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a b s t r a c t

Time discretization along with space discretization is important in the numerical simu-
lation of subsurface flow applications for long run. In this paper, we derive theoretical
convergence error estimates in discrete-time setting for transient problems with the
Dirichlet boundary condition. Enhanced Velocity Mixed FEM as domain decomposition
method is used in the space discretization and the backward Euler method and the
Crank–Nicolson method are considered in the discrete-time setting. Enhanced Velocity
scheme was used in the adaptive mesh refinement dealing with heterogeneous porous
media [1,2] for single phase flow and transport and demonstrated as mass conservative
and efficient method. Numerical tests validating the backward Euler theory are pre-
sented. These error estimates are useful in the determining of time step size and the
space discretization size.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The most subsurface flow equations are dynamic and time-dependent problems. In decision making process, numerical
simulation of flow plays vital role in many engineering applications such as oil and gas production evaluation, CO2
sequestration and contaminate transport problems. It is natural to deal with non-matching multiblock grids in the
reservoir simulation since subsurface parameters such as permeability or porosity can vary over subdomains substantially.
The accuracy of simulation can depend on discretization method of space and time variables. For space discretization,
we are concerned with a well-established domain decomposition method, i.e. Enhanced Velocity Mixed Finite Element
Method (EVMFEM), which provides similar accuracy as the Multiscale Mortar Mixed FEM [3]. EVMFEM is a mass
conservative and an efficient domain decomposition method. By using this method, several applications such as single,
two-phase flow, bio-remediation simulation and others were considered in [3,4]. Recently, an adaptive mesh refinement
strategy, which is based on Enhanced Velocity scheme, has been proposed in the numerical simulations of flow and
transport through heterogeneous porous media [1,2,5,6]. Such a novel approach demonstrates the efficiency and accuracy
of simulation in the heterogeneous porous media by allowing to capture important features of flow and transport
problems.

A little attention has been given to discrete time setting analysis. Theoretical convergence analysis of EVMFEM has been
shown in [4] for slightly compressible single phase flow for general continuous in time approximations. However, we could
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not find the numerical error tests that compare with analytical solution. A few authors have begun to implement time
domain decomposition method to be flexible on selection of time step size [7–9]. The key idea is to extend the EVMFEM
in space to time discretization by constructing a monolithic system without subdomain iteration.

In this paper, we are concerned with the solution of time dependent problem that is discretized by the backward Euler
method or the Crank–Nicolson method combined with EVMFEM, which uses the lowest order Raviart–Thomas spaces
on non-matching multiple subdomains. In particularly, we focus on deriving a priori error estimates for the transient
subsurface problems in discrete-time setting. This gives asymptotive behavior of the numerical error for a given mesh
size, time step size and others. This analysis allows us to conclude about the convergence and the guarantee of stability
of the numerical method. The reader is referred to [10,11] for more different time and space discretization in the transient
problems. We also provide numerical tests of the error estimate.

This paper is organized as follows. In the next section, we describe the slightly compressible flow model formulation
as well as give a strong and weak formulation using Enhanced Velocity space. Section 3 is devoted to the error analysis
with preliminary projections, definitions and discrete formulation. This analysis carried out for backward Euler scheme
and Crank–Nicolson schemes simultaneously in time discretization settings. Numerical results are presented in Section 4;
Section 5 concludes the paper.

2. Model formulation

We describe in this section the slightly compressible flow formulate with initial and boundary conditions. Next, the
transient problem is presented in the strong and weak formulations.

2.1. Slightly compressible flow formulation

Our focus is a single phase and slightly compressible fluid in heterogeneous porous media. The classical mass
conservation equation is defined by

∂

∂t
(φρ) + ∇ · (ρu) = q in Ω × J (1)

where Ω ∈ Rd(d = 1, 2 or 3), J = (0, T ], d is the number of spatial dimensions, q is the source/sink term, φ is the
porosity, ρ is the phase density, and u is the phase velocity. We remark that a Peaceman correction is used for modeling
source/sink terms [12].

In slightly compressible fluid, the phase density is given by ρ = ρref eCf (p−pref ), where, Cf is the fluid compressibility, and
ρref is the reference density at reference pressure pref . Using Taylor series expansion we obtain ρ ≈ ρref (1+ Cf (p− pref )).
Then it follows that

φ
∂ρ

∂t
= φ

∂ρ

∂p
∂p
∂t

= φC1
∂p
∂t

(2)

for invariant-in-time φ and for C1 = Cf ρref . The phase velocity u is defined by Darcy’s law as,

u = −
K
µ

(∇p − ρg) , (3)

where, µ is the viscosity, K is the permeability (absolute permeability) tensor, ρ is the density of the fluid and g is
the gravity vector. Although more general global boundary conditions can also be treated, we restrict ourselves to the
following,

p = g on ∂Ω × J . (4)

Additionally, the initial condition is given by,

p(x, 0) = p0(x). (5)

From now on our analysis focus on a transient (parabolic) problems which might be involved to various applications
problems.

2.2. Transient problem with EVMFEM

We start with the strong formulation of the transient (slightly compressible) flow problems governing single phase
flow model for pressure p and the velocity u, which is also case of slightly compressible single phase flow model:

u = −K∇p in Ω × J, (6)
∂p
∂t

+ ∇ · u = f in Ω × J, (7)

p = g on ∂Ω × J (8)

p = p0 at t = 0 (9)
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where Ω ⊂ Rd(d = 2 or 3) is multiblock domain, J = [0, T ] and K is a symmetric, uniformly positive definite tensor
representing the permeability divided by the viscosity with L∞(Ω) components, for some 0 < kmin < kmax < ∞

kminξ
T ξ ≤ ξ TK(x)ξ ≤ kmaxξ

T ξ ∀x ∈ Ω ∀ξ ∈ Rd, d = 1, 2, 3. (10)

Let Ω be a polygonal domain with boundary ∂Ω divided into a series of small subdomains. To formulate in mixed
variational form, Sobolev spaces are exploited and the following space is defined for flux in Rd as usual to be V =

H(div; Ω) = {v ∈
(
L2(Ω)

)d
: ∇ · v ∈ L2(Ω)} and for the pressure the space is W = L2(Ω). In analysis we have made

of use of standard notations, for more details see [3,6]. For subdomain ζ ⊂ Rd, we denote the L2(ζ ) inner product (or
duality pairing) and norm by (·, ·)S and ∥·∥ζ , respectively, for scalar and vector valued functions. Let Wm,p be the standard
Sobolev space of m-differentiable functions in Lp(ζ ). Let ∥·∥m,ζ be norm of Hm(ζ ) = Wm,2(ζ ) or Hm(ζ ), where ζ and m
are omitted in case of ζ = Ω and m = 0 respectively, in other cases they are specified. We denote (·, ·) for the L2(ζ ) or(
L2(ζ )

)d inner product, and ⟨·, ·⟩∂ζ for duality pairing on boundaries and interfaces, where the pairing may be between
two functions in L2 or between elements of H1/2 and H−1/2, in either order.

The Dirichlet boundary condition is considered for convenience. A weak solution of parabolic Eqs. (6)–(9) is a pair
{u, p} : J → V × W ,(

K−1u, v
)

= (p, ∇ · v) − ⟨g, v · ν⟩∂Ω ∀v ∈ V (11)(
∂p
∂t

, w

)
+ (∇ · u, w) = (f , w) ∀w ∈ W (12)

In addition, there is an initial condition

(p, w)

⏐⏐⏐⏐
t=0

= (p0, w) ∀w ∈ W (13)

Discrete formulation
We consider Ω =

(⋃Nd
i=1 Ω̄i

)o
, Γi,j = ∂Ωi

⋂
∂Ωj, Γ =

(⋃Nd
i,j=1 Γ̄i,j

)o
, Γi = Ωi

⋂
Γ = ∂Ωj \ ∂Ω . This implies that

the domain is divided into Nd subdomains, the interface between ith and jth subdomains(i ̸= j), the interior subdomain
interface for ith subdomain and union of all such interfaces, respectively.

Let Th,i be a conforming, quasi-uniform and rectangular partition of Ωi, 1 ≤ i ≤ Nd, with maximal element diameter
hi. We then set Th = ∪

n
i=1Th,i and denote h the maximal element diameter in Th; note that Th can be nonmatching as

neighboring meshes Th,i and Th,j need not match on Γi,j. We assume that all mesh families are shape-regular, which
ensures that the mesh elements are not highly elongated nor degenerate nearly to triangles.

We will consider in our work the Raviart–Thomas spaces of lowest order on rectangles for d = 2 and bricks for d = 3.
The RT0 spaces are defined for any element T ∈ Th by the following spaces: Vh(T ) = {v = (v1, v2) or v = (v1, v2, v3) : vl =

αl + βlxl : αl, βl ∈ R; l = 1, ..d} and Wh(T ) = {w = constant} In fact, a vector function in Vh can be determined uniquely
by its normal components v · ν at midpoints of edges (in 2D) or face (in 3D) of T . The degrees of freedom of v ∈ Vh(T )
were created by these normal components. The degree of freedom for a pressure function p ∈ Wh(T ) is at center of T and
piecewise constant inside of T . The pressure finite element approximation space on Ω is taken to be as

Wh(Ω) = {w ∈ L2(Ω) : w

⏐⏐⏐⏐
E

∈ Wh(T ), ∀T ∈ Th}

The next step is to construct a velocity finite element approximation space on Ω . Let us formulate RT0 space on each
subdomain Ωi for partition Th

Vh,i = {v ∈ H(div; Ωi) : v
⏐⏐⏐⏐
T

∈ Vh(T ), ∀T ∈ Th,i} i ∈ {1, . . . , n}

and then

Vh =

n⨁
i=1

Vh,i.

Although the normal components of vectors in Vh are continuous between elements within each subdomains, the reader
may see Vh is not a subspace of H(div; Ω), because the normal components of the velocity vector may not match on
subdomain interface Γ . To solve this issue, many researchers have proposed various methods such as Multiscale Mortar
Mixed FEM [13], Enhanced Velocity Mixed FEM [3], etc. In Mortar Multiscale Mixed FEM , the mortar finite element space
on coarse grid was introduced to connect subdomains together using Lagrange multipliers to enforce weak continuity for
flux across subdomains. On the other hand, the Enhanced Velocity Mixed FEM modifies the degree of freedom on Γ to
finer grids, which impose the strong flux continuity between subdomains. Let us define Th,i,j as the intersection of the
traces of Th,i and Th,j, and let T Γ

h =
⋃

1≤i≤j≤Nd
Th,i,j. We require that Th,i and Th,j need to align with the coordinate axes.

Fluxes are constructed to match on each element e ∈ T Γ
h . We consider any element T ∈ Th,i that shares at least one edge
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Fig. 2.1. Degrees of freedom for the Enhanced Velocity space.

with the interface Γ , i.e., T ∩ Γi,j ̸= ∅, where 1 ≤ i, j ≤ Nd and i ̸= j. Then newly defined interface grid introduces a
partition of the edge of T . This partition may be extended into the element T as shown in Fig. 2.1. This new partitioning
helps to construct fine-scale fluxes that is in H(div, Ω). So we represent a basis function vTk in the Vh(Tk) space (RT0) for
given Tk with the following way:

vTk · ν =

{
1, on ek
0, other edges

i.e. a normal component vTk · ν equal to one on ek and zero on all other edges(faces) of Tk. Let VΓ
h be span of all such basis

functions defined on all sub-elements induced the interface discretization Th,i,j. Thus, the enhanced velocity space V∗

h is
taken to be as

V∗

h =

n⨁
i=1

V0
h,i

⨁
VΓ
h ∩ H(div; Ω).

where V0
h,i = {v ∈ Vh,i : v ·ν = 0 on Γi} is the subspace of Vh,i. The finer grid flux allows to velocity approximation on the

interface and then form the H(div, Ω) conforming velocity space. Some difficulties arise, however, in analysis of method
and implementation of robust linear solver for such modification of RT0 velocity space at all elements, which are adjacent
to the interface Γ .

We formulate the variational problem in semi-discrete space as: Find {uh, ph} : J → V∗

h × Wh such that(
K−1uh, v

)
= (ph, ∇ · v) − ⟨g, v · ν⟩∂Ω ∀v ∈ V∗

h (14)(
∂ph
∂t

, w

)
+ (∇ · uh, w) = (f , w) ∀w ∈ Wh (15)

In addition, there is an initial condition

(ph, w)

⏐⏐⏐⏐
t=0

= (p0, w) ∀w ∈ Wh (16)

Subtracting Eqs. (11)–(12) from Eqs. (14)–(15) yields(
K−1(u − uh), v

)
− (p − ph, ∇ · v) = 0 ∀v ∈ V∗

h (17)(
∂

∂t
(p − ph), w

)
+ (∇ · (u − uh), w) = 0 ∀w ∈ Wh (18)

3. Error estimates

In this section, we start with preliminaries including projections operators and some notations. Using them we present
discrete formulations for analysis. Next, we derive auxiliary error estimates and a priori error estimate theorems.
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3.1. Projections

We shall write a projection and define auxiliary error of pressure and velocity as follows:

E I
p = p − p̂, EA

p = p̂ − ph, (19)

E I
u = u − Π∗u, EA

u = Π∗u − uh. (20)

Note that u − uh = E I
u + EA

u , p − ph = E I
p + EA

p . We used p̂ the L2-projection of p that is defined as(
p − p̂, w

)
=
(
E I
p, w

)
= 0 ∀w ∈ Wh. (21)

We know from original work [3] that the projection operator Π∗ was introduced and was utilized for a priori error
analysis of elliptic problems. For convenience of the reader, we repeat the relevant and brief definition. Thus, we denote by
Π∗ the projection operator that maps (H1(Ω))d onto V∗

h that defined locally for any element T ∈ Th and any q ∈ (H1(T ))d
such that

⟨Π∗q · ν, 1⟩e = ⟨q · ν, 1⟩e (22)

where e is either any edge in 2D (or face in 3D) of T not lying on Γ or an edge in 2D (or face in 3D) of a sub-element,
Tk. Such projection is developed prior to conducting error analysis for a priori estimate. As can be seen in Fig. 2.1, Tk has
a common edge with the interface grid T Γ . According to divergence theorem, we have(

∇ · (Π∗q − q), w
)

= 0 ∀w ∈ Wh (23)

For u ∈ H1(Ω)(
∇ ·

(
Π∗u − u

)
, w
)

=
(
∇ · E I

u, w
)

= 0 ∀w ∈ Wh (24)

Lemma.(
∂

∂t
E I
p, w

)
= 0 ∀w ∈ Wh (25)

Proof. 0 =
d
dt

(
E I
p, w

)
=
(

∂
∂t E

I
p, w

)
+����⁓ 0(

E I
p, wt

)
, by (21), since wt ∈ Wh. □

Useful inequalities of projections , see [3]:E I
p

 ≤ C∥p∥rh
r 0 ≤ r ≤ 1, (26)E I

u

 ≤ C∥u∥1h. (27)

Recall Young’s Inequality: for a, b ≥ 0

ab ≤
1
2ε

a2 +
ε

2
b2 (28)

The Inverse Inequality can be given as

∥∇ · uh∥ ≤ Ch−1
∥uh∥ (29)

In this inequality, we have been working under the assumption that Th,i quasi-uniform rectangular partition of Ωi.

3.2. Definitions

In this section, we make analysis of discrete in time error estimates. Firstly, some definitions are made: for ∆t =
T
N ,

N is a positive integer, tn = n∆t and for given θ ∈ [0, 1],

f n = f (x, tn), 0 ≤ n ≤ N, (30)

f n,θ =
1
2
(1 + θ )f n+1

+
1
2
(1 − θ )f n, 0 ≤ n ≤ N − 1. (31)

Let us make also the following definitions:

∥f ∥l∞(L2) = max
0≤n≤N

f nL2
∥f ∥l2(Lp) =

(
N−1∑
n=0

f n,θ2Lp∆t

) 1
2

.
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We note that the difference can be expressed tn,θ − tn =
1
2 (1 + θ )∆t . Next, using the Taylor series expansion about

t = tn,θ , for any sufficiently smooth function f (t), we obtain:

f n+1
= f

⏐⏐⏐⏐
t=tn,θ

+
1
2
(1 − θ )∆t

∂ f
∂t

⏐⏐⏐⏐
t=tn,θ

+
1
8
(1 − θ )2(∆t)2

∂2f
∂t2

⏐⏐⏐⏐
t=tn,θ

+ O(∆t3)

f n = f
⏐⏐⏐⏐
t=tn,θ

−
1
2
(1 + θ )∆t

∂ f
∂t

⏐⏐⏐⏐
t=tn,θ

+
1
8
(1 + θ )2(∆t)2

∂2f
∂t2

⏐⏐⏐⏐
t=tn,θ

+ O(∆t3)

After multiplying the first equation by 1
2 (1 + θ ) and the second equation by 1

2 (1 − θ ) and then summing them, we
obtain

f n,θ = f
⏐⏐⏐⏐
t=tn,θ

+
1
8
(∆t)2(1 + θ )(1 − θ )

∂2f
∂t2

⏐⏐⏐⏐
t=tn,θ

+ O(∆t3)

Note that if θ = 1 then f n,θ = f
⏐⏐⏐⏐
t=tn,θ

+O(∆t3). In addition, we can get second order approximation of ∆t , details in [14]

: p(x, tn,θ ) ≈ pn,θ and u(x, tn,θ ) ≈ un,θ . According to Taylor series expansion [14], we obtain

pn+1
− pn

∆t
= pt (x, tn,θ ) + ρp,n,θ , ∀x ∈ Ω, (32)

where ρp,n,θ depends on time-derivatives of p and ∆t and one of its property as followsρp,n,θ
 ≤

{
C1∆t∥ptt∥L∞((tn,tn+1),H1), if θ = 1,
C2∆t2∥pttt∥L∞((tn,tn+1),H1), if θ = 0,

(33)

so
ρp,n,θ

 = O(∆tθ + ∆t2
(
(1 − θ )3 + (1 + θ )3

)
).

3.3. Discrete formulation

We formulate variational form in semi-discrete space as: Find {uh, ph} : J → V∗

h × Wh such that(
∂ph
∂t

, w

)
+ (∇ · uh, w) = l1(w) ∀w ∈ Wh (34)(

K−1uh, v
)
− (ph, ∇ · v) = l2(v) ∀v ∈ V∗

h (35)

In addition, there is an initial condition

(ph, w)

⏐⏐⏐⏐
t=0

= (p0, w) ∀w ∈ Wh (36)

where l1 and l2 are bounded linear functionals, i.e.

l1(w) = (f , w) ,

l2(v) = −⟨g, v · ν⟩∂Ω .

We shall write ln,θ1 = (f n,θ , w) and ln,θ2 = −⟨gn,θ , v · ν⟩∂Ω .
With these definitions, Eqs. (34)–(35) become as: Find {un,θ

h , pn,θh } ∈ V∗

h × Wh, n = 1, 2, . . . ,N − 1, such that(
pn+1
h − pnh

∆t
, w

)
+
(
∇ · un,θ

h , w
)

= ln,θ1 (w) +
(
ρp,n,θ , w

)
∀w ∈ Wh (37)(

K−1un,θ
h , v

)
−
(
pn,θh , ∇ · v

)
= ln,θ2 (v) ∀v ∈ V∗

h (38)

Note that if θ = 1 then the time discretization is the backward Euler(Implicit) method, and if θ = 0 then the
Crank–Nicolson scheme.

We consider true solution u ∈ L2 (J,V) and ph ∈ H1 (J,W ) of Eqs. (11) and (12) at time t = tn,θ in the continuous
in time with spatially discrete scheme. We used Eq. (32) and additional remark related to the Taylor series expansion in
order to obtain the following equations with at least order of O(∆t):(

pn+1
− pn

∆t
, w

)
+
(
∇ · un,θ , w

)
=
(
f (tn,θ , ·), w

)
+
(
ρp,n,θ , w

)
∀w ∈ W (39)(

K−1un,θ , v
)
−
(
pn,θ , ∇ · v

)
= −⟨gn,θ , v · ν⟩∂Ω ∀v ∈ V (40)

We approximate the vector integrals type (v, q)T ,M by trapezoidal-midpoint quadrature rules and
(
K−1q, v

)
T by

trapezoidal quadrature rules respectively. In [15], the equivalence between finite volume methods and the mixed
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finite element method was established for special quadrature rule for K diagonal tensor and using the lowest-order
Raviart–Thomas spaces on rectangles. We emphasize that the EVMFEM with special quadrature and velocity elimination
in the discrete system can be reduced to well-known a cell-centered finite difference method.

For each time step we use the Newton method to solve the system, in case of the slightly compressible flow: the fluid
compressibility Cf term brings us to a nonlinear system. That is why consideration of it would be beneficial for nonlinear
problems in the future.

3.4. Analysis

We first derive the bounds of auxiliary error terms.

Theorem 1 (Auxiliary Error Estimate). For the velocity uh and pressure ph of the mixed method spaces V∗

h × Wh satisfying
equations (37)–(38), assume ∆t is sufficiently small and positive, K is uniformly positive definite and sufficient regularity of
true solution in Eqs. (6)–(9). Then, there exists a constant C such thatEA

u

2
l2(L2) +

EA
p

2
l∞(L2)

≤ C
(
h2

+ h + ∆t2r
)

(41)

where C = C(T ,K,u, p) and

r =

{
1, if θ = 1
2, if θ = 0

Proof. Subtracting Eqs. (39)–(40) from Eqs. (37)–(38) respectively yields(
pn+1

− pn+1
h −

(
pn − pnh

)
∆t

, w

)
+
(
∇ ·

(
un,θ

− un,θ
h

)
, w
)

=
(
ρp,n,θ , w

)
∀w ∈ Wh (42)

(
K−1 (un,θ

− un,θ
h

)
, v
)
−
(
pn,θ − pn,θh , ∇ · v

)
= 0 ∀v ∈ V∗

h. (43)

Take v = Π∗un,θ
− un,θ

h = EA n,θ
u and w = EA n,θ

p in (43) and (42) respectively.((
E I n+1
p + EA n+1

p

)
−
(
E I n
p + EA n

p

)
∆t

, EA n,θ
p

)
+
(
∇ ·

(
E I n,θ
u + EA n,θ

u
)
, EA n,θ

p

)
=
(
ρp,n,θ , EA n,θ

p

)(
K−1 (E I n,θ

u + EA n,θ
u

)
, EA n,θ

u
)
−
(
E I n,θ
p + EA n,θ

p , ∇ · EA n,θ
u

)
= 0

After adding them, we can rewrite as((
E I n+1
p + EA n+1

p

)
−
(
E I n
p + EA n

p

)
∆t

, EA n,θ
p

)
  

F1

+
(
∇ ·

(
E I n,θ
u + EA n,θ

u
)
, EA n,θ

p

)  
F2

+

+
(
K−1 (E I n,θ

u + EA n,θ
u

)
, EA n,θ

u
)  

F3

−
(
E I n,θ
p + EA n,θ

p , ∇ · EA n,θ
u

)  
F4

=
(
ρp,n,θ , EA n,θ

p

)

F1 =

(
E I n+1
p − E I n

p

∆t
, EA n,θ

p

)
+

(
EA n+1
p − EA n

p

∆t
, EA n,θ

p

)

=

(
EA n+1
p − EA n

p

∆t
, EA n,θ

p

)
In here we have made use of approximation

E I n+1
p − E I n

p

∆t
≈
(
E I n,θ
p

)
t
+ O(∆tθ + ∆t2((1 − θ )3 + (1 + θ )3))

and the property (25).

F2 − F4 =
(
∇ · E I n,θ

u , EA n,θ
p

)
+
(
∇ · EA n,θ

u , EA n,θ
p

)
−
(
E I n,θ
p , ∇ · EA n,θ

u
)
−
(
EA n,θ
p , ∇ · EA n,θ

u
)
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=
��������⁓0, by (24)(
∇ · E I n,θ

u , EA n,θ
p

)
−
(
E I n,θ
p , ∇ · EA n,θ

u
)

= −
(
E I n,θ
p , ∇ · EA n,θ

u
)

After replacing terms in F1, F2, F4 and extending terms in F3, we thus obtain the equation(
EA n+1
p − EA n

p

∆t
, EA n,θ

p

)
+
(
K−1EA n,θ

u , EA n,θ
u

)
= −

(
K−1E I n,θ

u , EA n,θ
u

)
+
(
E I n,θ
p , ∇ · EA n,θ

u
)
+
(
ρp,n,θ , EA n,θ

p

) (44)

We need a useful inequality for the next step, therefore, we consider the following term,(
EA n+1
p − EA n

p

∆t
, EA n,θ

p

)
=

(
EA n+1
p − EA n

p

∆t
,
1 + θ

2
EA n+1
p +

1 − θ

2
EA n
p

)
=

1 + θ

2∆t

(
EA n+1
p , EA n+1

p

)
−

1 + θ

2∆t

(
EA n
p , EA n+1

p

)
+

1 − θ

2∆t

(
EA n+1
p , EA n

p

)
−

1 − θ

2∆t

(
EA n
p , EA n

p

)
=

1 + θ

2∆t

EA n+1
p

2 −
2θ
2∆t

(
EA n
p , EA n+1

p

)
−

1 − θ

2∆t

EA n
p

2
=

1
2∆t

(EA n+1
p

2 −
EA n

p

2)+
θ

2∆t

(EA n+1
p

−
EA n

p

)2  
≥0

≥

≥
1

2∆t

(EA n+1
p

2 −
EA n

p

2)
It follows immediately the useful inequality(

EA n+1
p − EA n

p

∆t
, EA n,θ

p

)
≥

1
2∆t

(EA n+1
p

2 −
EA n

p

2) (45)

By using (45), multiply by 2∆t and sum from 0 to N − 1 in Eq. (44).

N−1∑
n=0

(EA n+1
p

2 −
EA n

p

2)+ 2
N−1∑
n=0

(
K−1EA n,θ

u , EA n,θ
u

)
∆t ≤

≤ −2
N−1∑
n=0

(
K−1E I n,θ

u , EA n,θ
u

)
∆t + 2

N−1∑
n=0

(
E I n,θ
p , ∇ · EA n,θ

u
)
∆t + 2

N−1∑
n=0

(
ρp,n,θ , EA n,θ

p

)
∆t⎛⎝EA N

p

2 −�
���⌃

0, by (36)EA 0
p

2⎞⎠ +

N−1∑
n=0

(
K−1EA n,θ

u , EA n,θ
u

)
∆t

≤ −2
N−1∑
n=0

(
K−1E I n,θ

u , EA n,θ
u

)
∆t  

T1

+ 2
N−1∑
n=0

(
ρp,n,θ , EA n,θ

p

)
∆t  

T2

+ 2
N−1∑
n=0

(
E I n,θ
p , ∇ · EA n,θ

u
)
∆t  

T3

T1 = −2
N−1∑
n=0

(
K−1E I n,θ

u , EA n,θ
u

)
∆t

≤
Holder ′s ineq.

2
N−1∑
n=0

K−1E I n,θ
u

EA n,θ
u

∆t

≤
Young ′s ineq.

1
εk2min

N−1∑
n=0

E I n,θ
u

2∆t + ε

N−1∑
n=0

EA n,θ
u

2∆t
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We use the Holder inequality and the Young inequality to get

T2 =2
N−1∑
n=0

(
ρp,n,θ , EA n,θ

p

)
∆t ≤ 2

N−1∑
n=0

ρp,n,θ
EA n,θ

p

∆t

≤

N−1∑
n=0

EA n
p

2∆t +

N−1∑
n=0

ρp,n,θ
2∆t.

We define Ω∗ to be the collection of the interface neighbor elements, i.e. the union of the all T ∈ Th such that T ∩Γ = ∅,
for details see [3]. We should note that(

E I
p, ∇ · EA

u

)
Ω

=
(
E I
p, ∇ · EA

u

)
Ω∗

+
�������⁓0(
E I
p, ∇ · EA

u

)
Ω\Ω∗

=
(
E I
p, ∇ · EA

u

)
Ω∗

(46)

since ∇ · EA
u

⏐⏐⏐⏐
Ω\Ω∗

∈ Wh and the property (21).

T3 = 2
N−1∑
n=0

(
E I n,θ
p , ∇ · EA n,θ

u
)
Ω

∆t

= 2
N−1∑
n=0

(
E I n,θ
p , ∇ · EA n,θ

u
)
Ω∗

∆t

≤ 2
N−1∑
n=0

E I n,θ
p


Ω∗

∇ · EA n,θ
u


Ω∗∆t ≤

≤ 2C
N−1∑
n=0

(
1 + θ

2

pn+1

1,Ω∗ +

1 − θ

2

pn1,Ω∗

)
h
EA n,θ

u


Ω
h−1∆t

≤ C
N−1∑
n=0

(
1 + θ

2

pn+1

1,Ω∗ +

1 − θ

2

pn1,Ω∗

)2

∆t + ε

N−1∑
n=0

EA n,θ
u

2∆t

Remark 1. We used the following properties:E I n,θ
p


Ω∗

=

1 + θ

2
E I n+1
p +

1 − θ

2
E I n
p


Ω∗

≤
1 + θ

2

E I n+1
p


Ω∗

+
1 − θ

2

E I n
p


Ω∗

≤
1 + θ

2

pn+1

1,Ω∗h +

1 − θ

2

pn1,Ω∗h

≤

(
1 + θ

2

pn+1

1,Ω∗ +

1 − θ

2

pn1,Ω∗

)
h

and ∇ · EA n,θ
u


Ω∗ ≤ C

EA n,θ
u


Ω∗h−1

≤ C
EA n,θ

u


Ω
h−1

Next, we know that(
K−1EA n,θ

u , EA n,θ
u

)
≥

1
kmax

EA n,θ
u

2
Therefore,

1
2

EA N
p

2 +

[
2

kmax
− 2ε

] N−1∑
n=0

EA n,θ
u

2∆t ≤

≤ C
N−1∑
n=0

E I n,θ
u

2∆t + C
N−1∑
n=0

ρp,n,θ
2∆t + C

N−1∑
n=0

EA n
p

2∆t+

+
1
2

EA N
p

2∆t + +C
N−1∑
n=0

(
1 + θ

2

pn+1

1,Ω∗ +

1 − θ

2

pn1,Ω∗

)2

∆t
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We can multiply by 2 and make ε small enough in order to have LHS with positive coefficients. Later take minimum
and divide both sides of inequality.

N−1∑
n=0

EA n,θ
u

2∆t +
EA N

p

2 ≤

≤ C∆t

[
N−1∑
n=0

E I n,θ
u

2 +

N−1∑
n=0

(
1 + θ

2

pn+1

1,Ω∗ +

1 − θ

2

pn1,Ω∗

)2
]

+ C
N−1∑
n=0

EA n
p

2∆t + C
N−1∑
n=0

ρp,n,θ
2∆t.

We thus apply the discrete Gronwall lemma, for sufficiently small ∆t , to obtain:
N−1∑
n=0

EA n,θ
u

2∆t +
EA N

p

2
≤ C∆t

[
N−1∑
n=0

E I n,θ
u

2 +

N−1∑
n=0

(
1 + θ

2

pn+1

1,Ω∗ +

1 − θ

2

pn1,Ω∗

)2
]

+ C
N−1∑
n=0

ρp,n,θ
2∆t

≤ C∆t

[
N−1∑
n=0

E I n,θ
u

2 + h
N−1∑
n=0

(
1 + θ

2

pn+1

1,∞,Ω∗ +

1 − θ

2

pn1,∞,Ω∗

)2
]

+ C
N−1∑
n=0

ρp,n,θ
2∆t

≤ Ch2
N−1∑
n=0

(
1 + θ

2

un+1

1 +

1 − θ

2

un

1

)2

∆t+

+ Ch
N−1∑
n=0

(
1 + θ

2

pn+1

1,∞,Ω∗ +

1 − θ

2

pn1,∞,Ω∗

)2

∆t + C
N−1∑
n=0

ρp,n,θ
2∆t

≤ C(T ,u, p,K)
(
h2

+ h + ∆t2r
)
.

where

r =

{
1, if θ = 1
2, if θ = 0

We used the fact that
∑N−1

n=0 ∆tgn ≤ CT
∑N−1

n=0 gn, |Ω∗
| ≤ Ch and property that is given in Eq. (33). This finishes the proof

of theorem. □

The auxiliary error estimates theorem allows us to conclude the following theorem:

Theorem 2 (Error Estimate). Assume the same conditions as in the previous theorem. Then,

∥p − ph∥2
l∞(L2) + ∥u − uh∥

2
l2(L2) ≤ C

(
h2

+ h + ∆t2r
)

(47)

where C = C(T ,K,u, p) and

r =

{
1, if θ = 1
2, if θ = 0

Proof. By applying triangle inequality, the Interpolation Error Inequalities and Theorem 1 results we obtain:

∥p − ph∥2
l∞(L2) + ∥u − uh∥

2
l2(L2) =

E I
p + EA

p

2
l∞(L2)

+
E I

u + EA
u

2
l2(L2) ≤

≤ C

⎛⎜⎜⎝E I
p

2
l∞(L2)

+
E I

u

2
l2(L2)  

Interpolation error

+
EA

p

2
l∞(L2)

+
EA

u

2
l2(L2)  

Auxiliary error

⎞⎟⎟⎠ ≤

≤ C(T , p,u,K)(h2
+ h) + O(∆t2r ) □

4. Numerical examples

In this section, we conduct numerical experiment to verify the numerical accuracy of the transient problem solution
using EVMFEM in space and the backward Euler in time. Based on our a priori error analysis estimates we assume a
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Fig. 4.1. Example of non-matching grids for subdomains.

Fig. 4.2. Convergence of the pressure and velocity error.

Table 1
Accuracy results of pressure and velocity for various levels.
Level h H ∆t errorp erroru
1 1/52 1/26 1/50 6.33e−04 1.51e−01
2 1/100 1/50 1/100 3.32e−04 1.02e−01
3 1/120 1/60 1/120 2.79e−04 9.15e−02
4 1/152 1/76 1/150 2.26e−04 7.97e−02

sufficiently smooth analytical solution. In numerical examples, we set Ω = (0, 1) × (0, 1), Ki,j = δi,j and the domain Ω

is divided into four subdomains Ωi; Ω1 and Ω4 have fine grids, Ω2 and Ω3 have coarse grids; such mesh discretization
is illustrated in Fig. 4.1.

4.1. Numerical example 1

We use the known solution

p(x, y, t) = tx(1 − x)y(1 − y)

and use it to compute the forcing f , the Dirichlet boundary data g , and the initial data p0. We carry out several levels
of uniform grid refinement in each subdomains. The time step and the element size are almost equal to each other, see
Table 1. The simulation time interval is (0; 0.1), i.e. T = 0.1, and we use the Backward Euler method to integrate with
regard to time with uniform time step. We are interested in finding the exact error using a given true solution, so the
pressure is true error and the velocity error is normalized error. On applying sufficient Newton iterations at each time
step provided the residual is within the machine-precision tolerance, we obtain the numerical solution for evaluating
of the error in specified norm. We compute errorp, corresponds to ∥p − ph∥l∞(L2), which is maximum of values among
time steps that resulting for given time step a discrete pressure L2-norm that associates only the function values at the
cell-centers in space. Also, erroru is defined as ∥u − uh∥l2(L2) where in space a discrete L2-norm that associates only the
normal vector components at the midpoint edges and then normalized by ∥u∥L2 and l2-norm in time. The convergence
rate is illustrated in Fig. 4.2.
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Table 2
Accuracy results of pressure and velocity for various levels.
Level h H ∆t errorp erroru
1 1/100 1/50 1/7 7.28e−01 8.64e−01
2 1/128 1/64 1/8 6.38e−01 7.71e−01
3 1/164 1/82 1/9 5.69e−01 6.87e−01
4 1/200 1/100 1/10 5.13e−01 6.24e−01

Fig. 4.3. Convergence of pressure and velocity error.

4.2. Numerical example 2

We use the known solution

p(x, y, t) = et sin(2πx) sin(2πy)

and use it to compute the forcing f , the Dirichlet boundary data g , and the initial data p0. The time step is equal to the
root of the coarse mesh size. Thus first order convergence is expected from theoretical result. Such mesh discretization is
depicted in Fig. 4.1. The simulation time interval is (0, 2), i.e. T = 2, and we use the Backward Euler method to integrate
with regard to time with uniform time step, see Table 2. The convergence rate is illustrated in Fig. 4.3.

5. Conclusion

This research has provided a priori error analysis for transient problems or slightly compressible flow problems through
the heterogeneous porous media using Enhanced Velocity scheme as the domain decomposition method in space that
coupled with backward Euler or Crank–Nicolson method in the time setting. In these discretization settings, we obtained
the first order convergence rate for the backward Euler method and the second order convergence rate for the Crank–
Nicolson method. Numerical tests are provided for validating the backward Euler theory. The results suggest that this
approaches could also be useful for the engineering subsurface applications including CO2 sequestration, etc. In our future
research, we plan to concentrate on parareal algorithms to achieve efficiency in time discretization that allow to run
simulation efficiently for the long time range.
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