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Abstract. In this paper we present the results of a computational study of diffusion across disordered flake composites in 
which the flakes are misaligned with respect to the direction of bulk diffusion. We evaluate the effect of flake orientation 
as well as the influence of boundary conditions and unit-cell types on the predicted barrier properties. Flake orientation 
impacts very significantly on the barrier properties in flake-filled composites, and usually the key objective in their 
fabrication is to orient them as close as possible to being perpendicular to the direction of macroscopic diffusion. Our 
computations are carried out in two-dimensional, doubly-periodic unit cells, each containing up to 3000 individual flake 
cross-sections. We consider high aspect ratio (α) systems with α=1000, from the dilute (αφ=0.01) and into the very 
concentrated (αφ=40) regime. The effective diffusivity of the corresponding unit cells is computed from the imposed 
concentration difference and the computed mass flux, using Fick’s Law. We show that use of cyclic boundary conditions 
and doubly-periodic unit cells results in effective diffusivities which are in agreement with theory and invariant of the shape 
of the unit cell. We also show that the use of adiabatic boundary conditions produces erroneous results at high flake 
concentrations. Finally we compare our results to the predictions of existing literature models and find that the latter deviate 
significantly from computation at high flake concentrations.   

Keywords: Flake composites; barrier properties; microstructure; misorientation 
PACS: 82.35.Lr; 68.60.-p, 66.30.Pa, 65.80.Ck 

INTRODUCTION 

Flake-filled composites are often used as barrier materials, among others in food packaging, since their 
presence hinders the diffusion of gasses (O2, CO2, H2O) to and from a container, by increasing the tortuosity of the 
medium. At the same time, the advantages of formability and design characterizing plastic materials are maintained. 
Flakes of inorganic materials (mica), nano-scale mineral platelets such as montmorillonite as well as graphene-oxide 
platelets of aspect ratios well over 1000, have been used for this purpose [1,2]. It is known that incorporation of such 
fillers aligned perpendicular to the direction of macroscopic diffusion is very effective in increasing the barrier 
properties. Both theoretical results and computational studies have shown that, for flakes aligned perpendicular to the 
direction of macroscopic diffusion, the improvement in the Barrier Improvement Factor (BIF) ranges from being ~(αφ) 
in dilute systems, where (α) is the aspect ratio and (φ) the volume fraction of the flakes, to being ~(αφ)2 in more 
concentrated dispersions [3-7]. When the orientation of the flakes deviates from perfect alignment, it is known that 
the BIF decreases; however no universally accepted models to predict this effect exist and only limited computational 
results have been presented, with the exception of the recent studies of [7-9]. This is unfortunate, since the topic of 
flake misalignment and its effect on BIF is definitely of practical interest;manufactured flake composites produced 
via melt processing are never characterized by perfect flake alignment. There have been several models proposed in 
order to describe the effect flake misalignment. These can be broadly categorized as based on (i) the ad-hoc 
incorporation of orientation metrics in existing models [2,9,10] or (ii) the derivation of the effective diffusion 
coefficient from diffusion path calculations [11-13]. In this study we compare their predictions to computational 
results and also address the issue of boundary conditions and RVE types in computation. 
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RESULTS AND DISCUSSION 
 
We generate the geometries on which computations are carried out using a Random Sequential Algorithm (RSA). The 
RSA places up to 3000 individual cross-sections inside an initial rectangular geometry. The planar coordinates of the 
center of each flake are defined using a random number generator, whereas the orientation angle (θ) is the same and 
fixed for all flakes. At each flake placement attempt, the algorithm conducts checks for overlap of the last-placed flake 
with existing ones in a sub-region surrounding the center of the last-placed flake (this feature impacts on scalability 
and speed of the algorithm), and, if no overlap is detected, continues with the placement of the next flake, until the 
desired number of flakes has been placed, or, until no flake can be placed after 105 attempts. Further details have been 
presented in [7,8]. A minimum allowable distance (2t) between flakes is imposed, where (t) is the thickness of the 
flake; this is necessary so that the resulting geometry can be subsequently meshed. If the dimensions of the unit cell 
are (H) and (L) and if it contains (N) flakes of dimensions (t, α), the flake area fraction (φ) isφ=Ναt2/LH and the length 
(l) of each flake is /)(LHl . 
 
Cyclic boundary conditions are used on the right and left boundaries, specifically Cleft(0,y)=Cright(L,y), where (C) is 
the solute concentration. The concentration (C) is fixed on the top and bottom boundaries, so that a macroscopic 
concentration difference (ΔC) is established. Since the flakes are impermeable, it is 0/ nC  on their surfaces. At 
each pair of (α) and (φ) we generate ~10 different geometries; these differ in flake placement but are characterized by 
the same flake orientation. The mesh generating program GMSH is used to generate the computational meshes, each 
containing ~4x106 triangular elements. These meshes are subsequently used by the open source packageOpenFoam to 
solve the steady-state diffusion equation 02C  and provide the distribution of the solute concentration (C) as well 
as the value of ( n/C ) at every point in thegeometry of interest. As a result, the mass flux across any line in the 
domain, including the top (or bottom) boundary, on which (C) is constant, can be calculated using 

L
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0
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n

, where n is the outward unit vector and (L) is the width of the unit cell.  

 

 
FIGURE 1: (Left) Computational results showing the predicted Barrier Improvement Factor (BIF ~1/Deff) as 

function of the aspect ratio (H/L) of the unit cell. (Right) Effect of type of boundary conditions and geometry used on teh BIF, for 
all flake concentrations (αφ) studied. 
 
If Deff is the effective diffusivity of an equivalent representative material, equating this flux with the one obtained from 

Fick’s law we obtain
L
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. In Figure (1) we show that the type of geometry and the type of 

boundary conditions have an influence on Deff.We have carried out extensive comparisons of the BIFs predicted 
through the use of unit cells having (i) doubly-periodic geometry, (ii) geometry in which flakes were excluded from 
crossing boundaries, (iii) cyclic boundary conditions and (iv) adiabatic boundary conditions. Characteristics (iii) and 
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(iv) refer to the boundary condition applied on the two vertical sides of the unit cell (the two horizontal sides being at 
constant concentration). Such a comparison is shown in Figure (1), which shows computational results for the 
predicted effective diffusivity (Deff) for αφ=5 and θ=π/4 and various shapes of unit cells. Use of doubly periodic unit 
cells results in the elimination of the effect of the dimensions and aspect ratio of the computational domain on the 
computed effective diffusivity, and thus, renders the studied geometries true RVEs. Alternative approaches [7,9] result 
in artifacts, such as oriented or depleted layers adjacent to boundaries, and thus in predictions of Deff which are not 
geometry-invariant. Figure (1) also shows predicted values of the BIF as function of (αφ) for various combinations of 
unit cell type and boundary conditions.In earlier studies, Chen and Papathanasiou [7] and Dondero and co-workers 
[9] used non-periodic unit cells and adiabatic conditions on the side boundaries of the unit cells. Being aware that this 
would have some impact on the predicted diffusivities, both, as a result of flake layers forming adjacent to unit-cell 
walls as well as a result of artificially restricting diffusion across these boundaries, the effective diffusivity was 
computed from a central region of their unit cells. While correct, this is certainly inefficient and does not offer a clear 
estimate of possible errors or any guidance on the required size of this internal region.In this study we conclusively 
show that while the effect of unit cell type and/or boundary conditions is very small for dilute systems, thus validating 
earlier studies [6,8], major differences exist  for αφ>5 – this is incidentally the concentration beyond which no results 
have been reported in the literature this far. In this study we conclusively show that only the combination of periodic 
geometry with periodic boundary conditions will result in invariant results at all flake loadings.  
 
For misaligned flake systems, taking into account the rotational properties of the diffusivity tensor, which dictates that 
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11 DDDDDDeff  and by utilizing the models of Lape et al. [4] and 

Nielsen [14] for the principal diffusivities D11 and D22 respectively, Tsiantis and Papathanasiou [8] proposed the 
following model for Deff. 
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This model was found to be in excellent agreement with computational predictions for 0<θ<π/2 and αφ≤40. A key 
result of both, this model and of the computational results of [8] is the fact that at θ>0 the BIF (~1/Deff) does not grow 
monotonically with (αφ) but instead it reaches a plateau value; this plateau value decreases as (θ) increases, and as (θ) 
approaches zero the effective diffusivity approaches the (plateau) value implied by the Nielsen model [14]. In Figure 
(2) we present a comparison of the results of Eq.(1) as well as of computational results to various existing literature 
models [10-13]. It is clear that severe discrepancies are observed at large flake loadings and this warrants further study 
of the topic. 
 

 
FIGURE 2.Predicted values of the BIF as function of flake concentration (αφ) for various combinations of geometry 
(periodic/non-periodic) and boundary conditions on the side walls (cyclic/adiabatic). Two values of the misalignment 
angle and H/W=1. 
 
Contour maps of concentration are shown in Figure (3), while Figure (4) shows an example three-dimensional 
geometry including randomly placed and randomly oriented flakes; we are currently working at evaluating the effect 
that the consideration of a 3D realistic microstructure has on the predicted BIF as well as how these predictions 
compare to theoretical models.  
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FIGURE 3.Concentration profiles in systems with αφ=10, 
θ=45o. The flakes are also visible. N=3000 

FIGURE 4. 3D geometry and the computed corresponding 
concentration profiles. Randomly placed and randomly 
oriented flakes. 

 

CONCLUSION 

We have presented the results of a computational evaluation of the effect of misalignment on the effective properties 
of composites filled with high aspect ratio flakes. We analyze the results and compare them to the predictions of 
existing theoretical models, including one which the barrier properties of the composite are related to the two principal 
diffusivity, and thus, to flake loading (αφ) as well as (θ). Predictions of existing models are in substantial variance to 
computational results at high flake loadings. We also examine the effect of boundary conditions on the predicted 
effective diffusivity. Our results show that at higher flake loading, use of adiabatic boundary conditions at the side 
walls of the unit cell will result in erroneous predictions for the effective diffusivity. We show that use of cyclic 
conditions will result in effective diffusivities which are, as expected, unaffected by the shape of the unit cell.  
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