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ABSTRACT Improving the life quality of people with severe motor paralysis has a significant impact on
restoring their functional independence to perform activities of daily living (ADL). Telepresence is a subfield
of the robotic-assisted route, where human plays the role of an operator, sending high-level instructions to an
assistive robot while receiving sensory feedback. However, for severelymotor-impaired people, conventional
interaction modalities may not be suitable due to their complete paralysis. Thus, designing alternative ways
of interaction such as Brain-Computer Interfaces (BCI) is essential for a telepresence capability. We propose
a novel framework that integrates a BCI system and a humanoid robot to develop a brain-controlled
telepresence system with multimodal control features. In particular, the low-level control is executed by
Programming by Demonstration (PbD) models, and the higher-level cognitive commands are produced by
a BCI system to perform vital ADLs. The presented system is based on real-time decoding of attention-
modulated neural responses elicited in the brain electroencephalographic signals and generating multiple
control commands. As a result, the system allows a user to interact with a humanoid robot while receiving
auditory and visual feedback from the robot’s sensors. We validated our system across ten subjects in a
realistic scenario. The experimental results show the feasibility of the approach in the design of a telepresence
robot with high BCI decoding performances.

INDEX TERMS Brain-Computer interfaces, telepresence, programming by demonstration, EEG, event-
related potentials, humanoid robots.

I. INTRODUCTION
The last decade has seen remarkable progress in Brain-
Computer Interface (BCI) research for decoding electroen-
cephalogram (EEG) signals that are generated in the brain
to command external devices [1]–[5]. In particular, experi-
mental demonstrations proved the potential of BCI technol-
ogy in scenarios such as controlling a computer cursor [6],
wheelchair [7], [8], robotic manipulators [9], [10] and/or
humanoid control [11], [12].

BCI technology holds promise to improve the quality
of life of people with restricted mobility due to paralysis.
Numerous studies have demonstrated successful outcomes in
controlling prosthetic limbs and manipulators by paralyzed
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people using BCI approaches [9], [13], [14]. Although in
some situations using robotic manipulators with BCIs could
be more convenient, the humanoids are logically more suit-
able for telepresence, since humans are psychologically more
inclined to interact with them [15].

Several BCI methods have been used in human telep-
resence studies [16]–[20]. These studies have shown that
the choice of an appropriate paradigm is an essential
step in designing the telepresence system. Sensorimotor
Rhythms (SMR) based BCIs are one of the best candidate
paradigms [12], [21]–[23] because these types of BCI do not
require an external visual or auditory stimulation to exert con-
trol signals, and therefore are considered to be more conve-
nient for the user. However, such systems are usually limited
to few task choices, require an exhaustive concentration of
users, and have extended training time, which, altogether,
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render their usage troublesome for disabled people. Further-
more, external stimuli driven BCI systems are regularly used
in telepresence studies. For instance, Steady-State Visual
Evoked Potential (SSVEP) BCIs could lead to a high infor-
mation transfer rate (ITR) and a remarkable performancewith
little or no training session [24]–[27]. However, these advan-
tages come at a price as the effective frequency range restricts
the number of choices in SSVEP-based interfaces. Moreover,
andmore seriously, the intensive eye strains caused by stimuli
flickering in SSVEP BCIs lead to eye/vision problems in
patients.

In this study, we design a BCI paradigm based on event-
related potentials (ERP) measured by Electroencephalog-
raphy (EEG) recordings in healthy subjects to control an
external humanoid robot for telepresence. ERPs are attention
modulated brain responses to external target visual/auditory
or haptic stimuli events and have different spatiotemporal
resolutions and features compared to background events in
EEGs. The difference lies in the P300 component, which
is a positive wave observed when a user attends to a rare
stimulus with a positive peak occurring 300-400 ms after
the stimulus event onset [28]–[30]. One of the central tasks
in the present study is to decode different ERP activity
patterns produced by a user on a single trial basis and
translate them into appropriate commands for a telepresence
robot.

Human action performance can be divided into two major
parts including decision and implementation [31]. A decision
is merely a conscious high-level choice of possible actions,
but the implementation of a task is a matter of unconscious-
ness. For instance, a human has a set of skills that are
learned previously and may be applied in appropriate con-
texts. Depending on the situation, relevant skill and action are
chosen to gain advantage from the current situation. Imple-
mentation of action is a complicated process that requires var-
ious control, trajectory generation, timing, and other systems
to be involved. Although ITR of BCI systems does not allow
such full supervision of the robot, low-level control may be
redundant in such a pipeline, since even human beings are
not decoding body motions consciously at mechanical and
dynamical levels [32]. Programming by demonstration is a
convenient way of teaching robots intuitively by imitation or
enforced demonstrations. The trainer needs to know neither
programming nor robotics, and the teaching process is similar
to instructing a child.

In this work, we propose a robust BCI–to–telepresence
system to interact with a humanoid robot that is expected to
improve the social aspects of people with severe paralysis.
Such health innovations, in turn, will help augment mobility
and interaction capability for people in need.

II. MATERIALS AND METHODS
A. STRUCTURE OF THE PROPOSED
BCI - TELEPRESENCE SYSTEM
The system architecture for the closed-loop real-time BCI
system integrated with the physical telepresence robot is

shown in Fig.1. Our system design is based on the client-
server model. The fundamental parts of the BCI to telepres-
ence system consists of data acquisition, signal processing,
exoskeleton control, stimulus presentation, and data stor-
age clients that interact with each other through a Buffer
Server. All these clients are controlled by the ‘‘Experiment
Control’’ client that contains the main graphical user inter-
face (GUI) and is responsible for scheduling processing and
determining all the sequences of operations during an exper-
imental session. In particular, we implemented an event-
driven programming paradigm where events generated by
each client determines the flow of the experimental paradigm
and inter-process communication. Each client in Fig.1 has
an event trigger and event listener functions. For instance,
a mouse click on GUI in BLOCK I to start EEG data acqui-
sition sends an event to the Buffer Server, and BLOCK
II’s event listener catches the event to launch the EEG data
acquisition. Then, the continuous data is sent to Buffer Server
for temporary storage (up to 1 minute, 50 events) and subse-
quently putting the data into permanent storage. An example
scenario for a BCI based robot control has the following
sequence of operations: 1) start the buffer server and initiate
all event listeners in each client in BLOCK I; 2) start acquir-
ing data from BLOCK II; 3) launch the stimulus presentation
software in BLOCK III; 4) start BCI control of the robot via
BLOCK IV, and BLOCK V, where signal processing block
processes the EEG data and send the results to BLOCK V.

B. PARTICIPANTS
Ten healthy adults (age range 22 to 35 years) with no history
of neurological, physical, or psychiatric illness participated
in this study. All the participants were naive, BCI users
who had not participated in any related experiments before.
Informed consent was received from all study participants.
The Nazarbayev University Institutional Research Ethics
Committee has approved the study.

C. ELECTROENCEPHALOGRAPHY
Scalp EEG was recorded using a 16-channel, active Ag/AgCl
electrodes (g.USBamp, g.LADYbird, Guger Technologies
OG, Schiedlberg, Austria) with a sampling frequency
of 256 Hz. The EEG electrodes were positioned according
to the International 10-20 system. The right earlobe of par-
ticipants was used for a ground electrode, whereas the FCz
location was used for a reference electrode (see Fig.2).

D. CALIBRATION SESSION
We implemented the Farwell & Donchin style speller [29]
using a 4 × 4 grid of alphanumeric characters, presented
through an LCD monitor as shown in Fig.3. Participants
were seated in a comfortable chair facing the LCD monitor
with a distance of about 60 cm in between. Each participant
performed a single session during which their EEG signals
were recorded. Every time the target symbol appears either
in a flashed row or column, participants were instructed to
attend mentally to the shown stimulus and count silently.
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FIGURE 1. An overview of the system architecture developed for the closed-loop real-time BCI system integrated with the telepresence robot. The
fundamental parts of the BCI to humanoid robot consists of data acquisition, signal processing, robot control, stimulus presentation, and data storage
clients that interact with each other through a Buffer Server, which is based on a client-server model.

FIGURE 2. The electrode montage used in the current study. All channels
are plotted with prototypical ERP waveforms.

The total number of sequences that a participant had to attend
was equal to five with an inter-sequence duration of two
seconds. Each sequence consisted of three complete row
and column stimulus repetitions. In total, five repetitions of
each target character were made where one repetition (or
trial) consisted of a complete set of 12 random flashes of
every row and column (six rows and six columns). The inter-
stimulus interval (ISI) was set to 150 ms; likewise, the stim-
ulus duration was 100 ms (i.e., the time length a row/col is
highlighted). The minimum time between the same target

FIGURE 3. A visual cue used to evoke P300 and provide direct control
commands to the NAO robot.

letter highlights, which is generally referred to as target-to-
target interval (TTI), was set to 600 ms. The stimulus onset
asynchrony (SOA) was set to 250 ms. The SOA is the time
period between the start of one stimulus event and the start of
the next event (See Fig. 4).

E. FEEDBACK SESSION
Following the calibration task, continuous EEG data were
segmented and processed using the steps described in
Section II-F and subsequently, a classifier model was opti-
mized on the acquired training data without taking off the
EEG cap. This step was fast, which took 70 seconds on aver-
age for all participants. Once the BCI classifier model was
obtained, subjects were instructed to control the humanoid
robot on their preferences. The subjects could use one out of
sixteen commands displayed on the stimulus grid in any order
to achieve a certain task in sequence. For instance, to greet a

VOLUME 7, 2019 111627



B. Abibullaev et al.: Design and Optimization of a BCI-Driven Telepresence Robot Through Programming by Demonstration

FIGURE 4. The parameters of the visual stimulus presentations. ISD:
Inter-sequence duration, ISI: Inter-stimulus interval, TTI: target-to-target
interval, SOA: Stimulus onset asynchrony.

FIGURE 5. A simplified view of the BCI-to-telepresence system structure.

person in a remote location, a user could exert of the following
commands
• locomotion i.e., move forward, turn right or left
• interaction i.e., say ‘‘Hello,’’ ‘‘How are you,’’ and
‘‘Shake hands,’’ and say ‘‘Good-Bye.’’

A simplified version of the system architecture is shown
in Fig.5 that depicts the user interaction with the telepres-
ence robot via BCI. The users of the BCI system could also
observe the environment in real-time using the sensors of
the humanoid robot and interact whenever any cue obtained
from other people in the interaction environment. Besides,
the participants could stop the session at any time either by
a mental selection of the ‘‘Pause’’ command or by inform-
ing the experimenter. The entire pipeline of the developed
BCI-based telepresence robot is depicted in Fig.1. The
humanoid robot was able to be trained for new tasks at any
stage of the session since robot control was an indepen-
dent buffer client and was not synchronized with the BCI
pipeline. There are three slots for PbD training tasks, which
can be updated at any time independently of the session
stage. NAO landmarks with naoqi built-in functions to detect,
recognize, and localize objects as task parameters (TPs) to
pass as the arguments to the Task-parameterized Gaussian
mixture model (TP-GMM) algorithm [33] were used. Repro-
duction trajectory is a seven-dimensional vector having time
point, three-position, and three orientation values for the end-
effector.

F. EEG SIGNAL PROCESSING
The following steps summarize the signal pre-processing
methods applied for a single trial detection ERPs.

• Segmentation: Continuous EEG data were segmented
into a target and non-target trials with 600 ms duration
after the stimulus event onset markers.

• Detrending: Arbitrary offsets in data were removed by
subtracting the total mean from each channel. This step
ensures removal of noise in the form of slow drifts which
might occur due to sweating and a poor sensor-to-head
contact [34].

• Bad trial removal: EEG data trials were artifact edited
using a statistical thresholding procedure to eliminate
bad trials associated with egregious movement artifacts.
The criteria to detect bad trials was based on calculating
the mean absolute value per trial and excluding trials
with values higher than 3-standard deviations from the
median trial.

• Bad channel removal: All channels were analyzed
across trials to identify electrodes that are corrupted with
excessive noise arising from improper connection to the
scalp of a participant. Channels with excessively high
power were determined by computing the total power
for each channel overall epochs as well as the mean and
the variance in channel power. Any channels with power
more than three standard deviations were removed and
replaced with common averaged reference channel.

• Spatial Filtering: A spatial whitening filter was applied
to minimize the noise due to source mixing and
volume conduction. The whitening filter uses linear re-
weighting of the electrodes andmaps raw electrode read-
ings to a new space where the sensors are uncorrelated
and have unit power.

• Spectral Filtering: EEG data has been band-pass fil-
tered between 0.5-12 Hz range using a Fourier filter.
First, the signal was Fourier transformed, and then a
weighting is applied to suppress and remove unwanted
frequencies outside the frequency of interest range [35].
The weighted signal was inverse Fourier transformed to
obtain the filtered signal.

While an abundant number of pre-processingmethods exist in
the literature for ERP detection, we note that the aforemen-
tioned steps were adopted based on the study in [36], [37]
which empirically verifies a near-optimal approach. All the
methods have been implemented in the MNE toolkit [38].

1) CLASSIFICATION
In [35], [39], we showed that Logistic Regression with
L2-Ridge (LRR) penalty [40] can generally outperform a
number of other classifiers including naive Bayes [41, p.99],
tree-augmented naive Bayes [42]), support vector machines
with radial basis function [43, p. 190-191], and logistic
regression with L1-least absolute shrinkage and selection
operator penalty [44]. We observed this relative superior-
ity of LRR on both extracted spatiospectral features and
temporal features of ERP waveforms [35], [39]. In what
follows, we describe the application of LRR on temporal
features, which, as observed in [39], generally lead to a higher
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TABLE 1. Number of training trials for each participants.

classification accuracy than spatiospectral features in decod-
ing ERP waveforms.

Let the set of pairs Strain = {(z1, y1), . . . , (zn, yn)} denote n
trials of EEG recordings for each subject where yi ∈ {0, 1} is
the realization of class variable Y representing target or non-
target, and zi ∈ R(pc)×1 is an instance of EEG observation
over c channels and p time points defined as

zi = [xTi1, x
T
i2, . . . , x

T
ic]

T , i = 1, . . . , n , (1)

with xij ∈ Rp×1, j = 1, . . . , c, and T denoting the transpose
operator. The index The index i in zi, xij, and yi are used to
represent the ith trial used to train the classifier. Once the
classifier is trained, it is applied to classify an observation
z = an observation z = [xT1 , x

T
2 , . . . , x

T
c ]
T , which is collected

similar to zi except that it is collected on one trial (therefore,
no index i). The number of training trials training trials for
each participant is shown in Table 1.
In logistic regression, it is assumed that for an observed z

with an unknown class variable Y , the class posteriors P(Y |z)
is represented as the logistic function; that is to say,

p(z;β0,β) , P(Y = 1|z) =
e
(
β0+zT β

)
1+ e(β0+zT β)

, (2)

where β = [β1, . . . , βpc]T ∈ R(pc)×1 is the vector of the
regression coefficients, β0 is an intercept, and P(Y = 0|z) =
1 − P(Y = 1|z). We full length of waveforms in each
trial, which contains p = b256Hz × 600msc = 153 time
points. Therefore, each observation z in the temporal analysis
contains p × c = 153 × 16 (channels) = 2448 features. The
regression coefficients in logistic estimated by maximizing
the log-likelihood function; in other words,

{β̂0, β̂} = argmax
{β0,β}

l(β0,β) , (3)

where

l(β0,β) =
n∑
i=1

[
yilog

(
p(zi;β0,β)

)
+ (1− yi)log

(
1− p(zi;β0,β)

)]
. (4)

The main difference between LRR and classical logis-
tic regression that makes LRR an attractive choice for
high-dimensional setting such as in BCI applications (e.g.,
in the present study pc is comparable to n), is the use of
the penalized log-likelihood function to estimate regression
coefficients as

{β̂0, β̂} = argmax
{β0,β}

lλ(β0,β) , l(β0,β)−
λ

2
‖β‖22, (5)

where ‖β‖2 =
(∑

β2j

)1/2
is the l2 norm of β. This

maximization is generally solved using stochastic gradient
descent (SGD) algorithm [45], [46]. Moreover, we estimate
the parameter λ, which regulates the amount of shrink-
age [40], using 5-fold cross-validation in a predetermined
range of λ. Once LRR is trained, it is used in real-time
sessions to infer user’s mental intent and to exert control
commands to NAO robot.

G. PROGRAMMING BY DEMONSTRATION
1) OBJECT LOCALIZATION
NAO Landmarks were used to determine the TPs by plac-
ing them in different locations on the worktop. They were
detected using naoqi package built-in function, which returns
various information about the landmark found. The required
output parameters for geometric localization of landmarks
in 3D robot body space include the position of the center,
angular and theoretical size of the landmark on the captured
image and head orientation (yaw, pitch roll) values. Distance
to the landmark and landmark position with respect to the
body of the humanoid is calculated as:

d =
Rt

tan(Ra)
, (6)

bP = b
cT

c
l T

lP , (7)

where d is the distance between landmark and camera, Rt and
Ra are theoretical and angular radii, respectively, bP and lP
are positions of a landmark with respect to the robot body and
2D camera space, respectively, and b

cT and c
l T are camera-

to-body and landmark-to-camera transformation matrices,
which were determined using built-in naoqi functions.

2) DATA ACQUISITION
Humanoid arms are set up to zero stiffness mode to allow
enforced guidance. The robot is placed in front of its
workspace where all landmarks are localized before the
demonstration phase. At the demonstration step, robot hands
are guided by the task demonstrator. With maximum possible
frequency (about 10 data points per second) end-effector 6D
position and orientation vectors are calculated by forward
kinematics routine and stored in the demonstration matrix.
For each task, several demonstrations (from 3 to 5) were
performed while task parameters were varying.

3) SIGNAL PROCESSING
All demonstrations have to be of the same length in
terms of data points for consistent matrix operations
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FIGURE 6. A time course evolution of grand averaged sixteen channel ERPs from Subject #10. Upper panel shows target ERPs along
with its topographic distributions across different time points. The lower left panel shows color-coded representation target ERPs
amplitude values. The lower right panel shows the colored representations of the non-target ERPs amplitude values. Event-related
brain responses patterns is pronounced clearly between 300 - 400 ms time interval.

FIGURE 7. (a) The Gaussian mixture model with three components encoding the four trajectory samples, and (b) reproduction
of the task (shown in a darker color), without considering the task parameters.

and manipulations. Furthermore, demonstration noises were
eliminated to reproduce smoother trajectories.
• Interpolation: A cubic Hermite spline algorithm [47]
is used in order to fit all demonstrations to a specific
size. The raw data is sliced where each piece of the data
is considered as a third-degree polynomial specified in

Hermit form. It predicts new data points to decrease or
increase the number of acquired samples and makes data
points equally spaced [47].

• Smoothing filter: To increase the signal-to-noise ratio
Savitzky—Golay filter was applied to each position and
orientation axis. Since data points are equally spaced,
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FIGURE 8. Assuming two task parameters or frame of references for the same data. Encoded GMM and observation of the data from the (a) first,
(b) second frame of reference, and (c) resulting GMMs and reproductions of the task.

least-squares convolution coefficients were found and
applied to demonstration pieces to evaluate new smooth
data trajectories [48].

4) TP-GMM
Task-parameterized Gaussian Mixture Model (TP-GMM) is
an extended version of the classic Gaussian mixture model
algorithm, which has been widely used to encode robot
motions in recent years [49], [50]. TP-GMM considers envi-
ronmental objects’ positions and orientations as task param-
eters (TP) [33], [51]. TP-GMM has better performance
than GMM for encoding and reproducing task modulated
trajectories, as illustrated in Figs. 7 and 8, where there
are four demonstration samples shown in different colors.
In Fig. 7-(a), TPs are not taken into account and the clas-
sic GMM is used to encode the whole trajectories, and
then in Fig. 7-(b), Gaussian mixture regression (GMR) is
used to generate a new trajectory, which is basically tak-
ing the average of all the trajectories. On the other hand,
in Fig. 8-(a) and (b), the trajectories are observed from
two different frames of references and a GMM model is fit
to each of them. In Fig. 8-(c), the two GMM models are
combined and GMR is used to generate a new trajectory.
For the reproductions shown in Fig. 8-(c), the TPs are the
same as the ones in the demonstration, however, in general,
they could be different. TPs can be expressed as coordinate
systems by {TPj : bj,Aj}Pj=1, where position vector bj is
the origin of the observer, Aj denotes the transformation
matrix, P is the maximum number of TPs, and j is the index
of the TP. In our case, TPs are considered as NAO round
landmarks, having identity matrix as for any Aj. All possible
task parameters are assumed to be known beforehand and
provided by the demonstrator. After TP-GMMmodel is fitted
to an arbitrary task, unnecessary TPs will be automatically
eliminated by the system. A set of M demonstrations, each
with Tm datapoints andD dimensions are coupled to construct
the trajectory {ξ} ∈ RD×N with N =

∑M
m=1 Tm. These

demonstrations are then observed from (or projected into)

FIGURE 9. Demonstration samples for one of the tasks, in the form of
trajectories of the left-hand end-effector, projected onto a 2D vertical
plane. The color-coded + signs (green, red, and blue) represent the TPs.

different frames of references to form P trajectory samples
X (j)

∈ RD×N . The TP-GMM model parameters include
K⋃
i=1

{
πi,

P⋃
j=1
{µ

(j)
i ,6

(j)
i }

}
, where πi denotes the mixing coeffi-

cients, K denotes the number of Gaussian components, and
µ
(j)
i and 6(j)

i are the center and covariance matrices of the
ith Gaussian state in frame j, respectively. To determine πi,
µ
(j)
i and 6(j)

i , Expectation-Maximization (EM) is used with
K -means clustering initialization and a stopping criterion
based on the maximization of log-likelihood.

The TP-GMM model is used for the reproduction of new
trajectories based on new task parameters (i.e., different posi-
tion and orientation of objects). A GMM model is retrieved
from the multiplication of all linearly transformed GMMs
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corresponding to different TPs:

N (µt,i,6t,i) ∝
P∏
j=1

N (At,jµ
(j)
i + bt,j,At,j6

(j)
i A
>

t,j) . (8)

GMR uses GMMmodel in order to generate a new trajectory
for new TPs. For each time step t , the data and GMM param-
eters are partitioned as:

ξ t =

[
ξ It
ξOt

]
, µi =

[
µI
i

µO
i

]
, 6i =

[
6I
i 6IO

i
6OI
i 6O

i

]
, (9)

where the superscripts I and O represent input (e.g. time val-
ues) and output (e.g. position in 3D) dimensions, respectively,
and

µI
i = E[ξ It ], (10)

6I
i = E

[
(ξ It − µi

I)(ξ It − µi
I)T
]
, (11)

6IO
i = E

[
(ξ It − µi

I)(ξOt − µi
O)T

]
, (12)

6OI
i = E

[
(ξOt − µi

O)(ξ It − µi
I)T
]
, (13)

where µi
O and 6O

i are defined by replacing ξ It with ξ
O
t in

definition of µi
I and 6I

i , respectively. The joint distribution
of P(ξOt , ξ

I
t ) ∼

∑K
i=1 πiN (µi,6i) is obtained from product

GMM found in (8), where K was empirically set to 5. For
each time step t , the distribution of the conditional random
vector ξOt | ξ

I
t is:

ξOt | ξ
I
t ∼

K∑
i=1

hi(ξ It )N (µ̂O
i (ξ

I
t ), 6̂

O
i ), (14)

with µ̂
O
i (ξ

I
t ) = µ

O
i +6

OI
i 6

I
i
−1

(ξ It − µ
I
i ), (15)

6̂
O
i = µ

O
i −6

OI
i 6

I
i
−1
6IO
i , (16)

hi(ξ It ) =
πiN (ξ It |µ

IO
i ,6

IO
i )

K∑
k=1

πkN (ξ It |µ
IO
k ,6

IO
k )

, (17)

where µ̂
O
i , 6̂

O
i , and hi are the estimated mean vector,

the covariance matrix, and the weight for the contribution
of the ith component of the resulting GMM, respectively.
Finally, regression trajectory ξ̂

O
t , which is used as position-

orientation trajectory for the end-effector is estimated using

ξ̂
O
t =

K∑
i=1

hi(ξ It )µ̂
O
i for a 6D space.

5) IDENTIFYING IRRELEVANT FRAMES OF REFERENCES
TP-GMM training stage initially considers all TPs as relevant
frames of reference. Using the first estimated model, the trial
trajectory will be generated on the fly, and the trajectory
and covariance matrices will be estimated for each frame of
reference using GMR. The normalized determinant of the
precision (inverse of covariance) matrix determines the frame
importance for each time step [52], [53]. Frame with the
importance of less than regulated threshold (0.1 in our case)

FIGURE 10. The plot on top shows examples of reproduction trajectories
of the left hand end-effector projected onto a 2D vertical plane. The plot
at the bottom shows the estimated TP importance as a function of time.
The green TP is the most important one at the beginning, the red TP
becomes important at the end, and the blue TP is not important at all.
Blue TP is removed from the model database and ignored during the
reproduction stage.

value is eliminated from the task dataset, and new TP-GMM
model is trained with updated TPs. In case that all frames
are important, the model will remain without updating. The
updated TP-GMM model will be used for generating trajec-
tories in new situations.

III. RESULTS
The humanoid robot was trained before the calibration stage
by the human experimenter. After calibration and BCI train-
ing stages, participants were instructed to control the NAO
robot voluntarily on a self-paced mode. They preferred to
walk around, greet people, and perform trained tasks on a
2D vertical plane. PbD pre-trained tasks were performed
smoothly on a 2D vertical plane with landmark objects per-
ceived as task-parameters. The total number of PbD tasks was
3 per experiment, where the humanoid left hand was trained
to follow through different landmarks. Each time there was
a landmark that was not passed through, it was successfully
identified as non-important and was removed from the task
database. Demonstration samples for one specific task are
illustrated in Fig. 9. Reproductions trials for the same task,
as well as frame importance plot, can be seen in Fig. 10.
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FIGURE 11. Confusion matrix of constructed subject-specific classifier models during ten-fold cross-validation. Here P and N
represent the target ERPs and non-target ERP examples, respectively.

The goal was to reach the left-bottom object at the begin-
ning, then finish trajectory at the right-bottom frame. The
top landmark was not reached at any training demo, so it
was considered as irrelevant TP and ignored by TP-GMM
algorithm. From the importance plot at the bottom of Fig. 10,
it is observed that the green and the red frames are essential at
the beginning and the end of the task, respectively. However,
the blue frame importance was always less than 0.1 value.

Prototypical ERPs obtained after signal processing steps
described in Section II-F and features used for training the
classifiers and for online BCI are shown in Fig.6. The fig-
ure shows a time course evolution of grand averaged sixteen
channel ERPs from Subject 10. Upper panel shows target
ERPs along with its topographic distributions across different
time points. The lower left panel shows color-coded represen-
tation target ERPs amplitude values. The lower right panel
shows the colored representations of the non-target ERPs
amplitude values. Event-related brain responses patterns are
pronounced clearly between 300 - 400 ms time interval. One
can observe the spatial distribution of target and non-target
ERPs across time with discriminative patterns, in particular
around 300 - 400 ms. Table 1 shows the total number of ERP
events acquired for each subject (including both target and
non-target) that were used for training subject-specific clas-
sifiers used for online BCI. Fig.11 shows the confusionmatrix
of all constructed classifiers. In the figure, P and N represent
the Target ERPs and Non-Target ERPs, respectively.

To test the significance of the BCI classification score,
we applied empirical permutation-based p-value test [54].
To generate the null distribution, we obtained the cross-
validated AUCs after randomizing the labels and repeating
the procedure many times. Here, the p-value measures the
probability that under the null hypothesis, an AUC score
would be equal or greater than the AUC observed using the
true labels. Therefore, if the p-value is small (we assume,
p < 0.05), the performance of the constructed classifier is
statistically significant, and the null hypothesis is rejected
(see Appendix). We used 5-folds, and 500 permutations

yielding a p-value = (C + 1)/(500 + 1), where C is the
number of permutations whose scores are greater than or
equal to the true score. The minimum achievable p-value
in this setting is pmin

def
= 1/(500 + 1) ≈ 0.002, which

corresponds to the case where the constructed classifier is
such that none of the constructed classifiers with shuffled
labels achieved a better score. Fig.12 shows the results of
the permutation test where solid vertical lines represent the
scores without label permutation (the AUC values are given
in the horizontal axis of each plot) and the distribution of
scores for each permutation is shown as a histogram (i.e.,
the null-distribution). The figure confirms that constructed
classifiers for all subjects achieved remarkable performances
as p-value = pmin for all subjects.
Fig.13 shows the real-time performance of the BCI system

in terms of the AUC score. It is remarkable to observe that the
BCI performance in terms of AUC is greater than 80% for all
participants. On average, all users were able to exert seven
control commands per minute to interact with and control
the telepresence robot. Although the primary goal of the
present work is not enhancing BCI decoders, it is interesting
to observe that the overall performance of the constructed
BCI system is close to the state-of-the-art reported in the BCI
literature [1], [35], [36], [55], [56].

IV. DISCUSSION
The fusion of BCIs and PbD approaches is crucial to enable
the telepresence robot to be more flexible and applicable to
a broader range of situations [57]. The PbD allows the robot
being pre-trained to perform essential activities of daily life,
while BCI enables high-level control of the robot. The end
user, potentially a paralyzed person, would issue commands
to the remote robot through a BCI system to choose tasks
to be performed and maneuver its movement. This scenario
can be described as a shared-control strategy [58], [59] where
the user makes a high-level decision using the BCI system,
while the low-level implementation complexities are reg-
ulated by PbD methodologies, satisfying the principles of
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FIGURE 12. Permutation test results for the classifier obtained using 5-fold cross-validation. The (blue) solid vertical lines represent the
classification scores without label permutation (the AUC values are given in the horizontal axis of each plot). The dashed lines represent
the chance level classification score and the score distribution of the permutation test s shown as a histogram. The p-values for the test
statistic (i.e., observed AUCs) were pmin ≈ 0.002 for all subjects.

FIGURE 13. Real-time performance of the BCI system in terms of AUC
score. The participants performed control of a humanoid robot in five
tasks. The control commands consisted of moving the robot forward,
backward, turning right and left and greeting ‘‘say Hello’’.

unconscious human learning and cognitive decision-making
model. Indeed, the robot learning part could be facilitated by
the caretakers of disabled individuals, who most likely would
not be experts in robotics/programming. The PbD enables
such people to train the robots, which would be then used
by disabled individuals, giving them more autonomy in their
ADL activities.

Handling BCI events from one task to another is not easy,
especially when the tasks constitute a wide range of activities.
Here, we define the event-driven programming approach with
event generating clients (see Fig. 1). In the context of a shared
control method, the server collects all the events to define the
current state of the environment, including the telepresence

robot’s state. The approach is asynchronous, and the arrival
of new events triggers the processing of new event-based
situation. As soon as a new command is provided, the shared
control transmits it to the client that executes the action via the
server. This work not only improves the pure BCI-actuated
Humanoid robot but also extends the shared-control strategy
discussed in [17]. The proposed PbD based BCI system can
alleviate the complexities of a telepresence robot that could
lead to the eventual confluence of humans in need and the
telepresence robots. We contend that the fusion of BCI and
PbD systems allows disabled populations to interact with an
environment more efficiently. Moreover, diverse tasks could
be pre-learned by the telepresence robot via observing some-
one performing the function of interest.

V. CONCLUSION
This paper was motivated by the difficulties that motor-
impaired people face in performing even quite simple tasks
and interacting with others. Improving their quality of life
using new technologies such as robotics and brain-computer
interface is the main outcome of the presented work. We
validated a novel application of programming by demonstra-
tion (PbD) learning techniques coupled with Brain-Computer
Interfaces (BCI) to control a remote humanoid robot
for telepresence. The proposed telepresence system aims to
support severely motor disabled people to interact with their
relatives or friends remotely and perform physical activities
of daily life. We have shown that the developed BCI sys-
tem achieves high accuracies in decoding participants mental
intent and, at the same time, the PbD approach enables the
robot to learn and perform complex grasping and moving
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tasks. Although the study has enrolled healthy individuals,
the system is applicable to target populations with motor
paralysis, which remains to be our next logical step. The key
contributions of the proposed work include constructing a
novel BCI–to– telepresence system to control a humanoid
robot that is expected to improve the social aspects of people
with severe paralysis. The focus of our study is warranted
because such health innovations lead to augmenting mobility
and interaction capability for people in need.

APPENDIX
Test 1 (Permutation test) Let D = {(Xi, yi)}ni=1 be the
original data set and let π be a permutation of n- elements.
One randomized version D′ of D is obtained by applying the
permutation π on the labels D′ = {(Xi, π(y)i)}ni=1. Compute
the p-value as in Definition 1. Definition 1 (Permutation-
based p-value) Let D̂ be a set of k randomized versions ofD′

of the original data D sampled from a given null distribution,
and AUC metric AUC(f ,D). The empirical p-value for the
classifier f is calculated as follows [54]:

p =

∣∣{D′ ∈ D̂ : AUC (f ,D′) ≥ AUC(f ,D)}∣∣+ 1

k + 1
(18)

The empirical p-value of Definition 1 measures how likely
the observed accuracy would be obtained by chance, only
because the classifier identified in the training phase a pattern
that happened to be random. Therefore, if the p-value is
smaller than a certain threshold, for example, α = 0.05 —
we can say the classifier is significant under the given null
hypothesis, that is, the null hypothesis is rejected.
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