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Abstract

Motivation: Matrix factorization (MF) methods are widely used in order to reduce dimensionality of

transcriptomic datasets to the action of few hidden factors (metagenes). MF algorithms have never

been compared based on the between-datasets reproducibility of their outputs in similar independ-

ent datasets. Lack of this knowledge might have a crucial impact when generalizing the predictions

made in a study to others.

Results: We systematically test widely used MF methods on several transcriptomic datasets col-

lected from the same cancer type (14 colorectal, 8 breast and 4 ovarian cancer transcriptomic data-

sets). Inspired by concepts of evolutionary bioinformatics, we design a novel framework based on

Reciprocally Best Hit (RBH) graphs in order to benchmark the MF methods for their ability to pro-

duce generalizable components. We show that a particular protocol of application of independent

component analysis (ICA), accompanied by a stabilization procedure, leads to a significant increase

in the between-datasets reproducibility. Moreover, we show that the signals detected through this

method are systematically more interpretable than those of other standard methods. We devel-

oped a user-friendly tool for performing the Stabilized ICA-based RBH meta-analysis. We apply this

methodology to the study of colorectal cancer (CRC) for which 14 independent transcriptomic data-

sets can be collected. The resulting RBH graph maps the landscape of interconnected factors asso-

ciated to biological processes or to technological artifacts. These factors can be used as clinical bio-

markers or robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral

microenvironment. Their intensities in different samples shed light on the mechanistic basis of

CRC molecular subtyping.

Availability and implementation: The RBH construction tool is available from http://goo.gl/DzpwYp
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1 Introduction

Large-scale cancer genomics projects, such as The Cancer Genome

Atlas (TCGA) and the International Cancer Genome Consortium, are

generating an overwhelming amount of transcriptomic data. These

data offer us the unprecedented opportunity to understand cancer, its

onset, progression and response to treatment. To deal with the high-

dimensionality of transcriptomic data, matrix factorization (MF)

approaches, reducing high-dimensional data into low-dimensional

subspaces, are widely employed (Kim and Tidor, 2003; Stein-O’Brien

et al., 2018). Given the natural representation of a transcriptomic

dataset as a matrix X (n � m) with n genes in the rows and m samples

in the columns, MFs decompose X into the product of an unknown

mixing matrix A (n � k) and an unknown matrix of source signals S

(k � m). In the following, we denote the columns of A as ‘metagenes’

and the rows of S as ‘metasamples’. The rationale behind MF usage in

biology is that the state of a biological sample, such as a tumor sample,

is determined by multiple concurrent biological factors, from generic

processes such as proliferation and inflammation to cell-type specific

ones. Transcriptomic data can be thus interpreted as a complex mix-

ture of various biological signals convoluted with technical noise of

various kind (Avila Cobos et al., 2018; Brunet et al., 2004).

The MF methods most widely applied to trascriptomic data are

principal component analysis (PCA), non-negative MF (NMF) and in-

dependent component analysis (ICA) (Alter et al., 2000; Biton et al.,

2014; Devarajan, 2008; Ma and Dai, 2011). We will here consider the

original NMF algorithm by Lee and Sung (1999) and Ochs et al.

(1999), while for ICA three variants of the same fastICA algorithm

(Himberg and Hyvarinen, 2003; Hyvarinen, 1999) will be considered:

‘Stabilized ICA (sICA)’ the protocol previously proposed by us that

maximizes kurtosis of metagenes and searches for stable components

(Biton et al., 2014; Kairov et al., 2017); ‘ICA’ that maximizes kurtosis

of metagenes without stabilization and ‘ICA’’ the application of ICA

that maximizes kurtosis of metasamples (see Supplementary Material

S1). A component output of any of these MF methods potentially reca-

pitulates a biological signal that can be rediscovered in another inde-

pendent dataset of the same kind (e.g. in independently profiled

cohort of the same cancer type). If this is the case, we call such a com-

ponent reproducible. Here we will evaluate the reproducibility of the

above MF methods, i.e. their capability to identify many reproducible

components. Note that this definition is different from other metrics

of MF reproducibility, such as subsampling and cross-validation

(Molinaro et al., 2005). Surprisingly, little is known about the level of

between-dataset reproducibility of various MF methods when applied

to transcriptomic data. Lack of this knowledge might have a crucial

impact when extrapolating predictions made in a particular study to

future transcriptomic studies of the same kind.

In this article, we developed a framework for assessing the repro-

ducibility of MF methods. The metrics is based on exploiting

Reciprocal Best Hit (RBH) relations between MF metagenes and

quantifying structural properties of the RBH graph. Given its ultim-

ate aim, our framework evaluates the reproducibility of components

independently identified from multiple datasets, differently from

multi-level factorizations that co-factorize multiple datasets as a

whole (Argelaguet et al., 2018; Tenenhaus et al., 2017).

We applied our framework based on the RBH graph to compare

the performances of various MFs (PCA, NMF, sICA, ICA and ICA’)

in three biological contexts: colorectal, breast and ovarian cancer

(OVCA). We found marked differences in terms of reproducibility

among the various MFs. sICA remarkably outperformed alternative

approaches and it valuably reconstructed the landscape of factors

shaping cancer transcriptomes.

2 Materials and methods

2.1 Biological contexts chosen for the comparison
The large number of carefully annotated transcriptomic datasets avail-

able in cancer biology and the wide heterogeneity of these data are the

reasons that motivated our choice toward using cancer trascriptomes

for assessing MF reproducibility. We here use colorectal cancer

(CRC), breast cancer (BRCA) and OVCA for our comparison.

CRC and BRCA have been chosen as being among the most

studied cancers, especially in the context of transcriptional subtyp-

ing (Guinney et al., 2015; Parker et al., 2009). We employed 14 in-

dependent CRC datasets and 8 BRCA datasets. In these two test

cases, both the profiling platform and the cohort of patients are

changing across the various datasets. In addition, we chose OVCA

to test to which extent the type of profiling platform affects the re-

producibility of the different MF methods. Four TCGA OVCA data-

sets profiled with four different platforms: Affymetrix U133, Agilent

and Affymetrix HuEx, plus RNAseq (Bell et al., 2011) have been

used. The 418 samples common to all four datasets have been used

for our analysis. The samples have been organized into four datasets

each of them associated to one of the four platforms and composed of

the same samples (see Supplementary Table S1 for data availability).

2.2 Computational framework for metagene

comparison
We here introduce a framework to compare four standard MF algo-

rithms: PCA, NMF, ICA, ICA’ and sICA (see Fig. 1, Supplementary

Material S2). First, the number k of components in which the ex-

pression matrix is decomposed should be chosen for all the com-

pared MFs. We overdecomposed the matrices and we fixed the same

number of components for all the MFs (see Supplementary Table

S1). Overdecomposition here stands for the fact that the selected

number of components is taken larger than the estimation of the ef-

fective transcriptome dimension.

In our previous work, we have shown that in case of ICA, overde-

composition is not detrimental for the interpretability of the resulting

components (Kairov et al., 2017). The same is true for PCA, since the

higher-order components do not alter the lower order ones. For NMF

the number k of components in which a dataset should be decomposed

is frequently decided by looking at the last local maximum of the

cophenetic coefficient, summarizing the results of a consensus over dif-

ferent runs of the algorithm (Brunet et al., 2004). We thus chose to

also compare our four algorithms against the version of NMF whose

number of components is chosen based on the cophenetic coefficient,

called in the following ‘cophNMF’. Such comparison, reported in

Supplementary Table S2, did not affect our conclusions.

As shown in Figure 1, our framework is composed of four main

steps to be separately performed for each MF algorithm. The only

inputs required to perform the comparison are as many independent

transcriptomic datasets as possible for the same biological context.

At Step 1, each dataset is decomposed into a set of metagenes and

metasamples. At this step, when the variants of ICA and PCA are

applied to the input datasets we first perform a centering step, i.e.

for each gene expression value we subtract its average expression

across all samples. This is a standard procedure aimed at avoiding to

capture the signal connected to the genes’ average expression, i.e.

the vector containing the mean gene expression across all the sam-

ples of the dataset, as first component. Of note, the centering could

not be applied to NMF due to the non-negativity constraint. In Step

2, the graph of reciprocal correspondences between the metagenes

obtained from the various independent datasets is reconstructed.
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Given the two sets of metagenes {M1 . . . Mk} and {N1 . . . Nk}

obtained in Step 1 from the trascriptomic datasets Tm and Tn, re-

spectively. We here define Mi and Nj as a RBH) if

max cor Mi; fNtgk
t¼1

� �� �
¼ max cor fMtgk

t¼1; Nj

� �� �
: (1)

The Procedure (1) is then repeated for all couples of available

trascriptomic datasets Tm and Tn and the obtained RBHs are merged

into a single graph whose nodes are the metagenes of all transcrip-

tomic datasets and whose links correspond to their RBHs. Here and

in the following we will refer to this graph as ‘RBH graph’. This

name is chosen in analogy with the namesake common definition of

orthology in comparative genomics (Bork et al., 1998; Tatusov

et al., 1997). The idea behind our approach is thus to identify

orthologous biological factors across different transcriptomic data-

sets. The RBH approach is free of necessity to define a threshold as

opposed to correlation graph construction procedure and it leads to

relatively sparse graphs. In Supplementary Figure S1, we compare

the number of RBHs and the dimension of the largest connected

component of the correlation graph for various thresholds versus

the RBH network in all the MFs. The RBH construction tool is

available from http://goo.gl/DzpwYp as part of ‘ICA for Big Omics

Data’ tool (see Supplementary Material S3).

Following the reconstruction of the RBH graph, we observed

that the components detected by NMF were strongly biased toward

the genes’ average expression (see Supplementary Fig. S2), i.e. the

vector containing in each row the average expression of a gene

across all the samples of the dataset. As a further standardization,

we thus regressed each metagene over the genes’ average expression

of the associated dataset and we used the resulting residues in place

of the original metagenes to construct the RBH graph. Alternative

normalizations of the datasets before the application of NMF have

been also considered, but they appeared detrimental for the reprodu-

cibility of its metagenes (see Supplementary Material S4).

At Step 3, differently from previous works (Biton et al., 2014;

Kairov et al., 2017), communities are detected in the RBH graph

using the Markov Clustering algorithm (Enright et al., 2002). Such

communities reflect the existence of factors strongly reproduced

across different transcriptomes. Finally, at Step 4 different objective

measures are computed with compare the results obtained by the

various MFs. The idea in this last step is to evaluate the performan-

ces of the different algorithms focusing on measures that are of prac-

tical interest to researchers when analyzing high-throughput data. In

particular, we evaluated the ability of the different MFs to (i) pro-

duce components reproducible in at least one other dataset; (ii) de-

termine widely reproducible components; (iii) derive an RBH graph

characterized by a tight community structure; and (vi) identify com-

ponents biologically meaningful and specific, i.e. accurately and uni-

vocally predicting known biological signals.

In CRC, we also employed our framework to compare the various

MFs to Regularized Generalized Canonical Correlation Analysis

(RGCCA), which co-factorizes all the datasets together by explicitly

maximizing inter-dataset correlations (Tenenhaus et al., 2017). To this

end, we had to restrict the number of genes to 11 300 common to all

datasets, which is not needed in case of independent MF applications.

This evaluation of the performances of RGCCA is aimed at exploring

the consistency of our framework that should in this case achieve the

maximal match between components and thus the maximal scores in

criteria (i)–(iii). Finally, we characterized the communities obtained in

the RBH graph of sICA using the available biological and clinical anno-

tations as described in Supplementary Material S5.

3 Results

Once Steps 1 and 2 have been performed, as discussed in the Section 2,

we obtained the RBH graphs visualized in Figure 2. The nodes of these

graphs are the metagenes obtained by the different MFs while the links

correspond to the presence of an RBH. The topological structure of the

Fig. 1. Schematic representation of MF comparison framework
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obtained graphs is substantially different. The RBH graphs of sICA

and ICA are characterized by tight communities and less disconnected

nodes in respect to the others. NMF has some areas of densely con-

nected nodes but these are less pronounced in respect to those of sICA.

The graph of PCA reflects the hierarchical structure of the principal

components (PCs). A densely connected area can be indeed identified

in the lower part of the graph, where the first, second and third PCs are

localized. This topological organization is lost when going toward

higher-order components. Finally, the graph of ICA’ has a surprisingly

divergent structure in respect to the one of sICA, with a much lower

number of tight communities. This last result suggests that the protocol

used to apply ICA has a strong impact in the obtained RBH graph.

Similar conclusions on the RBH graph topology have been made when

we tested the effect of subsampling onto MFs applied to the same data-

set (Supplementary Material S6 and Supplementary Fig. S3).

The qualitative characteristics here discussed will be extensively

tested in the next sections, devoted to the comparison of the meas-

ures defined as Step 4 of our framework.

3.1 Reproducibility in at least one other dataset
Having multiple independent transcriptomic datasets from the same

biological condition (in our case CRC, BRCA or OVCA), we can ex-

pect to have similar biological factors captured by the MF in at least

few datasets. As a consequence, a metagene should find a RBH in at

least one other dataset. This may not happen if the metagene cap-

tures a technical dataset-specific bias or a rare subpopulation of

tumors uniquely present in one dataset or due to the inability of an

MF method to generalize to other cohorts.

To measure this aspect, we evaluated the number of disconnected

nodes/metagenes in the results of the various MFs (Supplementary

Material S2). As shown in Figure 3, sICA, with 65 224 and 36 discon-

nected metagenes in CRC, BRCA and OVCA, respectively, outper-

forms other approaches (see Fig. 3A and Supplementary Figs. S4A and

S5A). For example, NMF and PCA had respectively 129 and 173 dis-

connected nodes in CRC. Finally, cophNMF obtained 12% of discon-

nected nodes against the 6.7% of sICA (see Supplementary Table S2).

As expected, RGCCA-based RBH graphs have less disconnected com-

ponents than any other MF method independently applied to each

dataset (Supplementary Fig. S6A).

3.2 Wide across-datasets reproducibility
To evaluate the reproducibility of the metagenes output of the differ-

ent MFs we computed the number of links in their RBH graphs

(Supplementary Material S 2). For example, working with 14 CRC

datasets, in an optimal scenario a metagene should find 13 RBHs

corresponding to the metagenes that reflect the same biological fac-

tor in the remaining 13 datasets. In reality, this is not always the

case given that a biological factor can be underrepresented in some

datasets due to the choice of the samples or to their number.

However, higher is the number of RBHs lower is the deviation of

the performances of a MF approach from the optimal scenario. As

shown in Figure 3B, Supplementary Figures S4B and S5B sICA, with

2900 RBHs in CRC 1605 in BRCA and 390 in OVCA, strikingly

outperforms alternative approaches. In CRC, e.g. sICA identified

�1000 RBHs more than the other MFs, including also cophNMF

(see Supplementary Table S2). At the same time, RGCCA-based

RBH graph for CRC was characterized by 3730 RBH links

(Supplementary Fig. S6B). Interestingly, sICA, without forcing the

correlation between the components of different datasets, provides

only 830 RBHs less (corresponding to 22% less) than RGCCA.

3.3 Tightness of the community structure in the RBH

graph
Concerning the topological structure of the RBH graph, the best MF

algorithm should derive a cluster-graph like graph, i.e. a disjoint

union of tight communities. Indeed as discussed above an optimal

MF algorithm should find a component for each relevant biological

factor underlying the transcriptome. Working with various tran-

scriptomic datasets obtained from the same disease (e.g. CRC),

those components associated to the same biological factor should

cluster together forming a tight community. The final structure of

the optimal RBH graph should be thus composed of various tight

communities sparsely connected one to each other.

In order to verify how the RBH graphs resulting from the differ-

ent MF approaches are close to this optimal topology, we considered

four well-established measures (Supplementary Material S2): (i)

clustering coefficient; (ii) modularity; (iii) number of communities;

and (iv) average size of the communities. The first two are standard

measures in network theory for evaluating how evident is the pres-

ence of communities in a graph (Fortunato, 2010). The average size

and the number of the communities are instead used to evaluate

how consistently each MF algorithm merges components obtained

from different datasets. From the results reported in Figure 3C–F,

Supplementary Figures S4C–F and S5C–F the superior performances

of sICA with respect to alternative approaches can be clearly appre-

ciated. Especially, the clustering coefficient and modularity are strik-

ingly higher in sICA in respect to its alternatives. Of note,

concerning the number of communities, in CRC NMF performs as

sICA and, in OVCA, PCA outperforms sICA. However while PCA

Fig. 2. RBH graphs of widely used MFs built for 14 independent CRC datasets.
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detects more communities than sICA in OVCA, these are smaller and

in two cases they merge metagenes coming from the same dataset. As

shown in Supplementary Table S2, also concerning the topology of the

RBH graph, the performances of NMF do not improve if considering

cophNMF. RGCCA-based RBH graph for CRC was characterized by

tighter communities as expected (Supplementary Fig. S6C–F).

3.4 Biological content and specificity of the components
Finally, we checked if the communities identified in the RBH graph

were effectively associated to specific biological factors. In particular,

we tested the ability of the communities of the different MFs in pre-

dicting three biological factors that are expected to influence cancer

transcriptomic profiles: patient gender, proliferation status of a tumor

and the level of stromal infiltration. For this test we performed a re-

gression analysis of the metasamples obtained from the different MFs.

The gender annotation is composed of discrete values M/F

obtained from the available clinical annotations: in this case, we

thus performed a logistic regression. Proliferation was evaluated

averaging the expression of the genes belonging to a well-known

proliferation signature (Giotti et al., 2017) and it is thus a vector of

continuous weights. Finally, stromal infiltration was estimated using

the average expression of the genes belonging to the stromal signa-

ture of ESTIMATE tool (Yoshihara et al., 2013).

The results of this first test are summarized in Figure 3G–I and

Supplementary Figures S4G, H, S5G and H. We focused on the com-

munity that predicted the best the specified biological signal. The

community was selected as the one with the highest percentage P of

metasamples whose regression on the biological signal was signifi-

cant. We used three parameters commonly used to evaluate the qual-

ity of a linear regression: R2, Bayesian information criterion (BIC)

and Akaike’s information criterion (AIC). We finally define a score

to combine them in a single value as (P*R2)/(BIC*AIC). The higher

this score the stronger is the association between the community and

the biological factor. Indeed a good regression would correspond to

R2 value near to 1 and low BIC and AIC values. Such scores are

reported in Figure 3G–I and Supplementary Figures S4G, H, S5G

and H. The specific values obtained by the single scores are reported

in Supplementary Table S3. As shown in Figure 3G–I and

Supplementary Figures S4G, H, S5G and H, sICA better approxi-

mates all three tested biological factors. In particular, NMF does not

identify any component that can significantly predict the gender sig-

nal. We then investigated the specificity of such predictions, mean-

ing the ability of the MF approach to define a clear one-to-one

association between a biological signal and a component. To test for

the specificity of the different MFs we focused on the components

obtained on the GSE39582 dataset (see Supplementary Table S1)

and considered the R2 obtained in the previously computed regres-

sions by all the 100 components. As shown in Supplementary Figure

S7, sICA resulted to be far more specific than the alternative MFs.

In particular for all the three biological factors (gender, proliferation

and stromal infiltration) sICA found only one component strongly

associated to them. On the opposite, NMF and ICA’ identified mul-

tiple components with similar regression performances. Finally PCA

resulted to be specific in stromal infiltration and proliferation pre-

diction. However, PC1 was the component predicting simultaneous-

ly both signals, confirming the already observed limitation of PCA

of conflating multiple biological processes into a single component.

3.5 Impact of the technical platform on the MFs
We used OVCA as a case study to evaluate the impact of the profil-

ing platform on the results of the various MF algorithms. Indeed

having four OVCA datasets composed of the same samples we are

sure that no biological variability is present across them. In the opti-

mal scenario, all the metagenes of an MF algorithm should find a

RBH with a metagene of the other three datasets. At Step 2 of our

framework applied to OVCA we checked the number of RBH links

of the different MFs together with their average absolute correl-

ation. sICA resulted to perform better than alternative approaches

also in this case, with 390 links and average correlation of 0.396

(see Supplementary Table S4 and Supplementary Fig. S5B). Finally,

we evaluated if a specific agreement could be identified between

profiling platforms (see Supplementary Fig. S8 and Supplementary

Material S2). The correlations among the obtained across different

platforms are highly variable, depending on the MF method employed.

Agilent seems to show the lower correlation with Affymetrix micro-

array and RNAseq platforms. From such analysis, together with the

results of BRCA and CRC, we can conclude that RNAseq and micro-

array platforms give similar results in terms of extracted components.

3.6 sICA identifies biological insights on CRC consistent

with previous knowledge
In the previous sections, we showed that sICA has more reprodu-

cible results than alternative approaches according to multiple meas-

ures of practical interest for high-throughput data analysis. We now

concentrate more deeply on the biological insights that can be

derived from the RBH graph of this MF algorithm in CRC. To this

aim we added to the analysis other four datasets: single-cell RNAseq

from normal and tumoral CRC tissue (Li et al., 2017), Patient-

derived Xenograft (PDX) CRC Models and liver metastasis (LM)

(Isella et al., 2017). Combining sICA components from scRNASeq

data together with those obtained in bulk RNA-seq transcriptomes

through the RBH network allows better characterization of cell-type

specific signals in bulk transcriptomes while PDX and LM data help

to better discriminate tumor cell-specific signals from microenviron-

ment signals. Given the different nature of such data in respect to

the previous 14 we only employed them for the biological

A B C

D E F

G H IG H I

Fig. 3. Comparison of MFs in CRC. Different measures are here plotted for the

comparison of the various MFs: sICA (first bar in each plot), ICA (second bar

in each plot), ICA’ (third bar in each plot), NMF (fourth bar in each plot) and

PCA (fifth bar in each plot)
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characterization and not in the assessment of MF algorithm per-

formances. We then biologically annotated the communities of the

RBH graph by using consensus metagenes and metasamples accord-

ing to the procedure described in the Supplementary Material S5.

The consensus metagenes obtained for the communities of sICA are

reported in Supplementary Table S5 and represent a useful resource

for further analyses. Figure 4 reports the RBH graph of sICA and

the main biological information extracted from it. Four main cate-

gories of biological factors can be distinguished in the graph: factors

intrinsic to the tumor, microenvironment signals, technical signals,

effects of small groups of genes and unknown factors. Concerning

the tumor-specific factors, some communities were found to be asso-

ciated to core tumoral functions, such as proliferation, inflammation,

stemness, interferon response and mitochondria. Other tumor-specific

communities resulted instead to be associated to CRC-specific tumoral

signals, such as microsatellite instability/microsatellite stable, goblet

cells (a differentiated cell of the colon) and KRAS mutation. Finally,

one community was found to be related to chromatin silencing and

histones. The stromal communities instead include microenvironment

signals, such as cancer-associated fibroblasts (CAFs), smooth muscle,

immune, complement system and B-cells. Of particular interest is the

identification of the communities related to B-cells and CAFs whose

association to these cell types was evident not only using MSigDB sig-

natures, but also from single-cell data (see Supplementary Material S4

and Supplementary Fig. S9). The technical factors included instead

GC-content and gender. Finally, 10 communities have been found to

be associated with small groups of genes. In this last case, the consen-

sus metagenes associated to these communities contained few genes

having a much higher weight than the others.

Concerning the association with the predefined CRC consensus

molecular subtypes (CMS) we could clearly match CMS1 with our

immune component, concordantly to what previously observed.

Communities associated to CMS3 and CMS4 were also identified.

Of note, the CMS4 subtype resulted from our analysis to be associ-

ated to both smooth muscles and CAFs. A strong CAFs infiltration

had been already observed in this CRC subtype (Guinney et al.,

2015; Isella et al., 2015).

4 Discussion

In this article, we compared the three most commonly used MF

methods for their ability to detect reproducible and biologically in-

terpretable signals in independent transcriptomic datasets of the

same cancer type (CRC, BRCA and OVCA). For one of the meth-

ods, ICA, we also compared three protocols of its application to

transcriptomic data, named ICA, ICA’ and sICA. We designed a

framework based on the concept of RBH, for assessing the reprodu-

cibility of any MF method. From our study we can conclude that

minimizing mutual information between metagenes (ICA and sICA)

rather than metasamples (ICA’) results in better metagene reprodu-

cibility and interpretability. Moreover, using multiple runs of ICA

for stabilization and prioritizing stable components (as done by

sICA) significantly improves reproducibility. In contrast, PCA com-

ponents appear to systematically mix multiple sources of transcrip-

tome variability, reducing interpretability. Also, the higher-order PCA

components are regularly not reproducible which is partly expected

given rotational invariance of the linear subspaces spanned by the PCs

(Ochs and Fertig, 2012). From previous studies it is known that NMF

shows a good performance in the analysis of mutation data

(Alexandrov et al., 2013) and cancer subtyping (Isella et al., 2017).

However, the NMF components are less frequently selectively associ-

ated with biological factors compared with ICA. Moreover, to the

Fig. 4. RBH graph of sICA built in CRC with the main biological annotations. The node colors indicate the dataset from which the components have been com-

puted. The edge thickness indicates the magnitude of the correlation. Communities with more than six elements are marked with an integer number. For details

on the community annotations see Supplementary Table S5
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best of our knowledge, we lack validated tools for stabilizing NMF

components, similarly to sICA, in transcriptomic data analysis.

We demonstrated that the meta-analysis of the results of sICA,

based on constructing the RBH graph, provides a biologically rich

image of the signals shaping tumoral transcriptomes and their inter-

connection. Tight communities, existing in the RBH graph, whose

meaning can be compared with the Clusters of Orthologous Genes in

evolutionary bioinformatics, can be matched to previously known

and/or expected highly reproducible biological signals (such as prolif-

eration and immune infiltration) but also highlights novel biological

mechanisms which require further investigation and interpretation.

The metagenes obtained through application of MF methods can

be compared with other methods, sharing similar spirit. In particu-

lar, attractor metagenes were suggested in order to serve as surro-

gates of cancer phenotypes (Cheng et al., 2013). Attractor

metagenes were used as variables in the DREAM Challenge winning

approach for predicting BRCA clinical outcome (Margolin et al.,

2013). We find ICA-based framework for identifying metagenes

more computationally elegant and potentially producing less poorly

generalizable signatures; however, further study is required to com-

pare the results of both approaches and their computational per-

formances. INSPIRE method uses the latent variable approach to

infer modules of co-expressed genes and the dependencies among

the modules from multiple expression datasets that may contain dif-

ferent sets of genes (Celik et al., 2016). Therefore, INSPIRE shares

general objectives of MF-based meta-analysis but significantly dif-

fers in terms of methodology. For example, INSPIRE is based on the

assumption of Gaussianity in the data distributions and uses disjoint

module definitions rather than metagenes, where each gene can con-

tribute to several biological functions.

Last, here we compared MF methods in application to cancer

transcriptomic datasets. However, the suggested approach can be

easily extrapolated to other data types (methylomic and proteomic)

or other fields of research collecting massive transcriptomic datasets

(such as drug screenings).
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