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This study develops and implements methods for determining whether introducing new securities or relax-
ing investment constraints improves the investment opportunity set for all risk averse investors. We develop
a test procedure for “stochastic spanning” for two nested portfolio sets based on subsampling and linear
programming. The test is statistically consistent and asymptotically exact for a class of weakly dependent
processes. A Monte Carlo simulation experiment shows good statistical size and power properties in finite
samples of realistic dimensions. In an application to standard datasets of historical stock market returns,
we accept market portfolio efficiency but reject two-fund separation, which suggests an important role for
higher-order moment risk in portfolio theory and asset pricing. Supplementary materials for this article are
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1. INTRODUCTION

Stochastic dominance (SD) ranks prospects based on gen-
eral regularity conditions for decision-making under risk (Quirk
and Saposnik 1962; Hadar and Russell 1969; Hanoch and Levy
1969; Rothschild and Stiglitz 1970). SD can be seen as a model-
free alternative to mean-variance (M-V) dominance. The M-V
criterion is consistent with expected utility for elliptical distribu-
tions such as the normal distribution (Chamberlain 1983; Owen
and Rabinovitch 1983; Berk 1997) but has limited economic
meaning when the probability distribution cannot be character-
ized completely by its location and scale.

Simaan (1993), Athayde and Flores (2004), and Mencia and
Sentana (2009) developed a mean-variance-skewness frame-
work based on generalizations of elliptical distributions that are
fully characterized by their first three moments. SD presents
a further generalization that accounts for all moments of the
return distributions without assuming a particular family of
distributions.

SD is traditionally applied for comparing a pair of given
prospects, for example, two income distributions or two medi-
cal treatments. Davidson and Duclos (2000), Barrett and Donald
(2003), and Linton, Maasoumi, and Whang (2005), among oth-
ers, developed statistical tests for such pairwise comparisons.

A more general, multivariate problem is that of testing
whether a given prospect is stochastically efficient relative
to all mixtures of a discrete set of alternatives (Bawa et al.
1985; Shalit and Yitzhaki 1994; Post 2003; Kuosmanen 2004,
Roman, Darby-Dowman, and Mitra 2006). This problem arises

naturally in applications of portfolio theory and asset pricing
theory, where the mixtures are portfolios of financial securities.
Post and Versijp (2007), Scaillet and Topaloglou (2010), Linton,
Post, and Whang (2014), and Post and Poti (2017) addressed
this problem using various statistical methods. Their stochastic
efficiency tests can be seen as model-free alternatives to tests
for M-V efficiency, such as the Shanken (1985, 1986) test
(without a riskless asset) and the Gibbons, Ross, and Shanken
(1989) test (with a riskless asset).

In an analogous manner, the current study introduces the con-
cept of “stochastic spanning,” which can be viewed as a model-
free alternative to “M-V spanning.” Spanning occurs if intro-
ducing new securities or relaxing investment constraints does
not improve the investment possibility set for a given class of
investors. M-V spanning can be tested using the Huberman and
Kandel (1987) test (without a riskless asset) or the Gibbons,
Ross, and Shanken (1989) efficiency test (with a riskless asset).
We develop methods for implementing the concept of stochas-
tic spanning, which, unlike M-V spanning, accounts for higher-
order moment risk in addition to variance.

Higher-order moment risk is arguably more relevant for ana-
lyzing spanning than for efficiency. Efficiency tests are gener-
ally applied to a given broad market index with limited skewness
and kurtosis (at the typical monthly to annual return frequency),
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in which case the arguments of Levy and Markowitz (1979) for
the mean-variance approximation are compelling. By contrast,
a spanning test evaluates all feasible portfolios, including those
concentrated in a small number of risky securities, for which the
same arguments are unlikely to hold.

Unfortunately, the spanning question is analytically difficult
to resolve for parametric families of nonnormal distributions,
among other things, because relevant distributions such as the
log-normal are not stable and the statistical calculus is compli-
cated. For the aforementioned three-moment model, simplifi-
cations arise for important families of parametric distributions,
but this approach does not account for higher-order moments.
This study attempts to circumvent the analytical challenges by
developing a statistical inference methodology and computa-
tional strategy that are based on a nonparametric assumption
framework.

We propose a theoretical measure for stochastic spanning and
derive the exact limit distribution for the associated empirical
test statistic for a general class of dynamic processes. In addi-
tion, we develop consistent and feasible test procedures based
on subsampling and linear programming (LP). A Monte Carlo
simulation experiment shows good statistical size and power
properties in finite samples of realistic dimensions.

Spanning involves the comparison of two choice sets, with
pairwise dominance analysis and portfolio efficiency analysis
arising as special cases that assume that one or two of the choice
sets is a singleton. In this respect, we expect that our infer-
ence and optimization methods have a wider applicability for
SD analysis.

Our focus is on the most common SD criterion of second-
order stochastic dominance (SSD), which has a well-established
economic interpretation in terms of expected utility theory and
Yaari’s (1987) dual theory of risk. Extensions to the first-order
rule (FSD) and third-order rule (TSD) would require large-
scale mixed-integer programs and quadratic programs, respec-
tively, which are computationally demanding when embedded
in resampling routines.

The proofs to our propositions are available in the separate
supplementary appendix.

2. STOCHASTIC SPANNING

The investment universe consists of M base assets with
random investment returns X := (x1,...,xy) with support
bounded by XM :=[x,x]¥, —c0 <x <X < 4+00. X can be
chosen arbitrarily if it is a superset of the maximal support of
the base assets. It does not seem realistic to allow for unbounded
investment opportunities, because of the risk of financial ruin
and the associated negative spill-overs to counterparties. For any
realistic investment problem, private contracts, law, and regu-
lation will limit the investment possibilities. These restrictions
will, for example, prevent that a risk neutral investor will bor-
row an infinite amount of money and take an infinite and con-
centrated position in a single high-risk security.

In this study, the M-simplex A := {A € RY : 17,1 = 1} rep-
resents the investment opportunity set. Importantly, the base
assets are not restricted to be individual securities. In general,
the base assets are defined as the vertices of the opportunity
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set, or the most extreme feasible combinations of the individ-
ual securities.

For example, some of the base assets could include a short
position in a riskless asset and a long position in risky assets,
to allow for bounded riskless borrowing. Similarly, some of the
base assets could include a short position in risky assets and a
long position in the riskless asset, to allow for bounded short
sales.

Since the portfolio set is represented in vertex form rather
than halfspace form, the convexity constraint 13,4 = 1 should
not be confused with the classic budget constraint. Relaxing the
budget constraint would affect the number of and the composi-
tion of the base assets rather than the convexity constraint.

The analysis considers a myopic, single-period choice prob-
lem. To approximate certain multiperiod optimization problems,
the base assets could also be managed portfolios such the condi-
tional portfolios by Hansen and Richard (1987) and the timing
portfolios by Brandt and Santa-Clara (2006).

Let F : RM — [0, 1] denote the continuous joint c.d.f. of X
and F(y, A) := f 1(X™A < y)dF (X) the marginal c.d.f. for port-
folio A € A. To define stochastic dominance and stochastic effi-
ciency, we use the following integrated c.d.f.:

FOx, A) = /

—00

X

F(y, k)dy=/ (x—y)dF(y, »). (1)

This measure corresponds to Bawa’s (1975) first-order lower-
partial moment, or expected shortfall, for return threshold
xe X.

Definition 1 (weak stochastic dominance). Portfolio A € A
weakly second-order stochastically dominates portfolio T € A
orA > 7, if

G(x, A, 1;F) < 0Vxe X; )
G, A, T; F) = FP(x, 1) — FOx, 7). 3)

Definition 2 (strict stochastic dominance). Portfolio A € A
strictly second-order stochastically dominates portfolio T € A
orA >p T, if

A= t)A (G, A, T; F) <Oforsomex € X). “4)

A well-known equivalent formulation says that stochastic
dominance occurs if and only if A € A is preferred to T € A
by all risk averters; see Hadar and Russell (1969), Hanoch and
Levy (1969), and Rothschild and Stiglitz (1970).

Definition 3 (stochastic efficiency). Portfolio 7 € A is
second-order stochastically efficient if there exists no other fea-
sible portfolio that strictly second-order stochastically domi-
nates it: A ¥p T VA € A.

Equivalently, stochastic efficiency occurs if and only if port-
folio T € A is the optimum for some risk averters (Post 2003,
Theorem 1). This result relies on convexity of the choice set
A, which allows us to apply Sion’s (1958) minimax theorem to
the joint analysis of portfolio weights and risk preferences. By
contrast, for discrete choice sets, nondominance does not imply
optimality (Fishburn 1974). Stochastic efficiency is not a trivial
property. Notably, Post (2003) showed that a broad stock mar-
ket index is significantly stochastically inefficient relative to a
set of actively managed stock portfolios.
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Weuse E(A) :={t € A : X #r T VA € A} to denote the set
of all stochastically efficient portfolios. E(A) is a model-free
generalization of the M-V efficient set. For important families
of parametric distributions, E(A) is a proper subset of the M-V
efficient set (Ali 1975). For these distributions, the M-V set is
larger than E(A ) because the M-V rule can assign an irrationally
high weight to variance. In general, however, the two efficient
sets are not nested, because the mean and the variance do not
capture all lower partial moments F @, A), xe X.

This study focuses on the effects of changing the set of base
assets or investment constraints. For this purpose, we introduce
a nonempty polyhedral subset K C A. A polyhedral structure is
analytically convenient and arises naturally if we remove some
of the base assets or tighten the linear constraints which define
A. The concluding section briefly discusses the case with con-
vex subsets (which can be nonpolyhedral) or simplicial complex
subsets (which can be nonconvex).

Definition 4 (stochastic spanning). Portfolio set A is second-
order stochastically spanned by subset K C A if all portfolios
A € A are weakly second-order stochastically dominated by
some portfolios ¥ € K:

(k Ak eK)VAe A <=
(Gx,k, M F)<0Vxe X))k eK)Vae A. (5

We will use R(A) :={KC A:(k Ak € K)VAL e A} to
denote all relevant subsets that span A. Spanning occurs if and
only if K € R(A). R(A) is nonempty because it includes at least
A;aspan K € R(A) may itself be spanned by another span K’ €
R(K) C R(A).

This study analyzes a given subset K C A. In other appli-
cations, it may be interesting to find an irreducible span K’ €
R(A), so that R(K) = K. However, there generally exist mul-
tiple irreducible spans due to the possibility that two distinct
portfolios have equivalent returns.

Below, we will discuss the relations between stochastic span-
ning, stochastic efficiency, expected utility, and mutual fund
separation, and introduce a measure for stochastic spanning.

Proposition 1. Stochastic spanning occurs if the enlargement
(A — K) does not change the efficient set, that is,

K € R(A) <= E(A) C K. (©)

The reverse relation generally does not hold, because the
weak dominance relation does not possess the antisymmetric
property. In other words, E(A) always spans A, but it may
be reducible by excluding equivalent elements. Consequently,
E(A) € K is a sufficient but not necessary condition for K €
R(A). In addition, the sufficient condition E(A) C K is not
practical, because E(A) is generally nonconvex and discon-
nected, which makes it difficult to identify all its elements and
test the sufficient condition directly. On the contrary, a small
polyhedral span K € R(A) could be used as a practical approx-
imation to the intractable efficient set E(A).

We use the following scalar-valued functional of the pop-
ulation c.d.f. as a measure for deviations from stochastic
spanning:

n(F) := sup inf sup G(x, , A; F). @)
reA k€K yex
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The outer maximization searches for a feasible portfolio A €
A that is not weakly dominated by a portfolio k € K. If n(F) =
0, then no such portfolio exists and K spans A; if n(F) > 0, then
stochastic spanning does not occur.

Remark 1. Since G(X, k, »; F) = Ez[XTA — XT«], we find
the following lower bound for the stochastic spanning
measure:

n(F) > supinf G(X, k, A; F)
rcA KEK

= sup inf Ex[XTA — XTk]. (8)
reA kEK
To further clarify the economic meaning of the notion of
stochastic spanning, we can formulate it in terms of expected
utility, by analogy to the aforementioned formulation of domi-
nance and efficiency.

Proposition 2. The stochastic spanning measure (7) can be
reformulated as follows:

n(F) = sup inIf(H(w,K,k;F); )]

reA;weWKE

Hw,k,  F) = /x wXx)G(x, k, A; Fdx; (10)

X

W= {w X — [0,1]: /xw(x)dx= l}. (11)

Alternatively,

n(F)= sup infEp [u (XTA) —u (XTK)] ;
reA;uelh ¥€K

12)

Uy : = {u eC’:uly) = fxwoor(y; x)dx w € W} ;

13)

r(y;0) = (-0l <x), (xy) e X% (14)

In this formulation, I/, is a set of normalized, increasing and
concave utility functions that are constructed as convex mix-
tures of elementary Russell and Seo (1989) ramp functions
r(y; x), x € X. Stochastic spanning (n(F) = 0) occurs if no risk
averter (u € U,) benefits from the enlargement (A — K). The
lower bound (8) represents the potential benefit of the enlarge-
ment to a risk-neutral investor with utility function u(y) =
(y—x.

Stochastic spanning can also be formulated in terms of mutual
fund separation; in portfolio theory, N-fund separation occurs if
all rational risk averters combine at most N € N; distinct mutual
funds (see, e.g., Ross 1978). If we assume a multivariate normal
distribution and free portfolio formation, then two-fund separa-
tion arises (N < 2). Our definition of stochastic spanning how-
ever allows for nonnormality and investment restrictions. Using
the Minkowski—Weyl theorem, the nested portfolio set K C A
can be represented as the convex hull of its V(K) € N; ver-
tices. Hence, in case of stochastic spanning, rational investors
can limit their attention to combining the V(K) vertices of K,
and thus N < V(K).

Appendix A discusses the relation between our analysis of
stochastic spanning and the study of Scaillet and Topaloglou
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(2010), which was an important source of inspiration for our
analysis.

3. STATISTICAL THEORY

In empirical applications, the c.d.f. F' is latent and the ana-
lyst has access to a discrete time series of realized returns sy :=
(X,)thl, X, € X,t =1,...,T.Thissection analyzes the asymp-
totic behavior of a test statistic for stochastic spanning in situa-
tions in which the number of assets M is fixed and the number
of time series observations 7' goes to infinity, which in practice
means that M is much smaller than 7.

We make the following general assumptions on the multivari-
ate return process:

Assumption 1. (i) The return sequence (X;);en, 1S @-mixing
with mixing coefficients (a;).en, such that a, = O(t~?)) for
some § > 1. (ii) Furthermore, the covariance matrix

Er [(Xo — Er[XoD)(Xo — Er[XoD)'"]

+2 ) Er [(Xo — Er[XoD(X, — EF[X,])T]

t=1

is positive definite.

These assumptions allow for various stationary ARMA,
GARCH, and stochastic volatility processes based on innova-
tions with appropriately bounded supports (Carrasco and Chen
2002).

Let Fr(x) :=T"! Z;T:1 1(X; < x) denote the empirical joint
c.d.f. constructed from the sample sy. The multivariate empir-
ical process CLT for strongly mixing sequences implies
that /T (Fr — F) weakly tends to the Gaussian process
Br with covariance kernel given by cov(Br(x), Br(y)) =
Y ez cov(1(Xp < x), 1(X; <)) and almost surely uniformly
continuous sample paths defined on RY (see Theorem 7.3 of
Rio 2013).

We consider the following scaled empirical analog of (7) as
a test statistic for stochastic spanning:

nr = ~Tn(Fr) = /T sup inf sup G(x, «, A; Fr)  (15)

reA KEK yex
=T sup inf H(w, «, A; Fr).

reA;wew keK

(16)

In general, computing the test statistic ny is a challenging
global optimization problem. Appendix C forward two alterna-
tive computational strategies based on simulation or enumera-
tion of a large number of small LP problems.

We use the test statistic nr to test the null hypothesis
of stochastic spanning, Hy : n(F) = 0, against the alternative
hypothesis of no stochastic spanning, H; : n(F) > 0. To derive
the limit distribution of the test statistic under the null, we first
introduce some additional notation.
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Under the null, the set I" := W x A can be partitioned into
the following two subsets:

'=:={(w,2)el: inlf<H(w, Kk, ; F) =0} 17
KeE

r<:={(w,r)erl: inlliH(w,K, A F) < 0. (18)
KE

Since K C A, we find I'= # @. In addition, for any (w, A) €
I, K can be decomposed into the following two subsets:

Kf(w,;\) ={keK:Hw,k,\;F) <0 (w,A) el}; (19)
Ko wn =k e K:Hw,«, 1 F) >0 (w, 1) € T'}. (20)

Under the null, we have that (H(w,k,\; F) <0Vw €
W)k € K) for all » € A, and hence K=, ) #@ for all
(w, 1) eT.

Proposition 3. Under Assumption 1,
H (w, i, h: VT (Fp — F)) s H(w, k. : Be), (1)

oper operH (w, K, A ﬁ(FT — F))
(w,A)EAT KEBT

~» oper operH (w, k, A; Br).
(w,A)EA kEB

(22)

where ~~ denotes weak convergence; oper and oper* are sup or
inf; A7 and A are measurable subsets of I" such that A7 — A;
B7 and B are measurable subsets of K such that By — B.

The following proposition establishes the asymptotic distri-
bution of the test statistic n7 under the null:

Proposition 4. If Assumption 1 holds and Hy is true, then

Nr ~ Neo := SUP inf  H(w, «, A; Br). (23)
(w,2)el'= KEK=@w 1)
Notice that H(-, -, -; Br) is a well-defined zero-mean Gaus-

sian process due to the moment existence condition and the rate
of convergence of the mixing coefficients in Assumption 1 (see,
e.g., inequality 1.12b in Rio 2013). We were able to also derive
asymptotic unbiasedness for a class of nontrivial local alterna-
tive hypotheses. For the sake of compactness, we do not report
these additional results here and we focus on testing the null
hypothesis of stochastic spanning (Hy : n(F) = 0).

Given the asymptotic null distribution, we can develop a test
procedure based on 77 and ne. Let g(nx, | — ) denote the
(1 — @) quantile of the distribution of 7, for any significance
level o € ]0, 1[. The basic decision rule to reject Hy against H;
if and only if n7 > ¢(n, | — o) is infeasible due to the depen-
dence of g(~, 1 — ) on the latent c.d.f. F. However, feasible
decision rules can be obtained by using a subsampling proce-
dure to estimate g(1o0, | — o) from the data.

To implement the subsampling procedure, we begin by
generating (T — br + 1) maximally overlapping subsamples
of br € Ny consecutive observations, Sp,.7; = (Xx)ii},""fl,
t=1,...,T —br+1, and compute test scores np,.r;=
Vbrn(Fy,.7,) for each subsample, where F,.7, denotes the
empirical joint c.d.f. constructed from sp,.7,, t =1,...,T —
br + 1. The distribution of subsample test scores can be
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described by the following c.d.f. and quantile function:

T—br+1
Stp, () i= ——mm— LMy, < V); 24
)= 5 ; (s <) (24)
qro (1 =) i=inf{y: S75 () 21—}, (@29)

Our decision rule is to reject the null Hy : n(F) = 0 against
the alternative H; : n(F) > 0 at a significance level of o €
10, 1[ if and only if ny > grp, (1 — @), or, equivalently, 1 —
S7.p,(N7) < . As shown in Appendix B, this subsampling rou-
tine is asymptotically exact and consistent under reasonable
assumptions on the subsample length and significance level.

Although the test has asymptotically correct size, simulation
exercises show that the quantile estimates g7, (1 — o) may be
biased and sensitive to the subsample size by in finite samples
of realistic dimensions (M and T'). To correct for small-sample
bias and reduce the sensitivity to the choice of by, we propose
a regression-based bias-correction method that is motivated by
our observations from simulation exercises. For a given signifi-
cance level o, we compute the quantiles g7, (1 — o) for a “rea-
sonable” range of the subsample size by. Next, we estimate the
intercept and slope of the following regression line using OLS
regression analysis:

qro,(1 =) =Yori-a + Vi.r1-a(br) ™ +vr0_apy-  (26)

Finally, we estimate the bias-corrected (1 — «)-quantile as
the OLS predicted value for by = T':

B0 —a) = Por1a + Prr1-o(T) (27)

Since grp, (1 — ) converges in probability to (1, 1 — @)
and (b7)~! converges to zero as T — 0, 70.7.1—¢ cOnverges in
probability to ¢(n., | — @), and the asymptotic properties are
not affected. However, computational experiments show that the
bias-corrected method is more efficient and more powerful in
small samples.

The (block) bootstrap is an obvious alternative to subsam-
pling. Proposition 4 is based on the properties of the partitions
of I' and K in (17) to (20) and the behavior of the measure
n(F) on these subsets. Given the relevant discussion on page
S67 of LPW2014, we expect that the use of a bootstrap crit-
ical value based on the appropriately centered H would lead
to a test which is consistent but asymptotically conservative,
and hence, less powerful than the subsampling approach under
particular local alternatives. However, we believe that we can
obtain an asymptotically exact bootstrap procedure without cen-
tering, if we strengthen the null hypothesis to hold for any ele-
ment of some weak neighborhood of F. In any case, we expect
that the bootstrap is more powerful in finite samples than sub-
sampling, since each pseudo-sample uses the full sample infor-
mation, rather than a subset of the observations. We leave the
development of a bootstrap procedure for stochastic spanning
for further research.

4. SIMULATION EXPERIMENT

We use a Monte Carlo simulation experiment to analyze the
small-sample properties of our test procedure for stochastic
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spanning and compare those properties with similar results for
M-V spanning tests.

Typical datasets in empirical asset pricing consist of low-
frequency returns to diversified benchmark portfolios for multi-
ple asset classes, market segments, or investment styles. In this
context, the primary factors that determine the statistical perfor-
mance of the test procedure seem to be the number of base assets
(M), the number of time-series observations (7°), the mutual
covariance structure, and the risk premiums of the risky assets.
Higher-moment risk and serial dependence seems of secondary
importance for the test procedure, despite the importance for
investors more generally.

Our experiment is based on an investment problem with a
riskless asset, a stock index futures contract, and (M — 2) other
risky assets. We focus on testing the hypothesis that all convex
combinations of the M base assets (A) are spanned by all con-
vex combinations of the riskless asset and the futures contract
(K). In this setup, spanning amounts to “two-fund separation,”
where the riskless asset and the futures contract are the two rel-
evant funds.

The joint return distribution is serially iid normal with a
mutual covariance matrix that is fitted to the empirical dis-
tribution of monthly returns to the CRSP all-share index and
active stock portfolios from July 1963 to December 2015 from
the data library of Kenneth French. We set x = min;,(x;,) and
X = max;(x;).

Although the simulation process does not capture the effects
of higher-moment risk and serial dependence, the robustness of
the simulation results to realistic deviations from iid normality
is discussed below. The normal distribution is also unbounded,
which is unrealistic and violates our assumption framework.
However, truncating the normal distributions in the tails has no
material effect on our simulated size and power properties.

We consider sets of (M — 2) = 6, 25 value-weighted portfo-
lios that are formed by classifying stocks based on their market
capitalization of equity (ME) and book-to-market-equity ratio
(B/M). The risk-free return x; = r is the one-month T-bill rate
and the futures contract is built using a short position of 100%
in the T-bill and a long position of 200% in the market index,
so that its return is given by x, = 2y — r, where y is the index
return. This futures contract obeys the spot-futures parity and
requires that 50% margin is deposited in an interest-bearing
account.

We equate the risk-free return r and the expected return to
the market index Ey[y] with the corresponding historical aver-
ages. For every risky asset, we set the expected return using the
following linear mean-beta relation:

Er(xi] =Erlyl +§Bi — D Erlyl —r), i=3,..., M.
(28)
In this expression, B; is the market beta and 0 <& < 1 is a
parameter which controls the deviations from the null. To mea-
sure the statistical size, we set £ = 1, which yields the Security
Market Line equation of the Capital Asset Pricing Model and

which is consistent with the spanning hypothesis:
Erlx]=r+ Bi(Erlyl —r), i=3,...,M. (29)

To measure the statistical power, we set & such that the
expected return to the lowest-beta asset equals the risk-free
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return:
min Ep[x;] =r, (30)
i=3,...M
or, put differently,
1
§= 3D

This specification violates the null of spanning, because mix-
tures of the T-bill and high-beta assets dominate mixtures of the
T-bill and the index futures contract.

We generate random samples of size T = 240, 480, 960,
which corresponds to 20, 40, or 80 years of monthly observa-
tions, and apply our tests for stochastic spanning and M-V span-
ning to every random sample. For the stochastic spanning test,
the subsample lengths employed are {50, 55, 60, 65, 70, 75}
for T =240, {60, 75,90, 105, 120, 135} for T = 480, and
{80, 120, 160, 200, 240, 280} for T = 960.

Since the test statistic is computed using hundreds of LP prob-
lems for every sample and subsample, simulating the perfor-
mance of the subsampling procedure involves solving tens of
millions of LP problems. The computational costs limit the pos-
sibilities to calibrate the subsample lengths and the optimization
procedure, which may adversely affect the reported results.

Under the multivariate normal distribution, two-fund separa-
tion is equivalent to M-V efficiency of the market portfolio, by
Tobin’s (1958) separation theorem. We may therefore use tests
for M-V efficiency to test for M-V spanning. We employ two
tests for M-V efficiency: a classical one and another one based
on subsampling.

The first test for M-V efficiency is the classical Gibbons,
Ross, and Shanken (GRS; 1989) test, which is based on
Seemingly Unrelated Regression. In this experiment, our test
procedure cannot rival the GRS test, which correctly assumes
a serially iid normal distribution. In this respect, the GRS test
functions as an ideal benchmark and our objective is not to out-
perform the GRS test but to measure the divergence between
the performance of our procedure and that of the benchmark in
small samples.

However, the reported performance for the GRS test is clearly
not representative for dynamic and nonnormal distributions.
To separate the effect of the M-V criterion and the effect of
assuming iid normality, we also include a subsampling test for
M-V efficiency which embeds the computation of the standard
GRS test statistic in the same subsampling and bias correction
methodology that is employed for the SSD spanning test.

Table 1 shows the size and power properties of the three
tests as a function of the data dimensions (M and T'). In small
samples, important size distortions occur for the subsampling
method, which are attributable to imperfect calibration of the
grid points for the subsample lengths used in the bias correc-
tion method. To better compare the power, we also report “size-
adjusted power” as the difference between the unadjusted power
and the size.

The GRS test performs very well, as expected, in this exper-
iment based on a serially iid normal distribution. The statisti-
cal size is under control and the power approximates 100% in
all relevant cases. The use of the SSD criterion and subsam-
pling leads to a loss of power in small samples, which is a
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price to pay for the ability to deal with dynamic and nonnormal
distributions.

Clearly, a narrow cross-section and long time-series are more
important for the stochastic spanning test than for the GRS test.
For a broad cross-section (M — 2 = 25) and short time series
T = 240, the stochastic spanning tests is rather under-powered,
with a rejection rate of 55.1% at a nominal significance level
of 5% under the alternative. Encouragingly, the power increases
quickly as we reduce the number of assets or increase the num-
ber of observations and high power levels are achieved for real-
istic data dimensions.

A more detailed simulation study would also analyze the
effects of higher-moment risk and serial dependence. How-
ever, for typical datasets of low-frequency returns to diversified
benchmark portfolios, the empirical deviations from iid multi-
variate normality seem of secondary importance for the statisti-
cal properties of the test procedure, despite their importance for
investors more generally.

There are three obstacles to verifying this conjecture in this
study. First, parametric specifications of dynamic and nonnor-
mal multivariate distributions tend to be intractable for portfolio
analysis. Second, the methods developed in the present study do
not allow for constructing a span K € R(A) for a given portfolio
set A, which complicates the design of an experiment for sim-
ulating the statistical size of the spanning test. Third, the com-
putational burden prohibits experimentation with the design of
the simulation process and calibration of the methods.

To conclude the simulation analysis, the robustness of the
results to higher-moment risk and serial dependence is exempli-
fied. Parametric specifications of dynamic and nonnormal multi-
variate distributions tend to be intractable for portfolio analysis.
Studies of portfolio efficiency tests by Post and Versijp (2007)
and Post and Poti (2017) avoid this problem by random sam-
pling from the joint empirical distribution function, which by
its own nature features realistic deviations from iid normality.

Following this approach, the present experiment for spanning
tests was repeated using random blocks of 3, 6, or 10 consec-
utive monthly observations from the original time series. As in
Post and Versijp (2007), the simulated test properties are similar
to what was found using an iid normal distribution, apart from
a somewhat higher statistical size and lower statistical power in
small samples. By contrast, the size of the GRS test is poorly
controlled in the presence of serial correlation. These findings
support the notion that higher-order risk and serial dependence
are of secondary importance for the stochastic spanning test in
this experiment.

5. EMPIRICAL APPLICATION

This section applies efficiency and spanning tests to empirical
data rather than simulated data. Motivated by the above simu-
lation experiment, we use a relatively narrow cross-section and
long time-series. Our investment universe consists of M = 12
distinct base assets: the one-month T-bill, an index futures con-
tract based on the CRSP all-share index, and 10 equity industry
portfolios. We analyze monthly excess returns from July 1926 to
December 2014 (T = 1062) from Kenneth French online data
library. Returns are computed in excess of the monthly T-bill
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Table 1. Simulation experiment
Panel A: (M —2)=2x3
Size Power “Size-adj. power”
T\ a— 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
Stochastic 240 0.110 0.132 0.157 0.915 0.947 0.963 0.805 0.815 0.806
spanning 480 0.046 0.061 0.093 0.998 1.000 1.000 0.952 0.939 0.907
960 0.020 0.042 0.071 1.000 1.000 1.000 0.980 0.958 0.929
M-V spanning 240 0.019 0.028 0.061 0.981 0.989 0.997 0.962 0.961 0.936
(subsampling) 480 0.007 0.018 0.057 1.000 1.000 1.000 0.993 0.982 0.943
960 0.022 0.045 0.087 1.000 1.000 1.000 0.978 0.955 0913
GRS 240 0.007 0.049 0.098 1.000 1.000 1.000 0.993 0.951 0.902
480 0.011 0.048 0.103 1.000 1.000 1.000 0.989 0.952 0.897
960 0.010 0.063 0.128 1.000 1.000 1.000 0.990 0.937 0.872
Panel B: (M —2) =5 x5
Size Power “Size-adj. power”
T\ a— 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
Stochastic 240 0.092 0.113 0.132 0.435 0.551 0.643 0.343 0.438 0.511
spanning 480 0.034 0.058 0.075 0.687 0.788 0.855 0.653 0.730 0.780
960 0.012 0.017 0.026 0.947 0.963 0.981 0.935 0.946 0.955
M-V spanning 240 0.044 0.057 0.071 0.651 0.781 0.872 0.607 0.724 0.801
(subsampling) 480 0.020 0.083 0.155 0.987 0.997 0.999 0.967 0914 0.844
960 0.036 0.057 0.087 1.000 1.000 1.000 0.964 0.943 0913
GRS 240 0.005 0.035 0.087 0.979 0.993 0.997 0.974 0.958 0.910
480 0.009 0.041 0.097 1.000 1.000 1.000 0.991 0.959 0.903
960 0.014 0.043 0.091 1.000 1.000 1.000 0.986 0.957 0.909

rate, which means that the bill is treated as a riskless asset and
has an excess return of zero in every month.

Several features of these data justify our model-free approach
to account for higher-order moment risk and time-series dynam-
ics. First, the return distribution appears nonnormal, witness, for
example, the skewness of 0.20 and excess kurtosis of 7.74 of
the market returns. In addition, the data show clear dynamic pat-
terns, for example, the first-order auto-correlation coefficient for
the market returns is 10.81% (p-value: 0.070). The dimensions
of the dataset (M = 12, T = 1062) also seem favorable for our
model-free approach.

We find similar results as reported below in two sub-periods
of roughly equal length, as well as for a second dataset of 10
portfolios formed on estimated market beta and a third dataset
of 10 portfolios formed on ME.

We deliberately do not consider datasets of equal-weighted
returns and/or double-sorted portfolios that are formed on ME
and a second stock characteristic to avoid a bias toward micro-
cap stocks that would lead to a predictable rejection of all our
hypotheses and make the test results uninformative. This con-
sideration does not play a role in the above simulation experi-
ment, because the simulation process was based on the theoret-
ical mean-beta relation (28) rather than the historical means.

We first analyze whether the market portfolio is stochasti-
cally efficient. This hypothesis seems interesting because repre-
sentative investor models of capital market equilibrium predict
that the market portfolio is efficient as a result of risk sharing

in sufficiently complete markets or, alternatively, aggregation
across sufficiently homogenous investors in incomplete mar-
kets. A market portfolio efficiency test can also be interpreted
as a revealed preference analysis of those individual investors
who adopt a passive strategy of broad diversification.

In this application, A consists of all convex combinations of
the 12 base assets. There is no need to explicitly allow for short
selling in this application, because the market portfolio has no
binding short-sales restrictions; nonbinding constraints do not
affect the efficiency classification. All risky assets have strictly
positive market capitalization weights. If some investor would
benefit from short-selling some risky asset, then she would also
benefit from underweighting that asset without using a negative
weight. In other words, the short-sales constraints are not bind-
ing and hence do not affect the efficiency classification.

To test market portfolio efficiency, we use the Linton, Post,
and Whang (2014) test, using the same subsampling proce-
dure as our spanning test. The four panels of illustrate our
results.

The optimal solution A* € A consists of large positions in
the nondurables industry (46%) and energy industry (42%) and
small positions in the health industry (6%), telecom industry
(5%), and T-bill (1%). In panel A of Figure 1, the return PDF
of A* appears less risky than that of the market portfolio. Panel
B shows the difference function G(x, t, A*; Fr) for every return
level x € ?T = [—25.15, 42.07], from which it is clear that the
market portfolio has a strictly higher expected shortfall than the
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Figure 1. Empirical results for the hypothesis of stochastic efficiency.

solution portfolio for every return level x € ?T; it follows that
A* >p, T. The value of the Linton, Post, and Whang (2014) test
statistic is &7 = /T min, 3, G(x, 7, A*; Fr) = 0.114.

Panel C shows the decumulative subsampling distribution of
the test statistic for subsample sizes by = 120 and by = 480.
Clearly, large values of the test statistic occur more frequently
in smaller subsamples, which underlines the need to correct
the quantile estimates for bias. Panel D shows the estimated
OLS regression line (26) based on the empirical quantiles g7 p,
(1 — &) for significance levels of « = 0.01 and & = 0.10 using
various subsample sizes by € [120, 480]. Using (27), the regres-
sion estimate for the critical value for ¢7 is ¢2(0.90) = 0.370,
more than three times the full-sample value {7 = 0.114. Hence,
we cannot reject market portfolio efficiency at conventional sig-
nificance levels.

Our second research hypothesis is two-fund separation: do all
rational risk averters combine the T-bill and the index futures
contract?

In the simulation experiment, which was based on a mul-
tivariate normal DGP, this hypothesis was equivalent to mar-
ket portfolio efficiency. For nonnormal distributions, two-fund
separation generally does not occur, unless one assumes that
preferences are sufficiently similar across investors (see, e.g.,
Cass and Stiglitz 1970). Our stochastic spanning test can ana-
lyze two-fund separation without assuming a particular form for
the return distribution or utility functions.

Figure 2 illustrates the estimation results for the industry
dataset. The optimal solution k* € K consists of the T-bill (56%)

and the index futures contract (44%). The optimal solution A* €
A consists of a large position in the nondurables industry (42%)
and smaller positions in the health industry (26%), energy indus-
try (20%), and telecom industry (12%). Panel B shows the dif-
ference function G(x, k*, A*; Fr) for every relevant return level
x € X. Clearly, we find a strictly positive difference for large
positive return levels and hence k* £, A*; stochastic spanning
does not occur. We find max,cy G(x, «*, A*; Fr) = 0.138 and
the test statistic amounts to ny = 4.480.

Panel C shows the decumulative subsampling distribution of
the test statistic for by = 120 and by = 480 months, with large
values of the test statistic again occurring more frequently in
smaller subsamples. Panel D shows the estimated OLS regres-
sion line (26) for significance levels of @ = 0.01 and « = 0.10
using various subsample sizes by € [120, 480]. Using (27), the
regression estimate for the critical value for ny at o = 0.01 is
¢5¢(0.99) = 4.354, below the full-sample value 57 = 4.480.
Hence, we can reject two-fund separation with at least 99%
confidence.

As a final step in our analysis, we test for two-fund separation
using the M-V criterion rather than the SSD criterion. Clearly,
our rejection of stochastic spanning is less informative if we can
also reject M-V spanning.

We use the same methodology as for the above stochas-
tic spanning test, but we restrict the utility functions to take
a quadratic (rather than piecewise linear) shape. We solve the
embedded expected-utility optimization problems (for every
given quadratic utility function) using quadratic programming.
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This nested model specification isolates the effect of the choice
criterion (SSD vs. M-V).

Figure 3 summarizes the test results. In contrast to stochastic
spanning, we cannot reject M-V spanning at conventional sig-
nificance levels.

The combined results of the efficiency and spanning tests sug-
gest that combining the T-bill and market portfolio is optimal
for some risk averters (market portfolio efficiency) but subopti-
mal for other risk averters (no two-fund separation). Since mar-
ket portfolio efficiency and two-fund separation are equivalent
under a multivariate normal distribution, the divergence of our
two sets of test results points at economically significant devia-
tions from normality.

Harvey and Siddique (2000) and Dittmar (2002) analyzed the
empirical explanatory power of skewness and kurtosis in cross-
sectional regression tests for market portfolio efficiency. Their
results, as the results of our structural efficiency test, seem con-
sistent with the notion that the market portfolio is optimal for
some utility functions with higher-order moment risk prefer-
ences. We caution however against interpreting these results as
evidence for representative-investor models of capital market
equilibrium.

If returns are not normally distributed, then aggregation
across individual efficient risky portfolios may not produce an
efficient market portfolio. Our spanning test results suggest that
distinct risk averters will hold distinct risky portfolios. Since the
SSD efficient set is generally nonconvex, aggregation across dis-
tinct efficient risky portfolios unfortunately does not produce
an efficient market portfolio. Hence, we caution against confus-
ing market portfolio efficiency and market equilibrium models
if two-fund separation is rejected.

We should mention that the GRS test, in contrast to the
subsampling test, rejects M-V efficiency of the market portfo-
lio at every conventional significance level. Similar results are
found using the MacKinlay and Richardson (1991) test which
accounts for serial dependence and nonnormality. However, our
analysis aims to isolate the effect of the choice criterion (SSD vs.
M-V) and the effect of the stochastic order (efficiency vs. span-
ning), using a nested model specification and a single statistical
methodology (subsampling). The point here is that, keeping all
else equal, we cannot reject market portfolio efficiency for either
the SSD or M-V criteria, but we can reject two-fund separation
using a stochastic spanning test.

6. CONCLUDING REMARKS

We have introduced the model-free concept of stochastic
spanning together with a consistent and feasible framework for
implementation based on subsampling and LP. Our simulation
experiment shows good statistical size and power properties in
finite samples of realistic dimensions. The empirical application
illustrates our methodology and points at new evidence for the
relevance of higher-order moment risk in portfolio theory and
asset pricing.

We conclude with a brief discussion of various extensions and
generalizations that appear nonessential for our empirical appli-
cation but that may be of interest in other applications.

First, although this study has worked with a polyhedral span-
ning set, the results would go through with minor modifications
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if we allow K to be a nonpolyhedral convex set or a simpli-
cial complex. Notably, in the nonpolyhedral convex case, the LP
strategy in Proposition 8 could be substituted by some convex
optimization method, whereas in the simplicial complex case,
the strategy would be implemented in each one of the simplices
that comprise the complex.

One interesting line of further research which builds on this
generalization is to construct an “outer approximation” of the
efficient set by considering decreasing sequences of simplicial
spanning sets.

Second, our statistical theory can be extended to the case
of unbounded support for the base assets, with some minor
modifications of the definition and assumption framework. If
in such a case, WV is defined by the additional condition that

fj;o w(x)|x|dx < 400, and Assumption 1 includes the condi-

tions that § > 2, and E || X >t < +o0, for some € > 0, then
results partially analogous to Propositions 2—4 would hold with
the relevant modifications.

Third, if Assumption 1 is strengthened according to Theorem
2.3 of Andrews and Pollard (1994) and via the use of Theorem
B.0.1 of Politis, Romano, and Wolf (1999), the testing procedure
can be shown to be asymptotically unbiased under classes of
sequences of local alternatives.

The authors are working to extend and generalize the present
framework along these lines.

APPENDIX A: SUPEREFFICIENCY

Our definition of stochastic efficiency (Definition 3) should not
be confused with an alternative definition by Scaillet and Topaloglou
(2010, henceforth ST2010), which we label here as ‘stochastic super-
efficiency’ :

Definition A.I. (Stochastic superefficiency): Portfolio © € A is
second-order stochastically superefficient if it weakly second-order
stochastically dominates all feasible portfolios, or Tt > A VA € A.

Let S(A) :=={tr € A : v >p L VX € A} denote the set of all super-
efficient portfolios. In order theory, S(A) amounts to the set of great-
est elements, whereas E(A) is the set of maximal elements. Clearly,
stochastic superefficiency gives a sufficient condition for stochastic
efficiency; (t =p AVA € A) = (L #r TVAL € A), or S(A) C E(A).
The reverse is not true, as all superefficient portfolios must be
equivalent and comparable, whereas efficient portfolios may be non-
equivalent or incomparable.

The superefficient set is either equal to the efficient set (S(A) =
E(A)) or empty (S(A) = @). In our applications, the efficient set gen-
erally has non-equivalent and incomparable elements, and therefore
S(A) = @. For example, an efficient portfolio that maximizes expected
return generally takes a concentrated position in the individual asset
with the highest mean. By contrast, an efficient portfolio that mini-
mizes semi-variance generally takes a diversified position in multiple
risky assets or a position in a risk-free asset.

Stochastic super-efficiency (t >r A VA € A) occurs as the special
case of stochastic spanning if the portfolio set K is a singleton, or K =
{r}, T € A. In this case, our measure reduces to

n(F) = supsup G(x, k, A; F).

AEA xeX

(A1)

Furthermore, our test statistic (15) in this case equals the supereffi-
ciency test statistic of ST2010:

nr = ﬁsup sup G(x, T, A; Fr).

AEA xeX

(A.2)
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Our statistical theory thus also applies to the ST2010 test statistic.
Notably, using Proposition 4, we obtain the exact limit distribution of
the ST2010 test statistic as the law of

sup H(w, 1, A; Br).

(w,r)el'=

Moo = (A.3)

APPENDIX B: SUBSAMPLING ESTIMATION

This section analyzes the asymptotic properties of the subsampling
procedure that is described in Section 3. Our analysis uses M* € N,
M* < V(A) for the number of vertices of A that are also included in
K.

The following (non-trivial) properties of the limit distribution are
essential to motivate our use of subsampling, by allowing us to invoke
established results of Politis et al. (1999):

Proposition B.1. Under Assumption 1, (i) the distribution of 7., has
support [0, +oo[; (ii) the c.d.f. of n,, may have a jump discontinuity
with a size of at most (M* /M) at zero; (iii) the c.d.f. of 1 is continuous
on |0, +oo[.

To implement the subsampling procedure we begin by generating
(T — br + 1) maximally overlapping subsamples of br € N; consec-
utive observations, sp,.7, 1= (XS)ZJ:,”"A, t=1,---, T —byr+1, and
compute test Scores 1,7, = Jbr n(Fy,.r,r) for each subsample, where
F,,.r, denotes the empirical joint c.d.f. constructed from s,,,7;, t =
1,---,T — br + 1. The distribution of subsample test scores can be
described by the following c.d.f. and quantile function:

T—br+1

1
Srp, () 1 = TTT-H Z 1(pyi 95 (B.1)

t=1

qro;(1 =) =inf{y:Srp () = 1-a}. (B.2)

To establish the statistical properties of this subsampling procedure,
we assume that the subsample size by and significance level o are
selected appropriately:

Assumption B.1. The positive sequence (br), possibly dependent on
(X)L, obeys

=1

(B.3)

P(y < by <ur)— 1,

where (I7) and (ur) are deterministic sequences of natural numbers
suchthat 1 <ly <uy forall T, Iy — oo and ur/T — 0 as T — oo.
The significance level obeys o < 1 — (M*/M).

Since K is a proper subset of A, we can safely assume that M* <
V(A). The smaller the overlap between K and A, the higher the signif-
icance level that we can employ under Assumption 1.

The following proposition shows that our test based on the subsam-
ple critical value is asymptotically exact and consistent:

Proposition B.2. If Assumptions 1-2 hold, then we find the follow-
ing asymptotic size and power properties:

Jim P (nr > g7, (1 — ) [Hy) = o; (B.4)
;LT&P(UT > qrp, (1 —a) |H1) =1. (B.5)

APPENDIX C: COMPUTATIONAL STRATEGY

This section outlines two possible strategies for computing the test
statistic 1y using LP.
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If the enlargement (A — K) is small, then we may perform a quasi-
Monte Carlo simulation and solve an embedded LP problem for every
simulated portfolio A € (A — K). Specifically, we can use the follow-
ing reformulation of (15):

nr = _ﬁxe(i/rxlfm nr(A); (C.1)
nr(A) := sup in£ G(x, A, k; Fr). (C.2)
ek X€

The embedded statistic n7(1) can be computed by solving an LP
problem:

Proposition C.3. The embedded test statistic n7 () equals the opti-
mal value of the objective function of the following LP problem in
canonical form:

max v/Ty (C3)

T
sty +T7'Y 0, < FPXA ), s=1,-,T;

=1

—O0 — Xk < XA, s, 0 =1,

M
E ki =1;
i-1

05, >0, s,6=1,---,T;
K,‘ZO, l:L’M’

T

y free.

Although the problem has O(T? + M) variables and constraints, for
a specific portfolio A the computational burden is perfectly manage-
able with modern-day computer hardware and solver software for the
typical data dimensions in empirical asset pricing research. Neverthe-
less, we need to solve the LP problem for a sufficiently large number
of portfolios A € (A — K) and the computational burden will there-
fore explode if the enlargement (A — K) is large. For example, in our
application in Section 5, K is a 2-simplex and A is a 11-simplex; this
enlargement is too large to allow for an accurate and manageable dis-
crete approximation.

An alternative strategy seems more appropriate when the enlarge-
ment (A — K) is large but the return range (x — x) is limited. Using
(12) and (15), we find

e = VT sup (supEFT [ (X™2)] — supEy, [u (xTK)]) ()

uelly \reA keK

The term in parentheses is the difference between the solutions to
two standard convex optimization problems of maximizing a quasi-
concave objective function over a polyhedral feasible set. The analytic
complexity of computing 17 stems from the search over all admissible
utility functions ({4, ). However, the utility functions are univariate, nor-
malized, and have a bounded domain (X’). As a result, we can approx-
imate U, with arbitrary accuracy using a finite set of increasing and
concave piecewise-linear functions in the following way.

The term in parentheses is the difference between the solutions to
two standard convex optimization problems of maximizing a quasi-
concave objective function over a polyhedral feasible set. The analytic
complexity of computing 17 stems from the search over all admissible
utility functions ({4, ). However, the utility functions are univariate, nor-
malized, and have a bounded domain (X’). As a result, we can approx-
imate U, with arbitrary accuracy using a finite set of increasing and
concave piecewise-linear functions in the following way.

We partition X into N; equally spaced values as x =2z; < --- <
Zy, = X, where z, ;== x + A’,‘];Jl(f—g),n =1,---,N;; N, > 2. Instead
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of an equal spacing, the partition could also be based on percentiles
of the return distribution. Similarly, we partition the interval [0, 1], as

0< ﬁ <. < %fj < 1, N, > 2. Using this partition, let

nr = VT sup (supIEFT [u (XTA)] — supEp, [u (XTK)]> ;. (C5)

uelly \AeA kekK

N
U = {u eC:u@) = Z w,r(y; Zn) weW} ; (C.6)

n=1

1 N—2 M Y
W= 0, L1 : ,=1¢.(C7
{we{ ] Do wa=114C)

Every element u € U, consists of at most N, linear line segments
with knots at N, possible outcome levels. Clearly, U, C U, and ny
approximates 1 from below as we refine the partition (N, N, —
00). The appealing feature of nr is that we can enumerate all N; :=
ﬁ ]_[?Qfl(Nz + i — 1) elements of U, for a given partition, and, for
every u € U, , solve the two embedded maximization problems in (C.5)
using LP:

Proposition C.4. Let

N
CO,n = Z (Cl,m+l - Cl,m) Zms (CS)
Ny
Clp = Zwm; (C.9)
N =h=1, -,lew,,>0}U{N1}. (C.10)

For any given u € U, sup; ., Er, [(XT1)] is the optimal value of the
objective function of the following LP problem in canonical form:

T

max 7' ) "y, (C.11)
t=1

s.t.y, — cli,lXtT)L <cop t=1,---,T;ne N

M

i=1
Ai=>0,i=1,--- M,
y free, r=1,---,T.

The LP problem always has a feasible and finite solution and has
O(T + M) variables and constraints, making it small for typical data
dimensions. Our application in Section 5 is based on the entire available
history of monthly investment returns to a standard set of benchmark
assets(M = 11, T = 1,062), and uses N; = 10 and N, = 5. This gives
N; = & ]_[?=1 (4 + i) = 715 distinct utility functions and 2N; = 1, 430
small LP problems, which is perfectly manageable with modern-day
computer hardware and solver software.

The total run time of all computations for our application amounts
to several working days on a standard desktop PC with a 2.93 GHz
quad-core Intel 17 processor, 16GB of RAM and using MATLAB with
the external Gurobi Optimizer solver.

SUPPLEMENTARY MATERIALS

The supplement contains the proofs of Propositions 1-8.
A brief synopsis of the key results follows. Prop. 1 follows
directly from the relevant definitions. The proof of Prop. 2

Journal of Business & Economic Statistics, October 2019

employs a minimax theorem for the reordering of the optimiza-
tion operators. The proof of Prop. 3 establishes fidi convergence
and uniform tightness. The proof of Prop. 4 works through a
sequence of weak approximations of the test statistic which
are valid under the null hypothesis. The proof of Prop. B.1
employs Malliavin calculus along with bounds for the probabil-
ity assigned to a possible atom at zero. The proof of Prop. B.2
establishes the divergence of the test statistic under the alterna-
tive hypothesis. The proof of Prop. C.3 uses linearizations of
the empirical shortfall measures. Finally, the proof of Prop. C.4
uses the concavity of the employed piecewise linear functions.
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