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ABSTRACT On-line monitoring and diagnosis of transformers have been investigated and discussed signif-
icantly in the last few decades. Vibration method is considered as one of the non-destructive and economical
methods to explore transformer operating condition and evaluate transformer mechanical integrity and
performance. However, transformer vibration and its evaluation criteria in transformer faulty condition are
quite challenging and are not yet agreed upon. At the same time, with the advent of IoT facilities and services,
it is expected that classical diagnosis techniques will be replaced with more powerful data-driven prognosis
methods that can be used efficiently and effectively in smart monitoring. In this paper, we first discuss
in detail an analytical approach to the transformer vibration modeling. Nevertheless, precise interpretation
of transformer vibration signal through analytical models becomes unrealistic as higher harmonics are
mixed with fundamental harmonics in vibration spectra. Therefore, as the next step, we aim to support
the Industry 4.0 concept by utilizing the state-of-the-art machine learning and signal processing techniques
to develop prognosis models of transformer operating condition based on vibration signals. Transformer
turn-to-turn insulation deterioration and short circuit analysis as one the most important concerns in
transformer operation is practically emulated and examined. Along with transformer short-circuit study,
transformer over and under excitations are also studied and evaluated. Our constructed predictive models
are able to detect transformer short-circuit fault in early stages using vibration signals before transformer
catastrophic failure. Real-time information is transferred to the cloud system and results become accessible
over any portable device.

INDEX TERMS IoT in power system, online transformer assessment, prognosis, vibration analysis, signal
modeling, prediction, regression.

I. INTRODUCTION
Asset management is more important now than ever for
industries. Indeed utility management and all industrial and
system engineers are more emphasizing these days on intelli-
gent predictive assessment rather than asset restoration after
catastrophic failure. For electrical items, smart predictive
assessment becomes meaningful when online asset prognosis
techniques are taken into consideration. At the same time,
emerging technologies such as Internet of Things (IoT) and
cloud computing have empowered various smart monitoring
systems. With development of technology, specifically in the
context of smart grid, utilizing IoT in different aspects of
power system is becoming popular.

Equipment are expected to work with IoT protocols,
transfer, restore and analyze data through cloud environ-
ment; however, making automated algorithms, managing and

connecting equipment to the cloud system and real-time eval-
uation of their performance via cloud are still significant
challenges ahead. Furthermore, it is well-known that power
transformer is one of the most expensive equipment among
all electrical items. This valuable equipment is in service in
various climates as well as different electrical andmechanical
conditions [1]. Based on this fact, transformers are continu-
ally facing enormous hazards over the course of operation.
Yielding information continuously from transformer condi-
tion and having a reasonable understanding about internal
mechanical stability is vitally important for the system oper-
ators.

Different on-line and off-line methods have been
introduced and implemented for transformer mechanical
integrity assessment [2]–[7]. However, practical key meth-
ods such as Frequency Response Analysis (FRA) are still
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performing off-line. Implementation of on-line FRA is seri-
ously under study and development. It will bring huge
benefits to industry if it is performed perfectly. Mean-
while, FRA is not the only method providing information
on transformer mechanical integrity. Online short circuit
impedance measurement [8], transformer sound analysis
(specifically ultrasound interpretation) [9], communication
based methods as well as a technique based on locus diagram
have been introduced for transformer winding deformation
detection [10]–[13]. Transformer vibration assessment is also
a well-known technique to evaluate transformer mechanical
integrity.

Transformer vibration can be considered to be the repet-
itive movement of transformer inner parts that are covered
by the transformer tank, or perhaps the movement of active
part in dry-type transformer. Such movements occur around a
reference position. The reference position is where the trans-
former attains once it is out of service. This method is con-
sidered as the most economical real-time method to analyze
transformer mechanical integrity as it does not need any com-
plicated test setup to be deployed for transformer monitoring.
Nevertheless, the predictive performance of vibration-based
techniques and their capacity and benefits for transformer
evaluations have not been as widely discussed in the literature
as other methods. This state of affairs can be attributed,
in part, to the lack of a unique interpretation method for
vibration data and, in part, to the challenging habit of noisy
vibration signal and its dependency on various factors.

Vibration might be interpreted by using parameters such as
winding displacement, velocity, and acceleration. Although
it is more common to choose acceleration as the parameter
of interest for vibration analysis, no objective criteria has
been introduced for this technique. In fact, vibration sig-
nals are fully mixed with undesirable environmental, back-
ground, or even auxiliary equipment oscillations. At the same
time, unpredictability of vibration signal noise in different
transformers often prohibits the development of a unique
reliable interpretation system. For instance, in large power
transformers, mixing the active part vibration of transformer
with oil pump, tap-changer, fans, cooling system, makes the
transformer vibration signal interpretation challenging and
unreliable. This scenario becomes more complicated when a
fault is initiated in transformer. The cumulative and complex
effect of these factors on vibration signal renders analytical
methods complicated and often intractable. On the other
hand, machine learning and signal processing techniques lend
themselves to finding data-driven solutions in similar compli-
cated scenarios in various fields of study. These data-driven
methods are primarily used in this study to distinguish fault
initiation and perform prognosis.

Different studies have been conducted to study transformer
vibration characteristics. Garcia et al. [15] has studied vibra-
tion analysis of transformer tank and its benefits to recognize
transformer winding deformation. Another worthy study by
Ji et al. [16] introduces an online technique called On-load
Current Method (OLCM) to distinguish the transformer core

through winding vibration when the transformer is in service.
In our previous study [17], the vibration analysis is presented
and discussed as an on-line method in transformer winding
deformation recognition. In a study by Saponara et al. [18],
predictive diagnosis of high-power transformer via net-
working vibration measuring nodes is discussed. Vibration
technique is also used in [19] for predictive diagnosis of
uninterruptible power supplies in safety-critical applications.
Both [18] and [19] discuss industrial applications of vibration
analysis method and its practical performance.

In [20] three different indices are introduced and discussed
to analyze transformer mechanical assessment. Vibration cor-
relation to find transformer winding conditions is also dis-
cussed in [21]. Despite the remarkable progress made by
these studies, no robust and prognosis method for analyz-
ing transformer vibration measurements has been developed.
Moreover, it is almost impossible to load and adopt the
methods developed in above studies with IoT and cloud
computing.

In this study, we first discuss in detail an analytical
approach to the transformer vibration modeling. We then
use the state-of-the-art machine learning and signal process-
ing techniques to construct remarkably accurate predictive
vibration models of transformer conditions. Using analysis of
vibration signals, we study two problems: (1) the transformer
under and over excitations; and (2) inter-turn short-circuit.
In the first case, observations over the entire range of inter-
est for the injected voltage (320-440V) are available in the
model training stage. A predictive model is then developed
and used to predict excitation voltage in a similar range of
injected voltage. In the second case, the training stage con-
tains only observations collected from load currents ranging
from 3-12A. However, we intend to apply the constructed
model to predict short-circuit currents of 13 and 15A. In both
cases, we model vibration signals by a mathematical form,
which is the sum of sinusoids (of order M ) with unknown
amplitudes, frequencies, and phases. A nonlinear least square
technique is then used to estimate the unknown parame-
ters of this mathematical form [23]. However, the difference
between the predictive objectives of the constructed models
in these two cases leads to different model-feature selection
process used in the training stage (and quite different structure
of the final constructed models).

In the first case study, we use a nested cross-validation for
model selection (i.e., to determine M and choosing linear or
nonlinear model). By applying cross-validation external to
the feature selection process, we prevent the selection bias
in the feature selection stage, which potentially leads to more
accurate predictive models [28]. Once the predictive model
is constructed, the model is validated on an independent set
of observations collected from a similar range of excitation
voltage used in the training stage.

In the second case study, the constructed model will be
used in predicting short-circuit currents that have not been
available during the training phase (13 and 15A). Therefore,
we divide the training data to a range of 3-10A and optimize
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the performance of the constructed models on the observa-
tions collected for 11 and 12A. This practice has simulated
the real scenario where independent set of observations asso-
ciated with a range of load currents that are unseen during
the training phase would need to be predicted. After model
selection phase, we use the full training data (3-12A) to
develop the final model and validate its predictive capacity in
a range of short-circuit currents (13 and 15A). All methods
are implemented over a cloud system and able to evaluate
the transformer condition simply via IoT protocols. Evaluated
results are then provided on different protocoled devices for
prognosis of transformer active parts.

FIGURE 1. Magnetostriction of ferromagnetic material.

II. TRANSFORMER CORE VIBRATION MODELING
Magnetostriction is an expression for the length alteration
in a ferromagnetic material once it is under magnetization.
The direction and extension of magnetization will impose
the stress over the ferromagnetic material. In other words,
in the absence of the magnetic field, the magnetic material
is in relaxation mode and its magnetic domains are ran-
domly oriented. Activating the magnetic field will cause
that the magnetic domains are starting to align themselves
with the imposed field and get orientation (see Fig. 1). The
anisotropy principle axes would be then collinear to the mag-
netic field. A large mechanical deformation in microscopic
scale is obtained due to increasing of the magnetic field
over a magnetic material. This deformation is reached to its
maximum value once the magnetic domains are reached to
their saturation points. This was explored by J. Jole in 1842.
Undoubtedly, magnetostriction is very much effective and
considerable for ferromagnetic and ferrimagnet materials
rather than paramagnets and diamagnetic. Transformer core
vibration is mainly due to the magnetostriction. Suppose that
a ferromagnetic core sheet with thickness of b, width of w,
and length of L is exposed to the magnetic field [16],

U0 sinωt = −Nw
dφ
dt
= −NwAc

dB
dt
, (1)

where, U0 is the voltage source applied to the winding, ω is
the angular frequency, Nw is the number of winding turns,
B is the magnetic induction, and Ac is the cross section area

of single core laminate. Therefore, the magnetic induction is
calculated as [16]

B =
−U0

NwAc

∫
sinωtdt =

U0

NwAcω
cosωt = B0 cosωt, (2)

where B0 is the maximum induction magnitude. B0 is
less or equal to the induction saturation level (Bs) [16]

B0 =
U0

NwAcω
≤ Bs. (3)

In addition, the field density andmagnetic induction is related
through the magnetic permeability as

B = µH , (4)

where µ is the magnetic permeability, and H is the mag-
netic intensity. Hc is the saturated magnetic intensity and is
obtained where H obtains its maximum value:

Bs = µHc. (5)

Thus, the applied magnetic field intensity and the saturated
induction magnetic intensity can be given by

B =
Bs
Hc

H . (6)

The applied magnetic field intensity is obtained by replacing
(2) in (6); to wit,

H =
HcB0
Bs

cosωt. (7)

Any alteration in the core laminate length is initiated by the
changes in the field magnetic intensity. Thus, the core lami-
nate maximum movement due to the field intensity changes
is given by [16]

xcore =
dL
L
=
λs

H2
c

H∫
−H

HdH =
2λs
H2
c

H∫
0

|H |dH =
λsH2

H2
c

=
λs

H2
c

H2
c

B2s
B20 cos

2 ωt =
λs

H2
c

H2
c

B2s

(
U0

NwAcω

)2

cos2 ωt

=
λsU2

0

B2sN 2
wA2cω2 cos

2 ωt, (8)

where λs is the maximum magnetostriction value. Therefore,
the core laminate acceleration is obtained as

ẍcore =
d2xcore
dt2

= −
2λsLU2

0

B2sN 2
wA2c

cos 2ωt. (9)

Equation (9) shows that the magnitude of the transformer
core vibration is proportional to the excitation voltage square.
Also, the frequency of core vibration is matched with the sec-
ond harmonic order of the voltage fundamental frequency.
Hence, for the systems with the fundamental frequency
of 50 Hz, the transformer core laminates vibrate with 100 Hz
as the fundamental transformer core vibrational frequency,
and for the systems with 60 Hz, they vibrate with 120 Hz.
Furthermore, higher vibrational harmonic orders would be
created in transformer core due to the collision of the core
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laminates. In fact, the extensions and contractions of the core
laminates will cause that they hit each other regularly. The
vibration frequencies of this clash are higher than the funda-
mental vibrational frequency. The transformer core will expe-
rience 200, 400, and 600 Hz or even rarely higher harmonic
orders in its vibrational spectrum due to the core laminates
collision. The magnitudes of the higher harmonic orders in
transformer core vibration are quite random; that is to say,
they are not necessarily proportional to the excitation voltage
square value.

Natural mechanical resonance frequencies as well as
technical assembly considerations, Lorentz forces and also
magnetic core quality can easily influence entire core vibra-
tion spectrum. Hence, a range of frequencies are feasible
to be explored in the transformer core vibration spectrum;
however, second harmonic 2ω, is considered as the funda-
mental transformer core vibrational frequency.

FIGURE 2. Transformer winding schematic, side cross section view,
electromagnetic force direction, and flux lines.

III. TRANSFORMER WINDING VIBRATION MODELING
Summation of linkage and leakage fluxes are making the
entire flux in transformer active part. Technically, a major
part of linkage flux and leakage flux flows through the trans-
former core and the transformer winding and active part gaps,
respectively. In other words, vibration in the transformer
core and winding is mainly initiated by linkage and leak-
age flux, respectively. Indeed, transformer winding vibration
is due to the electromagnetic force created by the leakage
magnetic flux, Bleakage, flowing through the winding and the
winding current. Figure 2 shows that the leakage magnetic
flux direction is changed by moving from the winding sides
towards winding center. Therefore, the electromagnetic force
direction can be changed, and consequently mechanical force
direction is changed.Moreover mechanically, the transformer
winding can be modeled by spring. Hence, the spring-force
model can be used to analyze the transformer winding vibra-
tion. Thus, four different scenarios can be assumed.

The first scenario stands for an impulse force over the
winding (spring) without damping factor. This force will be
removed during winding vibration. This is in turn a basic
vibration model. The second scenario occurs when the force

will remain over the transformer winding; however, we still
do not consider a damping factor. Third scenario is similar
to the first scenario; however, damping factor is taken into
account, and fourth scenario is a complete model of trans-
former winding condition where the force will remain over
the winding and damping factor is also taken into account for
modeling. All the scenarios are discussed in this section.

A. FREE VIBRATION WITHOUT DAMPING FACTOR
In the absence of the mechanical constraints, the transformer
winding can move vertically due to any impulse force strike.
This is a freely movement and the transformer winding will
oscillate naturally. The relation between the imposed force
and the movement is represented by the unit extension of
spring factor, k , and equation is obtained as,

F = −kx, (10)

where F represents the force, and x is the displacement. If the
spring weight is taken into account and a single impulse is
imposed to the spring, according to the Newton’s second law,
(10) will be developed and force equation is obtained as

ma = F ′ = W − F = W − (W + kx), (11)

where a is the acceleration factor or second derivative of
displacement, and W is the winding weight. Equation (11)
can be then re-written as

ma =
W
g
a =

W
g
ẍ = W − (W + kx), (12)

and g denotes the gravity acceleration. Rearranging (12),
the differential equation for natural motion of winding is
obtained as

W
g
ẍ + kx = 0, ẍ +

g
W
kx = 0. (13)

Simplification of (13) leads to

gk
W
= α2, ẍ + α2x = 0. (14)

The solution of differential equation, (14), is given as

x1 = C1 cosαt + C2 sinαt, (15)

where, C1 and C2 are the constants determining by initial
condition, and α is given by

α =
2π
τn
, τn = 2π

√
δst

g
, fn =

1
2π

√
g
δst
, (16)

where fn denotes the natural oscillation frequency of spring
when the damping factor is ignored.

B. FREE VIBRATION WITH DAMPING FACTOR
A prevention in natural oscillation of winding is obtained
when the damping factor is considered for the winding
motion due to the impulsive force (instantaneous force).
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Damping factor potentially prevents the winding fast oscil-
lation. In this case, winding motion equation is given by

W
g
ẍ = W − (W + kx)− cẋ. (17)

Rearranging (17), the winding motion with damping factor is
given by

W
g
ẍ + cẋ + kx = 0, (18)

where c denotes the damping factor, constant and determined
by initial condition. Simplification of (18) yields

ẍ +
gc
W
ẋ +

gk
W
x = 0, (19)

ẍ + 2β ẋ + α2x = 0,
gc
W
= 2β. (20)

Equation (20) is a linear differential equation. One solution
for (20) can be given by

x = eµt , (21)

where t is the time, and µ is obtained through (22).

µ2
+ 2βµ+ α2 = 0, (22)

from which

µ = −β ±

√
β2 − α2. (23)

For α2 > β2, the square root value in (23) will become
negative; therefore, α2 - β2 shows a positive value in (24).

α21 = α
2
− β2 (24)

In this form, the roots of equation (22) are obtained as

µ1 = −β + jα1, µ2 = −β − jα1. (25)

Hence, two particular solutions for (21) can be calculated as

x1 =
C1

2

(
eµ1t + eµ2t

)
= C1e−βt cosα1t,

x2 =
C2

2j

(
eµ1t − eµ2t

)
= C2e−βt sinα1t, (26)

Finally, the winding displacement in the second scenario is
given as

x = e−βt (C1 cosα1t + C2 sinα1t) . (27)

For α2 < β2, the roots in equation (23) will become real and
negative and displacement is obtained as,

x = C1eµ1t + C2eµ2t . (28)

Equation (28) shows that for α2 < β2, there is no period-
ical term in winding movement. Thus, the winding will not
oscillate.

C. FORCED VIBRATION WITHOUT DAMPING FACTOR
In practice, the excitation or load currents are flowing through
the transformer winding and creating magnetic flux per-
manently. Therefore, electromagnetic force initiated by the
current and magnetic flux is imposing over the transformer
winding while the transformer is in service. Thus, in the
absence of damping factor, the winding vibration equation is
obtained as

W
g
ẍ = W − (W + kx)+ C sinω′t, (29)

where C represents the force magnitude and ω′ is the force
function frequency. Differential equation of the winding dis-
placement is then given by

ẍ + α2x = q sinω′t, q =
Cg
W
. (30)

The solution of (30) is obtained as,

xf = η sinω′t, η =
q

α2 − ω2 , (31)

where xf is the forced displacement. Therefore taking
(15) into account, total displacement under force vibration
for transformer winding without damping factor can be
obtained as

x = x1 + x2 = C1 cosαt + C2 sinαt +
q

α2 − ω2 sinω
′t,

(32)

where, α comes from natural frequency of damping and ω′

comes through an external force such as accurately demon-
strated as

x = x1+x2 = C1 cos 2π fnt+C2sin 2π fnt+
q

α2−ω2 sinω
′t,

(33)

where fn is the natural frequency of vibration.

D. FORCED VIBRATION WITH DAMPING FACTOR
In a real case, an external force is permanently available
over the transformer winding and disk spacers and barriers
play as damping components reacting opposite to the winding
movement. In this form, the transformer winding movement
is obtained as

W
g
ẍ = W − (W + kx)+ C sinω′t − cẋ. (34)

Arrangement of (34) in standard form of differential equation
yields

W
g
ẍ + 2β ẋ + α2x = q sinω′t. (35)

A solution for (35) is offered as

x1 = U sinω′t + V cosω′t. (36)

U and V are two independent equations and are given by

Vω′2 − 2Uω′β − Vα2 = 0,
Uω′2 + 2Vω′β − Uα2 = −CgW .

(37)

9866 VOLUME 6, 2018



M. Bagheri et al.: Transformer Fault Condition Prognosis Using Vibration Signals Over Cloud Environment

The solution of (37) is

U = Cg
W

(
α2−ω′2

(α2−ω′2)
2
+4β2ω′2

)
,

V = −CgW

(
2βω′

(α2−ω′2)
2
+4β2ω′2

)
.

(38)

Therefore, transformer winding displacement due an external
force is obtained by

x = e−µt (C1 cosα1t+C2sinα1t)+U sinω′t + V cosω′t,

(39)

Equation (39) has two main terms, damping term and oscil-
latory term. The first term which is damping term will be
diminished very fast; however, second term will cause wind-
ing oscillation permanently. The winding movement velocity
is then obtained as

ẋ = −µe−µt (C1 cosα1t + C2 sinα1t)

+ e−µt (−C1α1 sinα1t + C2α1 cosα1t)

+Uω′ cosω′t − Vω′ sinω′t (40)

and, ultimately acceleration equation is

ẍ = µ2e−µt (C1 cosα1t + C2 sinα1t)

−µe−µt (−C1α1 sinα1t + C2α1 cosα1t)

−µe−µt (−C1α1 sinα1t + C2α1 cosα1t)

+ e−µt
(
−C1α

2
1 cosα1t − C2α

2
1 cosα2t

)
−ω′2

(
U sinω′t + V cosω′t

)
. (41)

Simplification of (40) yields

ẍ = e−µt
( (
−C1α

2
1 − 2C2µα1 + µ

2C1
)
cosα1t

+
(
−C2α

2
1 − 2C1µα1 + µ

2C2
)
sinα1t

)
−ω′2

(
U sinω′t + V cosω′t

)
. (42)

In final form, transformer winding vibration is

ẍ = e−µt
( (
−C1α

2
1 − 2C2µα1 + µ

2C1
)
cosα1t

+
(
−C2α

2
1 − 2C1µα1 + µ

2C2
)
sinα1t

)
−ω′2P sin(ω′t + ϕ), (43)

where P is the magnitude coefficient of forced vibration and
is obtained via U = P×cos(ϕ), or V = P×sin(ϕ).
From vibration modeling of the transformer, it becomes

clear that the transformer core and winding vibration magni-
tudes are proportional to the transformer excitation voltage
square and the transformer current square values, respec-
tively. In addition, core and winding are both vibrating with
fundamental frequency of 2ω, where ωmentioned to be the
voltage and current signal fundamental frequencies. There-
fore, theoretically, it is expected that we obtain approxi-
mately a sinusoidal time-series with frequency of 2ω for core
and winding vibrations once the transformer is in service.
However, this is not true in practice and higher harmonic
orders (> 2ω) are appeared in transformer vibration spec-
trum. This is most commonly experienced in distribution
transformers.

For core vibration, we discussed the Lorentz force can
initiate higher harmonic orders in vibration spectra, and these
forces are randomly changed once transformer core materials
and grain-orientation are changed.
For transformer winding, higher harmonic orders in

vibration spectrum are not created by winding characteristic
naturally, though they can be generated due to physical inter-
action between transformer core and winding; that is to say,
the core vibration is transferred mechanically to the winding
causing that higher harmonic orders are created by oscillation
modulation. Furthermore, in oil-filled transformer, there is no
access to the transformer active part directly; hence, vibra-
tion signal is taken by mounting vibration sensor over the
transformer tank. This means a mixture of core and winding
vibrations are recorded. Therefore, a precise interpretation
of transformer vibration signal through analytical approach
becomes unrealistic as higher harmonics are mixed with fun-
damental harmonics in vibration spectra. Furthermore, each
and every transformer has its own vibration pattern, thus it
is virtually impossible to achieve a comprehensive analyt-
ical model for vibration analysis. Moreover, an analytical
model cannot be utilized for prognosis. A plausible approach
to address intractability of analytical models is to develop
predictive data-driven models of transformer fault detection.
To lay our groundwork for developing effective prognostic
models of transformer conditions based on vibration signals,
we consider and conduct two practical studies as described in
the next section.

FIGURE 3. 15 kVA cast-resin three-phase 400/400 V transformer

IV. CASE STUDY
A. CASE STUDY 1: (TRANSFORMER UNDER AND
OVER EXCITATIONS)
1) MEASUREMENT
The first practical study was conducted on a three-phase dis-
tribution 400/400V, 15 kVA cast-resin transformer to emulate
over-excitation study, see Fig. 3. In this study, the primary
side of transformer was connected to a three-phase power
supply and secondary side was connected to 15 kW resistive
load, PF = 1. Excitation voltage in the primary side of trans-
former was changed from 80 % to 110 % with steps of 5%
using a three-phase autotransformer, see Table 1. Vibration
sensors were mounted on transformer core and winding top
to collect vibration signal for both transformer core and
winding, see Fig. 3. Vibration signal in time domain for each
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TABLE 1. No-load transformer excitation voltages.

FIGURE 4. Time-series core vibration signals, (a) 80% excitation,
(b) 85% excitation, (c) 90% excitation, (d) 95% excitation, (e) 100%
excitation, (f) 105% excitation, (g) 110% excitation.

step was recorded and illustrated in Fig. 4. Predictive model
development is discussed in the next subsection.

2) SIGNAL PROCESSING
In this case study, we aimed to construct a predictive
model of excitation voltage based on vibration waveforms.

The continuous nature of excitation (or injected) voltage sug-
gests constructing a regressionmodel. Our predictive analysis
is based on four steps: (1) SignalModeling: we first model the
vibration time-series using a sum of sinusoids of order M .
Using this modeling, we are able to represent the vibration
time-series in a much lower dimensional subspace spanned
by a set of attributes; (2) Regression Model Construction and
Model Order Selection: the attributes found in step (1) are
used to construct the regressionmodel. The order of the signal
model M used in step (1) is the one that results in the lowest
error rate of the constructed regressionmodel determined by a
cross-validation procedure; and (3) Validation: the error rate
of the final constructed regression model is determined on
the test data. Therefore, at end of this process, we plan to
predict transformer under- or over-excitation in any condition
using vibration signal. It should be noted that according
to the analytical model, transformer voltage excitation will
influence core vibration; thus, we focused on core vibration
signal in this part.

3) SIGNAL MODELING
Based on the periodic nature of core vibration measurements,
we choose the sum of sinusoids signal model with unknown
amplitudes, frequencies, and phases [22]. We use this math-
ematical form to model the core vibration time-series on
short observation intervals of 0.1 sec during which we model
the signal as described in this section. This divides the T
sec long vibration time-series to 10T individual observation
vectors that can be used for training the regression model (see
Table 2).

TABLE 2. Number of training observation vectors for each injected
voltage level.

Denoting the signal by s[n], we have

s[n] =
M∑
i=1

Aicos(2π fin+ ϕi)

=

M∑
i=1

α1icos(2π fin)+ α2isin(2π fin),

n = 0, 1, . . . ,N − 1, (44)

where M is the model order, α1i = Ai cos(ϕi), α2i = −Ai
sin(ϕi), 0 < fi < fi+1 < 0.5, ∀i, and the second equality
in (44) is the result of regular trigonometric identities. The
sinusoidal signal model presented in (44) is linear in terms
of unknown parameters α1i and α2i, and nonlinear in terms
of fi, i = 1, . . . ,M . Without any distributional assumption
on the observations or additive noise, we follow a nonlinear
least squares (NLS) estimation procedure [23] to estimate
the parameters as described next. We first estimate fi’s by
a grid search over {0.005, 0.01, . . . , 0.495}M . In particular,
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the NLS estimates of frequencies are obtained bymaximizing
the following function [23]:[
f̂1, . . . f̂M

]
= argmax

f1,...,fM
J (f1, . . . , fM )

, xTH (f1, . . . , fM )
(
HT (f1, . . . , fM )

×H (f1, . . . , fM )
)−1

HT (f1, . . . , fM ) x (45)

where x is a N× 1 observation vector (a sampling rate
of 3 kHz leads to N = 300), and H (f1, . . . , fM ) is an N ×
2M observation matrix with the element on the ith row and jth

column determined as

H (f1, . . . , fM ) [i, j] =

{
cos

(
2π fdj/2e (i− 1)

)
, for j odd

sin
(
2π fdj/2e (i− 1)

)
, forj even,

(46)

where dae denotes the least integer greater or equal to a. After
estimating fi’s, the linear parameters are estimated as

α̂ ,
[
α̂11 α̂21 . . . α̂M2

]T
=

(
HT

(
f̂1, . . . , f̂M

)
H
(
f̂1, . . . , f̂M

))−1
HT

(
f̂1, . . . M̂

)
x,

(47)

where α̂ denotes the estimator of parameter α.

4) REGRESSION MODEL CONSTRUCTION AND
MODEL-FEATURE SELECTION
In this work, we construct four regression models in order
to predict real-valued excitation voltage: 1) linear regression;
2) model trees; 3) support vector regression with Gaussian
kernel, also known as radial basis function (SVR-RBF) [28];
and 4) multilayer perceptron (MLP) [28].

Linear regression lends itself to the ease of interpretability
and accuracy once the response variable can be explained by
a linear combination of predictors. On the other hand, amodel
tree is a piece-wise linear regression model and has been
originally proposed and implemented by M5 algorithm [24]
and its modification known as M5’ [25]. While regression
trees such as CART have real-valued at their leaves, model-
trees fit a multivariate linear regression function to the data
at each leaf node to predict the continuous response variable.
It has been shown that not only can model trees be learned
very efficiently, but they can also outperform regression
trees [24], [26].

The attributes used in our predictive regression models
are primarily determined by modeling vibration signals as
described in the previous section (Signal Modeling). In par-
ticular, in (44) we considermodels of orderM = 2, 3, 4 which
lead to 6, 9, and 12 attributes, respectively (2M parameters
in α̂ defined in (47) and M frequency parameters). Never-
theless, for a model of order M , not all attributes are nec-
essarily important. That is to say, the model selection stage
contains a natural feature selection procedure to determine
the subset of 3M features with the best predictive capacity.

Therefore, in the intertwined model-feature selection stage,
we need to determine: (1) the order M that is used to model
vibration signals (model selection); (2) the subset of 3M
features (feature selection); and (3) the structure of the model
(linear regression, model tree, SVR-RBF, or MLP) that uses
the feature subset and leads to the lowest error rate (model
selection). The latter stage also includes choosing the vari-
ance of kernel σ 2 in SVR-RBF, and the size and number of
hidden layers in MLP.

We use a nested 5-fold cross-validation procedure to select
the model (both M and the structure) and feature subset that
lead to the lowest error rate of the predictivemodel on training
data. In K -fold cross-validation (CV), one randomly divides
the set of training data to K subsets, successively holds out
these subsets from the training data, construct the predictive
model on the reduced training dataset, and determine the
error rate of the constructed (surrogate) predictive models on
the held-out subset [27]. The error rate of the constructed
predictive model on the full training data is then the aver-
age of the error rates of the surrogate regression models.
Nevertheless, to avoid the bias selection, which results in an
overly optimistic error rate of the final constructed predictive
model [28], it is essential to apply the cross-validation pro-
cedure external to feature selection. At the same time, in the
feature selection stage, we use an internal cross-validation to
evaluate the predictive capacity of the predictive models con-
structed using each subset of features (this known as wrapper
feature selection [29]). As the search strategy to find the best
possible feature subset, we conducted an exhaustive search of
the feature space. That is to say, we construct 23M -1model for
M = 2, 3, 4, and choose the subset that possesses the lowest
error rate. Figure 5 provides a schematic description of this
nested cross-validation procedure. As the measure of error
rate to rank all the feature subsets, we use the Mean Absolute
Error (MAE):

MAE =

∑n
i=1 |pvi − avi|

n
(48)

FIGURE 5. A schematic diagram of nested K -fold cross-validation with
wrapper feature selection.
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where n is the number of test data points (e.g., the size of each
held-out set in cross-validation), pvi and avi are the predicted
and actual values on the test instances, respectively. For the
SVR-RBF, we assumed σ 2

∈{0.01, 0.02, 0.1, 1, 10, 50, 100}
and chose the one that led to the lowest MAE in the proposed
cross-validation procedure.

A similar strategy was implemented to choose the num-
ber of hidden layers and neurons in MLP. To guard against
overfitting, we only considered a MLP with a single or two
hidden layers [30]. Denoting the number of initial features by
p, we varied the total number of neurons used in the model in
{p/2, p, 2p, 3p} and chose the structure with the lowest MAE.
When two hidden layers were considered, we used the same
number of neurons in both layers. This set of possible number
of neurons has been chosen to cover typical suggestions in
the literature about the size of hidden layers. For example,
Boger and Guterman suggest taking the size of hidden layer
as the number of dimension p [31]. Nevertheless, according
to Kolmogorov theorem, any function of p variables can be
represented by a superposition of 2p + 1 univariate func-
tions [32]. Referring to this universal approximation theorem,
Swingler [32] suggests that in a MLP with a single hidden
layer, we do not need a number of neurons larger than twice
the number of dimension (i.e., ≤2p) [32, p. 53]. Interest-
ingly, in most of our experiments, the performance of the
constructed MLP has been optimized at 2p total number of
neurons.

The aforementioned model selection procedure suggests
that for M = 2, the attributes of the signal model used in the
SVR-RBF leads to the lowest MAE of the constructed regres-
sion models. Using other performance measures such as,
Relative Absolute Error (RAE), and Root Relative Squared
Error (RRSE) defined as [33]

RAE , 100×

∑n
i=1 |pvi − avi|∑n
i=1 |avi − av|

, (49)

RRSE , 100×

√∑n
i=1 |pvi − avi|

2∑n
i=1 |avi − av|

2 , (50)

has also led to a similar conclusion (using M = 2 and
SVR-RBF). Table 3 shows these performance measures for
all models and M = 2, 3, 4.

5) VALIDATION
As an additional validation step, we have examined the per-
formance of our constructed SVR-RBF in predicting excita-
tion voltage in a set of vibration time-series that has been
collected independently from training data. Table 4 shows
the number of test observation vectors (of duration 0.1 sec)
for each injected voltage level. Table 5 presents the perfor-
mance measures of the constructed SVR-RBF. The results of
this table confirms that the constructed regression model is
remarkably accurate in predicting real-valued excitation volt-
age. This result shows the nonlinearity of excitation voltage
in terms of model parameters used in (44).

Table 5 shows that the trained model is able to recog-
nize transformer excitation voltage using recorded signal in

TABLE 3. Model selection: SVR-RBF and M = 2 leads to smallest error
rate measured by various performance metrics in a cross-validation
procedure. The estimates of the variance of SVM-RBF and the
number/size of hidden layers in MLP that led to lowest MAE are
identified as ‘‘[.]’’.

TABLE 4. Number of test observation vectors for each injected voltage
level.

TABLE 5. Performance measures of the constructed SVR-RBF on
independent test observations.

last 0.1 s. The error for MAE, RAE, RRSE are quite rea-
sonable < 10%. Therefore, using transformer core vibration
database, it is smart to find excitation voltage growing trend
and indicate undesirable transformer overvoltage in less than
a second.

B. CASE STUDY 2: (INTER-TURN SHORT-CIRCUIT STUDY)
1) MEASUREMENT
The second practical study was conducted on a smaller trans-
former to analyze vibration data and recognize automatically
the transformer inter-turn fault by signal processing. In this
process, when the transformer was in service, the transformer
winding vibration under different loads was used to train
a model. Afterwards, this developed model was utilized to
predict the transformer overload and inter-turn short circuit;
that is to say, this part is focused on developing an algo-
rithm which can be programmed over the cloud system and
predict transformer turn-to-turn insulation failure in early
stages (prognosis). Examination and analysis were performed
on an open wounded 240/30/30 V, 252 VA single-phase
transformer.
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TABLE 6. Different loads for transformer which are used for training the
predictive model using winding vibration signals.

The nominal current for the transformer primary side was
1.05A and for the secondary side 4.2A for each winding.
To run the test setup, in the first stage, the primary side of this
transformer (winding A) was connected to the voltage source,
240V, and secondary side (windingB) connected to a variable
resistive load. The loadwas changed step by step and different
transformer winding vibration signals were recorded. Vari-
able loads and steps used for training our predictive model
are listed in Table 6. In fact, in practice, the load varies
over the transformer daily or hourly and it causes different
vibrations over transformer winding and we can use this
transformer real-time winding vibration under different loads
to train the model. Two vibration sensors were used to mon-
itor transformer vibration. One sensor was mounted on the
transformer core top, one sensor over the transformer winding
top. Vibration signals in time domain for winding and core
of transformer were recorded and transferred directly to the
cloud environment for calculation and analysis. However,
winding vibration was used in this part as we focused on
winding current and its short-circuit.

FIGURE 6. Single-phase transformer inter-turn fault emulation schematic.

TABLE 7. Transformer short-circuit current used for testing the predictive
capacity of the constructed model.

Afterwards, to examine and validate the trained model
over the terminals of third winding (winding C), turn-to-
turn short circuit was practically emulated by connecting two
conductors of winding C together. We put a variable resistor
between conductors to control the short circuit current, see
Fig. 6. Short-circuit current was emulated for 13 and 15 A,
see Table 7. Figure 7 shows the test setup, sensors, loads,
and portable device and Figure 8 illustrates recorded vibration
signal from winding top sensor.

FIGURE 7. Practical test set-up for single-phase three-winding test object.

FIGURE 8. Time-series winding top vibration signal due to short-circuit,
(a) 13 A short-circuit current, (b) 15 A short-circuit current, x axis =

400 ms.

2) SIGNAL PROCESSING
We use a similar signal model and estimation strategy as
described in (44)-(47). Similar to Section 2.2, we devel-
oped four types of models (linear regression, model tree,
SVR-RBF, MLP) to predict the transformer overloads.
However, we choose a strategy different from cross-
validation in the model selection stage. In order to select the
model (the order of the modelM and the structure of models),
we first developed our models on load currents ranging from
3 to 10A, and examined their performance on observation for
the load currents of 11 and 12A. This validation strategy is
used to simulate real scenarios where training the predictive
model is conducted on a set of observations collected from a
non-overloaded transformer to predict the transformer over-
load and inter-turn short circuit (see Fig. 9).

In our case, we collect training observations for the load
currents ranging from 3 to 12A and examine the performance
of the constructed model in predicting overload currents
13 and 15A, which we assume do not occur during the train-
ing stage. Table 8 provides various performance measures
obtained using this model selection strategy for all models.
This procedure suggests that for M = 2, the attributes of
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FIGURE 9. The model selection phase is conducted using observations for
load currents ranging from 3 to 10A and validated on observations of
11 and 12 A. Once the model is selected, the full training data
(observations ranging from 3 to 12A) are used to construct the model.
This constructed model is validated on observations ranging for load
currents of 13 and 15A.

TABLE 8. Model selection: MLP with 1 hidden layer and 8 neurons for
M = 2 leads to smallest error rate measured by various performance
metrics. We validate both the constructed MLP and the linear regression
model. The linear regression model is chosen for the ease of its
interpretability while having a comparable performance with other
models. The estimates of the variance of SVM-RBF and the number/size
of hidden layers in MLP that led to lowest MAE are identified as ‘‘[.]’’.

the signal model used in the MLP structure leads to the
lowest MAE (and the lowest RAE and RRSE). After model
selection, we use the full training data for the load currents
ranging from 3 to 12 A to train our regression models.

The constructed MLP and the linear regression model are
both validated on the observations for a set of short-circuit
currents (13 and 15A) from which we had no observation in
the training stage (short-circuit current can take any current
flowing through the circuit but we selected and set the short-
circuit setup on 13 and 15A as it was more realistic and
precise to examine the trained model with unseen currents in
the circuit). The MLP is chosen for validation as it possesses
the lowest error rate in the training stage and the linear
regression model is taken because it has a remarkably sim-
ple structure while having a comparable performance with
other models.

Table 9 provides various performance measures of these
constructed models on this set of test data. Interestingly,
the constructed linear model presented in (51) shows even
a better performance than the constructed MLP in pre-
dicting the overload currents. Nevertheless, these low error

TABLE 9. Performance measures of the constructed MLP and linear
regression model (51) on a set of independent observations from
overload currents 13 and 15 A that have not been measured during the
model training stage. Interestingly, linear regression shows a better
performance on the test observations.

rates (20%) suggest the efficacy of both constructed models
in predicting overload currents. In other words, the con-
structed models are capable of precisely recognizing trans-
former short-circuit current (or any undesirable load current)
by means of recorded vibration signal in the last 0.1 s obser-
vation window. Therefore, the use of transformer winding
vibration data has enabled us to construct a smart prognosis
system to detect inter-turn short-circuit fault in early stage.

It would be interesting to look into the structure of the
simple constructed linear regression model. There are four
variables in this model that are linearly combined to predict
the response variable:

y = c+ β1A1 + β2A2 + β3A3 + β4f4, (51)

where y is the load current, Ai, i = 1, 2, 3, denotes the
amplitude of the sinusoids with frequency fi used in themodel
defined in (44), f4 is the largest frequency used in this signal
model (recall that in (44) we have fi < fi+1), and c and βi are
presented in Table 10. This model suggests the amplitude of
the first three sinusoids along with the frequency of the fourth
sinusoids are the only factors needed to predict the overload
current.

TABLE 10. Intercept and coefficients of the predictors used in the linear
regression model (51).

V. CLOUD COMPUTING
Internet of Things (IoT) has advantages over local data moni-
toring center in transformer prognosis in terms of factors such
as dynamic monitoring, reliability and availability, world-
wide 24-hour care and visibility, reduction of monitoring sys-
tem costs and simple end user access to data. Having said that,
vibration data analysis for transformer fault detection before
failure, which is known as prognosis is performed using
cloud computing. Using abovementioned analytical calcula-
tion and signal processing techniques, appropriate libraries
and algorithms is setup over the cloud environment and a
protocolled portable device (any tablet or smartphone) is
connected to the cloud environment to monitor and access
data. Developed algorithm over the cloud system is able to
monitor entire vibration signals, perform real-time analysis
and act properly, e.g., notify operator as to undesirable con-
dition in transformer. This system is also capable of activating
a protection relay and disconnect transformer from main
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FIGURE 10. Operational principle of the system, a general view.

feeder once short-circuit fault current is initiated and the
vibration spectrum becomes undesirable. Figure 11 illustrates
an overview of transformer vibration analysis and operation
principle using cloud computing in this study.

Real-time monitoring of transformer using IoT requires
three connections to be ensured. Microcontroller should be
connected to the cloud platform; cloud platform to portable
device application; and, portable device to the protection
system of transformer. In this study, programmed microcon-
troller is connected to the IoT platform through the local
network Ethernet connection. The initial task for this step
is to design a specific hardware setup model. The next step
is to provide a gateway between hardware and cloud system
which enables data to reach cloud service. One of the feasible
and reliable gateways is MQ Telemetry Transport (MQTT)
broker-based publish subscribe messaging protocol which
runs as a broker between device and the cloud system.MQTT
broker is to help and identify proper connection between
microcontroller device and cloud platform. MQTT protocol
device credential is a function of how the microcontroller
platform sends data to cloud system.

Synchronizing IoT platform with the Ethernet shield of
microcontroller platform is crucially vital. Therefore, micro-
controller platform is established according to libraries,
device credentials, and Ethernet shield mac address. Device
password is also registered in cloud platform. Two main
advantages of the IoT platform utilized in this study are:
(1) it is asynchronous with various levels of quality ser-
vice, which is important where internet connections become
unreliable; and (2) it does not require a memory-consuming
software for a client to get connected, which makes it
suitable for devices with limited memory. With MQTT,
information is assigned with a specific message unit and
sign in both sending and receiving points. This procedure
helps identify accurate information. Then the system starts
to work on the connection between application and cloud.
The Bluemix account is used and a new mobile application
project is designed in dashboard console (including the ser-
vices as notification) to keep user engaged and Cloudant
NoSQL DB is used to provide the access to JSON data
layer.

In addition, Node-RED which is a programming tool orga-
nizes the connection between cloud and application. It helps
establish multi-connection clouding system and connecting
other devices. This is important as it is planned to send data

from cloud to android application. APIs of the cloud and
online services are also used for establishing connection and
data gathering.

VI. CONCLUSION
Transformer core and winding vibrations were mathemati-
cally modeled and their acceleration factors were analyti-
cally discussed in detail. It was technically discussed that
using vibration time-series, the transformer vibration ana-
lytical model is unskilled to interpret abnormal and faulty
transformer conditions and contribute to transformer prog-
nosis. In addition, in the context of Industry 4.0, a progno-
sis technique becomes meaningful if it can be implemented
and developed over a cloud system and work based on IoT
protocols.

In this work, we utilized the state-of-the-art machine
learning and signal processing techniques to analyze trans-
former vibration signals and train a real-time model that
can predict transformer turn-to-turn short circuit fault
based on the most recent 0.1 s duration vibration mea-
surements. This technique was also able to detect trans-
former over and under excitations. Two test objects were
practically examined through introduced vibration analy-
sis technique. The data obtained from practical studies
were transferred to the cloud and the developed vibra-
tion signal processing technique for real-time prognosis
became accessible over any portable device. For future study,
it is planned to connect the cloud system to a protection
device and control or trip transformer before catastrophic
failure.
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