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a b s t r a c t

This study aims to develop several optimization techniques for predicting advance rate of tunnel boring
machine (TBM) in different weathered zones of granite. For this purpose, extensive field and laboratory
studies have been conducted along the 12,649 m of the Pahang e Selangor raw water transfer tunnel in
Malaysia. Rock properties consisting of uniaxial compressive strength (UCS), Brazilian tensile strength
(BTS), rock mass rating (RMR), rock quality designation (RQD), quartz content (q) and weathered zone as
well as machine specifications including thrust force and revolution per minute (RPM) were measured to
establish comprehensive datasets for optimization. Accordingly, to estimate the advance rate of TBM, two
new hybrid optimization techniques, i.e. an artificial neural network (ANN) combined with both impe-
rialist competitive algorithm (ICA) and particle swarm optimization (PSO), were developed for me-
chanical tunneling in granitic rocks. Further, the new hybrid optimization techniques were compared and
the best one was chosen among them to be used for practice. To evaluate the accuracy of the proposed
models for both testing and training datasets, various statistical indices including coefficient of deter-
mination (R2), root mean square error (RMSE) and variance account for (VAF) were utilized herein. The
values of R2, RMSE, and VAF ranged in 0.939e0.961, 0.022e0.036, and 93.899e96.145, respectively, with
the PSO-ANN hybrid technique demonstrating the best performance. It is concluded that both the
optimization techniques, i.e. PSO-ANN and ICA-ANN, could be utilized for predicting the advance rate of
TBMs; however, the PSO-ANN technique is superior.
� 2019 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Assessment of tunnel boring machine (TBM) advancement is
one of the main issues for schedule planning and cost of the project
operating in rock mass. Due to this, estimation of TBM performance
with actual and corrected parameters would be useful to reduce the
cost and risk management of any tunneling projects. Over the last
decades, many researchers have developed empirical and theo-
retical models to predict TBM performance via the penetration rate,
advance rate and field penetration index (FPI) (Roxborough and
Phillips, 1975; Farmer and Glossop, 1980; Snowdon et al., 1982;
Sanio, 1985; Hughes, 1986; Rostami and Ozdemir, 1993; Yagiz,
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
y-nc-nd/4.0/).
2002, 2008; Gong and Zhao, 2009). At present, most of re-
searchers agree that TBM advancement could be affected by many
factors categorized in three main groups: properties of intact rock
and rock mass, and machine specifications.

Both simple and hybrid artificial intelligence (AI) techniques are
one of the approaches for solving various geotechnical problems
(Singh et al., 2004; Verma and Singh, 2011; Khandelwal and Jahed
Armaghani, 2016; Jahed Armaghani et al., 2017a; Koopialipoor
et al., 2018a). In order to estimate the TBM performance parame-
ters such as penetration rate, advance rate and FPI, many simple AI
techniques, e.g. artificial neural network (ANN), particle swarm
optimization (PSO), differential evolution (DE), gray wolf optimizer
(GWO), and imperialist competitive algorithm (ICA), as well as
several hybrid approaches like hybrid harmony search (HS-BFGS),
have been utilized (Alvarez Grima et al., 2000; Benardos and
Kaliampakos, 2004; Yagiz et al., 2009; Yagiz and Karahan, 2011;
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Ghasemi et al., 2014; Mahdevari et al., 2014; Jahed Armaghani et al.,
2017b).

A part of data of Athens metro tunnel in Greece were used by
Benardos and Kaliampakos (2004) to offer an ANN model for pre-
dicting the advance rate of TBMs. Using the data of awater tunnel in
USA, a support vector regression was modeled by Mahdevari et al.
(2014) for predicting the penetration rate. Yagiz and Karahan (2015)
developed some optimization techniques, i.e. differential evolu-
tions, HS-BFGS and GWO, to estimate TBM penetration, and they
concluded that the HS-BFGS method is more efficient than other
methods for predicting TBM penetration based on the properties of
intact rock and rock mass. Table 1 summarizes the main researches
conducted on prediction of TBM performance via several modeling
techniques, together with the inputs and outputs of the proposed
models in the literature.

As shown in Table 1, many researchers developed various
models to estimate the performance of TBM using optimization
techniques. However, their approaches have several constraints
including low learning rate and getting trapped in local minima
(Lee et al., 1991; Wang et al., 2004; Moayedi and Jahed Armaghani,
2018; Ghaleini et al., 2019). In order to overcome these obstacles,
various new optimization algorithms such as genetic algorithm
(GA), PSO and ICA are developed. In fact, these introduced algo-
rithms are used to adjust the weight and bias of the created net-
works. Further, combinations of optimization algorithms and ANN
have received great attention due to their capability to solve
problems encountered in engineering applications (Momeni et al.,
2015; Jahed Armaghani et al., 2016; Mohamad et al., 2017;
Khandelwal et al., 2018; Koopialipoor et al., 2018b, 2019a).

The aim of this study is to introduce the hybrid optimization
techniques including ICA-ANN and PSO-ANN to estimate the TBM
advancement using the data obtained from Pahang e Selangor row
water transfer (PSRWT) tunnel project in Malaysia. For this pur-
pose, simple ANN models are developed first, and then two hybrid
optimization techniques are introduced. Afterwards, the obtained
results from those approaches are compared to choose the best one
to estimate the TBM advancement.
2. Case study and data source

The PSRWT tunnel was constructed to transfer water between
two states in Malaysia (from Pahang to Selangor). Geological map
Table 1
Summary of the research on TBM performance prediction using various techniques.

Output Input data

Rock mass factor Rock material factor M

AR RQD, RMR, k, N, WTS, WZ overburden UCS e

PR DPW, a UCS, BI e

PR RMR, RQD, q, rock type UCS, BTS R
PR RQD, Js, Jc UCS e

PR PSI, a, DPW UCS, BTS e

PR, AR CFF UCS R
PR WZ, RMR, RQD UCS, BTS R
PR Js, RQD, RMR, Q, GSI, a UCS, BTS e

PR DPW, a BTS, BI, UCS T
PR DPW, a UCS, BI e

PR a, DPW UCS, PSI e

PR, AR CFF UCS R

Note: a is the angle between the plane of weakness and TBM-driven direction; Jc is the jo
rock brittleness; RQD denotes the rock quality designation; CFF represents the core fractu
cutter diameter; PSI denotes the peak slope index, also referred to as the rock brittlen
represents the specific energy; TF is the thrust force; CP is the cutterhead power; RPM is
machine; ANFIS denotes the adaptive neuro-fuzzy inference system; SVR denotes the sup
the geological strength index; RMR denotes the rock mass rating; WTS is the water table
BTS is the Brazilian tensile strength.
around the tunnel together with its route is displayed in Fig. 1. A
target of transferring 1.89 � 109 L/d of raw water from the Sem-
antan River was planned for this project. The PSRWT tunnel was
excavated to cross the Main Range granite of Peninsular Malaysia
with an overburden of 100e1400 m. Different weathered zones,
from fresh to slightlyemoderately weathered, were observed in the
PSRWT tunnel. It should be mentioned that in the areas of faults,
highly weathered zone was also observed with shear bands and
some other local discontinuities. Table 2 presents the rock type and
overburden at four different sections of PSRWT tunnel. In this
project, various construction sections including 3 TBMs and 4
conventional drill-and-blast were planned to be excavated. The
diameter of all the TBMs was 5.23 m, and their specifications are
given in Table 3.
3. Input selection criteria for modeling

In general, properties of intact rock and rock mass together with
machine specifications are the main factors for any type of me-
chanical excavation projects. As such, input selection is the most
important issue at the beginning of modeling. Many researches
have evaluated the input selection criteria for modeling (Mogana
et al., 1998; Sapigni et al., 2002; Mogana, 2007; Yagiz, 2008).
Yagiz (2002) stated that the intact rock properties including UCS
and brittleness are the main parameters that affect the TBM per-
formance, together with the distance between the plane of weak-
ness in the rock mass and the angle a. Benardos and Kaliampakos
(2004) indicated that TBM performance relies on RQD, UCS, RMR
and weathering degree of rock mass. Several researchers declared
that the TBM performance significantly depends on the UCS, BTS,
brittleness, RQD and RMR (Benardos and Kaliampakos, 2004;
Farrokh et al., 2012), and some other researchers illustrated that
the Brazilian tensile strength (BTS) and anisotropy have a great
effect on excavatability of rocks such as cutting and boring (Sanio,
1985). Moreover, many studies highlighted the effects of amount
of quartz content (q) on the TBM performance (Ozdemir et al., 1978;
Barton, 1999). This parameter has been used as a dependent vari-
able in several TBM performance models and classifications (Yavari
and Mahdavi, 2005; Eftekhari et al., 2010).

Based on a study conducted by Alvarez Grima et al. (2000), an
inverse relationship between UCS and TBM penetration rate was
put forward. Their findings suggested that the penetration rate
Technique Sources

achine factor

ANN Benardos and Kaliampakos (2004)
ANN Yagiz et al. (2009)

PM, CT, TF ANN Eftekhari et al. (2010)
ANN Gholami et al. (2012)
ANN Salimi and Esmaeili (2013)

PM, Dc, TF ANN, ANFIS Alvarez Grima et al. (2000)
PM, TF PSO-ANN, ICA-ANN Jahed Armaghani et al. (2017b)

ANFIS, SVR Salimi et al. (2016)
F, CT, CP, SE SVR Mahdevari et al. (2014)

DE, HS-BFGS, GWO Yagiz and Karahan (2015)
ELM Shao et al. (2013)

PM, Dc, TF PSO Yagiz and Karahan (2011)

int condition; DPW denotes the distance between the planes of weakness; BI is the
re frequency; PR denotes the penetration rate; AR denotes the advance rate; Dc is the
ess index; q is the quartz content; k is the permeability; Js is the joint spacing; SE
the revolution per minute; CT is the cutterhead torque; ELM is the extreme learning
port vector regression; N is the overload factor; Q is the quality system; GSI denotes
surface; WZ denotes the weathered zone; UCS is the uniaxial compressive strength;



Fig. 1. Geological map around the tunnel together with its route.
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Table 2
Four main zones of PSRWT tunnel project.

Zone Rock type/property Overburden

Zone 1: Chainage of 0.86e3.8 km Meta-sedimentary rocks Maximum cover ¼ 240 m
Zone 2: Chainage of 3.8e12.5 km Granite Maximum cover ¼ 483 m, and minimum cover ¼ 33 m
Zone 3: Chainage of 12.5e27 km Granite beneath Main Range Maximum cover ¼ 1390 m, and minimum cover ¼ 564 m at a stream crossing
Zone 4: Chainage of 27e44.6 km Eastern intensively weathered flank

of Main Range, including short
schist section at about 32e32.5 km

Maximum cover ¼ 485 m, and minimum cover ¼ 65 m

Table 3
Specifications of TBMs operated for PSRWT tunnel project.

Description Specification Description Specification

TBM diameter and type 5.2 m, open type TBM Number of backup trailer 20
Maximum stroke 1.8 m Length TBM 27 m
Power AC 11,000 V, 3 phase, 50 Hz Backup 178 m
Cutterhead output 2205 kW Total 205 m
Cutter disc diameter 19 inch (483 mm) Mass TBM 250 t
Number of cutters Single cutter 27 (19 inches in diameter, cutter) Backup 170 t

Center cutter 8 (17 inches in diameter, cutter) Total 420 t
Total 35 Cutters Transformer 3400 kVA (11,000e660 V)

Maximum load (cutter) 312 kN 1700 kVA (11,000e380 V)
Thrust 14,000 kN (¼3500 kN � 4) Stroke of jacks to tow backup trailer 2 m
Maximum cutter torque 3504 kN m Belt conveyor Width 914 mm
Cutterhead rotation speed 0e13.2 rpm Capacity 895 m3/h
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decreases with the decrease in RPM, but increases with UCS.
Farrokh et al. (2012) declared that rock properties including rock
type, RQD, UCS, machine specifications such as RPM and normal
force, and tunnel diameter are the main factors that influence the
TBM performance. Mahdevari et al. (2014) used the properties of
both intact rock and rock mass such as strength, brittleness and
feature of discontinuities as well as machine specifications
including cutterhead torque, thrust, cutterhead power and specific
energy to assess the TBM performance; however, the model has so
many inputs which are not easy to be collected in the early stage of
the project. Therefore, the models introduced so far have some
advantages and disadvantages in comparisonwith each other. But it
should be mentioned that every model should have reliable data-
base, relevant inputs and accurate outputs to solve practical engi-
neering problems.

In this study, in order to establish the datasets, the PSRWT
tunnel excavated in Malaysia was studied by performing the field
and laboratory works. As a result, a comprehensive database
comprising the properties of rocks and machine in various
weathered zones (i.e. fresh, slightly and moderately weathered)
was built. The database has 1286 datasets that are composed of
rock properties, machine specifications and TBM performance pa-
rameters. Except for the well-known rock properties including UCS,
RQD, q, BTS and RMR, some rock mass properties such as weath-
ering degree, joint conditions, and in situ strength and ground-
water conditions were examined in the field and then quantified.
Further, TBM parameters such as stroke speed, cutter load, thrust,
Table 4
Basic statistical description and the range of dataset used for modeling.

Data Abbreviation Unit

Rock quality designation RQD %
Uniaxial compressive strength UCS MPa
Rock mass rating RMR e

Brazilian tensile strength BTS MPa
Quartz content Q %
Weathered zone WZ e

Thrust force per cutter TF kN
Revolution per minute RPM rev/min
Advance rate AR m/h
RPM, penetration rate, and cutterhead torque were analyzed and
recorded in the database. In the laboratory, intact rock tests
including Schmidt hammer BTS, UCS, point load strength, and P-
wave velocity tests were conducted using 154 samples of block
gathered from the tunnel face in accordance with the International
Society for Rock Mechanics and Rock Engineering (ISRM) standards
(Ulusay and Hudson, 2007). Rock material properties (UCS and
BTS), rock mass properties (q, RQD, RMR and weathered zones of
the rock mass) and machine specifications (thrust and RPM) were
set as inputs to develop predictive techniques.

Various rock and machine properties could be used for
modeling, depending on the range of the dataset and the quantified
parameters. In this study, 8 input parameters including measured
properties of intact rock and rock mass together with machine
specifications were selected and utilized for developing hybrid
models, i.e. PSO-ANN and ICA-ANN herein.

It should be noted that this is one of the comprehensive data-
bases including TBM specifications, rock mass properties as well as
intact rock properties for the aim of study, as summarized in
Table 4.

4. Intelligent methods for predicting TBM advance rate

Many investigations indicate the effects of optimization algo-
rithms such as GA, ICA and PSO on enhancing the ANN perfor-
mance. They were utilized to adjust the bias and weight of ANN
model. In the present study, ICA and PSO were selected and used to
Data type Minimum Maximum Mean

Input 6.25 95 44.15
Input 40 185 107.45
Input 44 95 64.73
Input 4.69 15.7 8.43
Input 30.1 60.2 36.62
Input 1 3 1.7
Input 80.6 565.9 321.52
Input 4.08 12 8.84
Output 0.017 5 1.09
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optimize the bias and weight of ANN. In fact, the above-mentioned
optimization algorithms are considered to determine the global
minimum. Using PSO and ICA, it is expected that the performance
prediction of ANN may be increased significantly. In this section,
after explaining the structures of the developed models, namely
ANN, PSO and ICA, their modeling process for predicting the
advance rate of TBM will be given. In order to develop simple and
hybrid optimization models, Matlab version 7.14.0.739 was utilized
herein (Demuth et al., 2009).
Fig. 2. The average R2 values of training and testing data for predicting TBM advance
rate.
4.1. Artificial neural network

Fundamentally, an ANN refers to as a mathematical model
that simulates reasoning operation in the human brain. In fact,
the ANN simulates one or more output(s) in a way that iden-
tifies the complicated relations among variables. An ANN model
is basically designed based on three principal elements: transfer
function, connection pattern, and learning rule (Simpson, 1990).
These elements depending on the type of problem are employed
to train the network by modifying its weight (Hasanipanah
et al., 2018; Koopialipoor et al., 2019b). One of the most
frequently used feedforward neural networks is multilayer per-
ceptron (MLP) that comprises three different types of consecu-
tive layers of nodes. These layers include an input layer, one or
more mid-layers, and an output layer. Each of them contains a
number of nodes/neurons with specific mathematical relation-
ships. The function of input layer is to receive input signals from
the entrance of system and then transmit them to the suc-
ceeding layers. The neurons of middle (hidden) layer are able to
detect the underlying characteristics of the input patterns.
Subsequently, these characteristics allow the output layer to find
the output pattern using output neurons (Bounds et al., 1998;
Koopialipoor et al., 2018c).

Numerous variants of algorithms have been developed to train
the neural networks during an iterative process. The back-
propagation (BP) technique is considered as the most common
method among the MLP learning algorithms (Basheer and Hajmeer,
2000; Gordan et al., 2018). In this technique, the data of input fed
directly into the input layer are exchanged between the neurons of
different layers until an output is produced. The net weighted input
received by each neuron is calculated based on the following
formula:

X ¼
Xn
i¼1

XiWi � q (1)

where n represents the data number of inputs; Xi and Wi are the
input signal and weight for the ith node, respectively; and q rep-
resents the applied threshold to the neurons. Data of net input are
transmitted through a specific transfer function. Technically, this
process is referred to as training procedure. Subsequently, by
comparing the actual outputs with the predicted outputs, the
output error is computed (Dreyfus, 2005). Finally, the produced
error is propagated through the network in a reverse order for the
purpose of fine-tuning the individual weights. This stage is termed
as backward pass. The weight updating continues till the error
measure is reduced to a certain level that can be defined as the
mean square error (MSE) (Simpson, 1990). It should be noted that
an insufficient number of datasets could lead to the phenomenon of
overfitting during the training process of an ANN model (Dreyfus,
2005).

In order to develop the ANN model, available data utilized for
modeling should be normalized prior to its usage (Khamesi et al.,
2015). This is achieved by the following equation:
Xnorm ¼ ðX�XminÞ=ðXmax �XminÞ (2)

where Xnorm, Xmax and Xmin are the normalized, maximum and
minimumvalues of X, respectively. All established databases should
be divided into two categories, i.e. training and testing. This must
be done for developing and evaluating the created networks.
Swingler (1996) recommended a value of 20% of whole data for
testing purposes. Therefore, 80% and 20% of 1286 datasets were
used for training and testing datasets, respectively. In the next step
of ANN modeling, the LevenbergeMarquardt (LM) algorithm was
selected to create all ANN models. Based on the previous studies,
several researchers noted the proficiency of the LM algorithm
which can approximate problems of geotechnical engineering (e.g.
Ornek et al., 2012). In addition, as mentioned by many researchers
(e.g. Hornik et al., 1989), the created ANN with a hidden layer can
assess almost all problems. Therefore, in this study, all networks
were created using one hidden layer.

For designed number of hidden nodes (Nh), Sonmez and
Gokceoglu (2008) mentioned that it has a deep impact on the
performance prediction of an ANN model. Several investigators
introduced equations for determination ofNh (Hecht-Nielsen,1987;
Ripley, 1993; Masters, 1994; Paola, 1994; Wang, 1994; Kaastra and
Boyd, 1996; Kanellopoulas and Wilkinson, 1997). Among them,
input number of 2Ni þ 1 is considered as the upper limitation for
Nh, where Ni is the input number of the network. Accordingly, it
seems that Nh range of 1e15 can approximate the results of the
advance rate in this research considering the trial-and-error
method. Hence, 15 ANN models with Nh ranging from 1 to 15
were constructed and their performance predictions were checked
using the average values of coefficient of determination (R2), as
shown in Fig. 2. It is worthmentioning that the results presented in
Fig. 2 are the average values of 5 runs of training and testing of ANN
models for each Nh. It was found that an ANN predictivemodel with
Nh ¼ 12 obtains the best performance compared with the other
created models. The average R2 values of 0.745 and 0.678 are ach-
ieved for training and testing sections of model No.12, respectively.
Hence, architecture of 8� 12� 1 was chosen to predict the advance
rate by using ANN. More information about the features of the best
created model of ANN (among 5 runs) is given later.
4.2. Particle swarm optimization

Kennedy and Eberhart (1995) developed the PSO as one of the
optimization algorithms. This algorithm is based on the behavior of
some animals like fish and bird schooling in nature (Yang, 2010;
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Brownlee, 2011). The main purpose of PSO algorithm is to propa-
gate particles in the desired function space. In this way, these
particles are placed at the optimal points of this space. In this al-
gorithm, the particles have a tendency of randommovement. These
particles find the best global ðp*Þ and local ðx*i Þ positions and move
towards them. Thus, by comparing the locations, the best location is
determined for the particles. This is done at time t for a number of
particles. Finally, they find the best solution for the stopping
criterion. Fig. 3 shows a view of the particle motion in the PSO,
where x*i is the current best and p*zminff ðxiÞgis the global best for
particle i ði ¼ 1; 2; /; nÞ: It is important to mention that there are
several factors that influence the PSO, i.e. swarm size or number of
particle, velocity coefficients (C1 and C2), and inertia weight (w).
Further information related to the application of PSO algorithm to
real problem could be found in the literature (Jahed Armaghani
et al., 2017b).

The PSO is one of the common optimization techniques used for
estimating the unknowns for solving optimization and engineering
problems. Due to that, the combined PSO with ANN technique is
introduced to estimate the TBM advancement herein. There are
several effective parameters for evaluating the performance of PSO-
ANNmodel, such as number of particle or swarm size. A parametric
investigation was performed on swarm size using a trial-and-error
procedure. According to the obtained results, swarm size of 350
shows the lowestMSE (RMSE), hence this valuewas selected for the
hybrid system. The second step of modeling is related to the
identification of termination criterion, which is considered as the
maximum number of iteration (IMax) in this study. To determine
IMax, many values of swarm were considered to train the hybrid
PSO-ANN system, as displayed in Fig. 4. It should be noted that
evaluation of the systemwas based on the RMSE results. As shown
in Fig. 4, after 450 iterations, no significant changes were observed
for all the particles. Therefore, IMax of 450 was selected in the
modeling design of this study for prediction of TBM advance rate.

In the next step of modeling, proper values of C1 and C2 should
be designed. Various combinations of C1 and C2 such as C1 ¼ C2 ¼ 2,
and C1 ¼ 1.333 and C2 ¼ 2.667 were previously used by the re-
searchers. It seems that these values need to be determined using
another parametric study based on the RMSE results. After con-
ducting relevant analyses, it was found that C1 ¼ 1.333 and
C2 ¼ 2.667 indicate the lowest system error. Thus, the obtained
values of systemwere applied to the design of the hybrid PSO-ANN
model. Determining the inertiaweight is the next stage of PSO-ANN
modeling. Based on the literature review, 4 values of inertia weight,
i.e. 0.25, 0.5. 0.75 and 1, were selected to conduct another sensi-
tivity analysis. The obtained results showed that the best network
performance can be obtained using w ¼ 0.75, thus this value was
considered for the system modeling. Finally, 5 PSO-ANN models
were constructed and/or trained considering 5 different sets of
training and testing datasets and using the obtained values of PSO
parameters. The constructed models and relevant parameters
together with other modeling approaches are discussed later in this
study.
Fig. 3. A view of the particle motion in the algorithm of PSO.
4.3. Imperialist competitive algorithm

ICA used herein is another optimization algorithm introduced
by Atashpaz-Gargari and Lucas (2007). This algorithmworks based
on a global search population technique. In ICA, in the initial step,
there are several numbers of countries considered as random initial
populations. The system is started by creating a random number of
countries (Ncountry). In the second stage, a specified number of
countries with conditions like the lowest costs or lowest MSE or
RMSE are selected. They are deemed as the most powerful coun-
tries or the imperialists (Nimp) and the remaining countries in the
system are named as colonies (Ncol). The next stage is related to the
distribution of the colonies among empires. This distribution will
be performed according to the empires’ initial powers.

In ICA technique, the most powerful imperialists, i.e. individuals
with the least costs, have the highest number of colonies. Similar to
other optimization algorithms, there are three operators in ICA,
namely, assimilation, revolution and competition. An attraction
from the colonies to the imperialists happens through the assimi-
lation operator. Nevertheless, several sudden movements in the
situations of the countries occur during the revolution operator.
Therefore, there is a possibility for a colony during assimilation and
revolution operators to reach/control a more stable condition.
During competition, all imperialists try to adopt more colonies as
reality. Under these conditions, all empires are trying to run the
colonies of other empires. At the end of analysis, the weak empires
are gradually going to collapse and subsequently, the more
powerful ones are going to increase their power with colonies. The
mentioned process is continued until all weak empires collapse or
the system meets specific termination criteria (e.g. RMSE, MSE or
maximum number of decade). More information about ICA tech-
nique could be found in the literature (Atashpaz-Gargari et al.,
2008; Taghavifar et al., 2013; Hajihassani et al., 2015; Jahed
Armaghani et al., 2017b).

As noted previously, three factors, i.e. number of country
Ncountry, number of empire Nimp, and number of decade Ndecade, are
the most important parameters for ICA model. Various values of
Ncountry have been utilized to approximate problems of geotech-
nical engineering. Ahmadi et al. (2013), Marto el al. (2014) and
Hajihassani et al. (2015) proposed values of 40, 56 and 135 for
Ncountry, respectively. According to their findings, it is shown that a
parametric study is needed to find a suitable value of Ncountry.
Therefore, a series of ICA-ANN analyses was conducted using
various Ncountry values ranging from 25 to 500. In these models,
Ndecade ¼ 200 and Nimp ¼ 10 were utilized. The obtained results
showed that Ncountry ¼ 300 receives the best performance
compared with the other models. Therefore, in this stage, the op-
timum Ncountry value was selected as 300 for modeling of TBM
advance rate.

In the next stage of ICA-ANN, to find the optimum performance
of Nimp, there is a need to carry out another parametric study.
Therefore, several values of Nimp in the range of 5e65 were used to
distinguish the best performance of Nimp for modeling of TBM
advance rate. Based on the obtained findings,Nimp¼ 30 has the best
performance among the models based on the RMSE results.
Therefore, the optimum Nimp value was determined as 30. In the
next step, the optimal value of Ndecade should be determined for
designing a perfect ICA model through another parametric study.
For this purpose, Ndecade was set as 1000 in this research. Fig. 5
displays the network results of using different values of Ndecade

for estimating TBM advance rate. As can be seen, there are no sig-
nificant changes in the results after Ndecade ¼ 800. Hence, the op-
timum Ndecade value was selected as 800 for modeling of TBM
advance rate. In the final stage of modeling with the hybrid ICA-
ANN, considering the same 5 training and testing datasets in the



Fig. 4. Effect of the number of iteration on the hybrid PSO-ANN system for modeling of TBM advance rate.

Fig. 5. Effect of the number of decade on the modeling of TBM advance rate.

D.J. Armaghani et al. / Journal of Rock Mechanics and Geotechnical Engineering 11 (2019) 779e789 785
previous section, the suggested ANN architecture (8 � 12 � 1) and
the obtained ICA-ANN parameters, 5 ICA-ANNmodels were created
and the best performance among them was selected. Obtained
results and output are discussed in Section 5 by comparing the
models with each other.

5. Model evaluation

In this section, the above-mentioned models are compared with
each other to choose the most efficient one among them. At the last
stage of developing models including ANN and hybrid PSO-ANN
and ICA-ANN, 5 training sets for each model were run to predict
the advance rate of TBM. Examining the results obtained from these
models has been performed according to some performance
indices, based on the statistical parameters including RMSE, R2 and
variance account for (VAF) as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ðy� y0Þ2

r
(3)

R2 ¼ 1�
PN

i¼1ðy� y0Þ2PN
i¼1ðy� ~yÞ2

(4)



Table 5
The results of performance indices obtained by the ANN, PSO-ANN and ICA-ANN models.

Model Train/test R2 RMSE VAF Rating for R2 Rating for RMSE Rating for VAF Rank value

ANN Train 1 0.749 0.063 74.853 3 3 3 9
Train 2 0.751 0.062 75.092 4 4 4 12
Train 3 0.739 0.065 73.813 2 2 1 5
Train 4 0.754 0.061 75.445 5 5 5 15
Train 5 0.738 0.065 73.824 1 2 2 5
Test 1 0.694 0.072 69.416 2 3 2 7
Test 2 0.679 0.075 66.856 1 2 1 4
Test 3 0.713 0.068 71.295 5 5 5 15
Test 4 0.706 0.069 70.566 4 4 4 12
Test 5 0.701 0.069 70.151 3 4 3 10

PSO-ANN Train 1 0.958 0.028 95.832 4 3 4 11
Train 2 0.961 0.023 96.089 5 5 5 15
Train 3 0.952 0.030 95.207 2 2 2 6
Train 4 0.949 0.031 94.981 1 1 1 3
Train 5 0.957 0.027 95.779 3 4 3 10
Test 1 0.961 0.022 96.145 4 5 4 13
Test 2 0.957 0.027 95.655 2 3 2 7
Test 3 0.955 0.028 95.535 1 2 1 4
Test 4 0.963 0.022 96.349 5 5 5 15
Test 5 0.959 0.025 95.948 3 4 3 10

ICA-ANN Train 1 0.945 0.031 94.544 3 4 3 10
Train 2 0.941 0.033 94.078 2 3 2 7
Train 3 0.948 0.029 94.849 5 5 5 15
Train 4 0.939 0.036 93.899 1 2 1 4
Train 5 0.946 0.031 94.581 4 4 4 12
Test 1 0.944 0.032 94.385 3 3 3 9
Test 2 0.939 0.035 93.956 1 2 1 4
Test 3 0.951 0.026 95.181 4 5 4 13
Test 4 0.943 0.031 94.350 2 4 2 8
Test 5 0.954 0.026 95.456 5 5 5 15
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VAF ¼
�
1� varðy� y0Þ

varðyÞ
�
� 100% (5)

where y, y0 and ~y are the target, output and mean of the variable y,
respectively; and N is the total number of datasets. To obtain a
network model that is theoretically perfect, RMSE, R2 and VAF
should be 0, 1 and 100, respectively.

Table 5 presents the obtained results of R2, RMSE and VAF for the
mentioned 15 AI models. As can be seen in this table, the obtained
results of all the performance indices are very close to each other;
therefore, it seems not easy to decide the best AI model. In order to
solve the matter, a method of ranking proposed by Zorlu et al.
(2008) was utilized herein. Based on this technique, the perfor-
mance indices (R2, VAF or RMSE) of each model are obtained and
Table 6
Results of the total rank for all the predictive models.

Model Model No. Total rank

ANN 1 16
2 16
3 20
4 27
5 15

PSO-ANN 1 24
2 22
3 10
4 18
5 20

ICA-ANN 1 19
2 11
3 28
4 12
5 27
then grouped, as indicated in Table 5. After then, the best perfor-
mance index was allocated the highest value for determining the
best accurate model. In this section, R2 values of 0.958, 0.961, 0.952,
0.949 and 0.957 were obtained for training datasets 1e5 of PSO-
Fig. 6. The best results of ANN model for prediction of TBM advance rate.



Fig. 7. The best results of PSO-ANN model for prediction of TBM advance rate.

Fig. 8. The best results of ICA-ANN model for prediction of TBM advance rate.
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ANN models, and values of 4, 5, 2, 1 and 3 were allocated for their
ranks, respectively. Additionally, this process was repeated for
other indices and also for testing datasets. Afterwards, for each AI
model, the ratings of the performance indices for both training and
testing datasets were summed up (see the total rank in Table 6).
Based on the results of the total rank, ANN dataset No. 4, PSO-ANN
dataset No. 1 and ICA-ANN dataset No. 3 with the total rank values
of 27, 24 and 28, respectively, indicate the highest performance
capacity for the modeling techniques. The results revealed that by
developing hybrid models, i.e. PSO-ANN and ICA-ANN, the perfor-
mance capacity of the system can be increased based on R2, from
about 0.7 (for pre-developed ANN) to about 0.95 (for hybrid
models). Results of ANN (with R2, RMSE and VAF values of 0.754,
0.061 and 75.445 for training, and 0.706, 0.069 and 70.566 for
testing, respectively), PSO-ANN (with R2, RMSE and VAF values of
0.958, 0.028 and 95.832 for training, and 0.961, 0.022 and 96.145 for
testing, respectively) and ICA-ANN (with R2, RMSE and VAF values
of 0.948, 0.029 and 94.849 for training, and 0.951, 0.026 and 95.181
for testing, respectively) are obtained for the applied models of this
study.

The best relationships between the measured and predicted
TBM advance rate using the developed ANN as well as hybrid
predictive models are displayed in Figs. 6e8. The results revealed
that the presented hybrid models (PSO-ANN and ICA-ANN) are
better than the pre-developed ANN model. Nevertheless, when
both training and testing datasets are considered, R2 values of
0.958 and 0.961, and 0.948 and 0.951 for PSO-ANN and ICA-ANN
techniques, respectively, demonstrate that the PSO-ANN model
can propose slightly higher capacity of network for prediction of
TBM advance rate in comparison to the other developed hybrid
model.

6. Conclusions

In this study, three intelligent models, i.e. pre-developed ANN,
hybrid PSO-ANN and hybrid ICA-ANN, were utilized to estimate
the advance rate of TBMs. For this purpose, the PSRWT tunnel
project in Malaysia was studied not only in field but also in lab-
oratory by conducting rock testing program. Established datasets
including properties of intact rock and rock mass together with
machine parameters were utilized. In these datasets, 8 model
inputs were set, i.e. UCS and BTS of material property category,
RQD, q, RMR and weathered zone of rock mass property category,
and also thrust and RPM of machine characteristics category. After
conducting the modeling procedures of predictive models, the
best results of ANN, PSO-ANN and ICA-ANN models for prediction
of TBM advance rate were selected based on the obtained per-
formance indices. A comparison with the previously developed
intelligent models for TBM performance prediction showed that
the proposed PSO-ANN and ICA-ANN models having high degree
of accuracy and efficiency can be used as new techniques for
prediction of TBM performance. However, the hybrid PSO-ANN
model provides slightly higher performance capacity of esti-
mating the advance rate in comparison with the ICA-ANN model.
The R2 values of 0.958 and 0.961 and 0.948 and 0.951 and VAF
values of 95.832 and 96.145 and 94.849 and 95.181 were obtained
for training and testing datasets of PSO-ANN and ICA-ANN models,
respectively. It is concluded that the developed PSO-ANN model is
superior compared to the ICA-ANN; however, the results obtained
from the developed models are valid for similar rock types and the
same model inputs with presented ranges of dataset. It is
important to mention that the hybrid intelligent systems intro-
duced in this study could be considered as new models in the field
of TBM advance rate prediction.
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