp transfer function. The optimal resonance 
order is determined by choosing the most abrupt variation without letting secondary maximum appear within 

Figure 6.  Performance sensitivity of the optimal planar inclusion of InSb into diamond for E0 = 1 eV (Table 2). 
(a) The relative difference in peak energy ΔE/E0 and (b) the half-power bandwidth B in eV as function of 
thickness misselection d′/d and effective mass misestimation m′/m. (c) The relative difference in peak energy 
ΔE/E0 and (d) the half-power bandwidth B in eV as function of thickness misselection d′/d and macroscopic 
potential energy engineering error V′/V. White regions corresponds to infeasible parametric combinations 
where our demand for a single peak of unitary transmissivity within the range 0 < E < 2E0, gets violated. White 
crosses denote optimal operational points.

Figure 7.  Similar calculations as in Fig. 7 but for the optimal planar inclusion of CdTe into diamond for E0 = 1 eV  
(Table 2). (a) The relative difference in peak energy ΔE/E0 and (b) the half-power bandwidth B in eV as 
function of thickness misselection d′/d and macroscopic potential energy engineering error V′/V.
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a considered wide energy range. This process is meticulously repeated for a long list of quantum media combi-
nations by using their effective properties. We show the results of our optimization both in tables and graphs 
for various energies and the positive correlation of the selectivity performance and the slab thinness with the 
operational level of energy has been identified. To this end, the functionality of certain designs is demonstrated 
by feeding them with particles of a variety of energies and observe them to practically block all the others except 
for the filtered ones. Finally, the device response is tested when the size and the texture of the inclusions are not 
properly estimated; it has been found that the energy at which unitary transmissivity is exhibited gets shifted but 
the designs remains selective.

This work reports the best scores of a simple, easy-to-fabricate setup given the set of available media; in this 
sense, presents limits in the selectivity of the configuration that cannot be surpassed unless a smarter structure 
(multilayers) or more complicated quantum texture (alloys, hybrid heterojunctions) is employed. An interesting 
next step would be to generalize our approach to find the best structure that mimics a given response at vari-
ous distinct energies or even across a band of them. In this way, the purpose of inverse design will be served in 
quantum layouts. Thus, inspired approaches applied to nanophotonics involving sophisticated gradient optimi-
zations50 or deep learning methods that have attracted the interest of both agenda-setting academic groups51 and 
industry research teams52, will be recasted and applied into quantum systems.

Methods
The physical configuration of the device is depicted in Fig. 1(a), where a quantum particle traveling along an axis 
z with equal probability across each point of the formed normal xy plane, meets normally a homogeneous planar 
inclusion. The wave function Ψ(r) describing the probabilistic motion of the quantum particle into an arbitrary 
inhomogeneous medium with effective mass m(r) and potential V(r), respects the time-independent Schrödinger 
equation53:
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
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Ψ +

−
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/2
( ) 0,

(3)2

where r is the related position vector. Our approach is semi-classical since the background medium and the 
considered inclusion is treated classically; only the impinging beam is assumed to exhibit quantum behavior. 
In addition, the effective quantum characteristics in each region are taken to vary abruptly without linear or 
other transition as one crosses the constant-z boundaries. The matter wave defining the behavior of the afore-
mentioned particles in the absence of the slab inhomogeneity, possesses the form: Ψinc(z) = exp(ik0z); however, 
in the presence of that thin cavity which is supposed to work as a quantum filter, the wave function for z < 0 
changes by the reflecting-wave term Ψref(z) = R exp(−ik0z). In a similar manner, the entire matter wave behind 
the slab (for z > d) is given by: Ψtran(z) = T exp(ik0z). As far as the wave function into the planar slab (0 < z < d) 
is concerned, it is written as: Ψslab(z) = C exp(ikz) + D exp(−ikz). The followed technique is the well-known 
Wentzel-Kramers-Brillouin (WKB) approximation, where the wavefunctions are assumed to possess exponential 
forms with either amplitude or phase taken to be slowly changing relative to the de Broglie wavelength54.

The boundary conditions across the interface between two regions with effective masses {m1, m2} and wave 
functions {Ψ1, Ψ2} demand continuity of the probability amplitudes and the probability currents (u is the uni-
tary vector normal to the boundary):
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After imposing these requirements at z = 0, d, the unknown complex quantities {C, D, R, T} are determined; 
in particular, the reflection and the transmission coefficients are given by:
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By assuming that effective masses {m0, m} and macroscopic potentials {V0, V} are selected so that k0, k > 0, one 
can evaluate the reflectivity ρ = |R|2 and the transmissivity τ = |T|2, which is shown in (1).

If one requests unitary transmissivity at a specific energy level E = E0, the thickness of the slab is permitted to 
take only discrete values π= + Δd n m E V/ 2 ( )0  for ∈ ⁎n . By replacing the explicit forms for the wavenum-
bers =k m E2 /0 0  and = + Δk m E V2 ( ) / , we obtain the following expressions:
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where n is a positive integer.
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The transmissivity (7), is maximized by taking unitary value (τ = 1) for + Δ = + Δ ν( )E V E V( )
n0

2
 with 

ν ∈ ℕ*; similarly, it gets minimized for + Δ = + Δ −ν( )E V E V( )
n n0

1
2

2
 with minimum values τ = [2k0mkm0/

(k0
2m2 + k2m0

2)]2. In this way, one can directly evaluate the optimal order n of Fabry-Perot resonance so that the 
energy response of the filter gets as sharp as possible; indeed, the first minimum of τ(E) when E > E0 occurs for 
ν = n + 1 and should be exhibited outside of the considered energy band 0 < E < 2E0. Namely:
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which is identical to (2). The residual transmission τ2 at the right extremum of the interval 0 < E < 2E0 can be also 
evaluated from (7) at E = 2E0 with use of (8).
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