Pre-print version

Trained by Demonstration Humanoid Robot
Controlled via a BCI system for Telepresence

Batyrkhan Saduanov / Tohid Alizadeh
Robotics and Mechatronics Department
SST, Nazarbayev University
Astana, Kazakhstan
{batyrkhan.saduanov, tohid.alizadeh} @nu.edu.kz

Abstract—Onerous life of paralyzed people is a substantial
problem of the world society and improving their life quality
would be a great achievement. This paper proposes a solution
in this regard based on telepresence, where a patient perceives
and interacts with a world through an embodiment of a robot
controlled by a Brain-Computer Interface (BCI) system. The
proposed approach brings together two leading techniques:
Programming by Demonstration and BCI. Several tasks could
be learned by the robot observing someone performing the
function. The end user would issue commands to the robot,
using a BCI system, concerning its movement and the tasks to be
performed. An experiment is designed and conducted, verifying
the applicability of the proposed approach.

I. INTRODUCTION

Human action mechanism consists of two parts: decision
making and performing. Decision to ride a bike comes first
and then, if person is trained enough, he/she performs a riding
process by applying low-level mechanical techniques such as
rotating pedals with legs, holding balance by body, control
helm using arms and etc. The key point is that people do
not decode each low-level mechanical motion consciously, and
such processes are realized autonomously [1]. Some research
has already addressed the issues of disabled people self-
assistance by directly controlling various kinds of robots with
BCI systems. Chae et al. demonstrate the use of humanoids in
telepresence and their ability to accomplish complex tasks [3].
Although for some scenarios using robotic manipulators would
be more convenient (specially where mo mobility is required),
humanoids are logically more suitable for telepresence, as
they are psychologically more accepted by humans [4] in an
interaction.

Asynchronous BCI system is one of the candidate BCI
systems where timing is controlled by an operator [3], [5],
[6] [2]. However, such systems are usually limited to 2-3
task choices, require intensive attention of the patients and
have long training time, making their usage troublesome for
paralyzed people. Synchronous BCI systems are also used in
telepresence frequently. BCI system based on Steady State
Visual Evoked Potentials (SSVEP) could have high accuracy
results operating with short or even no training session [7],
[8], [9]. SSVEP does not require a training algorithm for
each individual and is respectively fast. On the other hand,
effective frequency range restricts the number of choices in
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the interface, but the biggest disadvantage of SSVEP is the
intensive eye strains caused by flickering.

Electromyographic signals were also used in BCI telepres-
ence systems. Li et al. used muscular signals of two arms of
a subject, left and right arms to turn the robot left and right
respectively, and both arms to walk forward [5]. However, this
is not a feasible solution for disabled people, since they may
have problems with controlling their arm muscles. There were
several attempts of creating systems to solve the problem of
low information transfer speed of BCI systems. One solution is
the usage of hierarchical BCI (HBCI), where several subtasks
are combined into one task and called as one event next time
[8]. Another solution is the usage of an overtrained robot,
to perform complex tasks, but have very specific choices,
such as going and picking up a specific ball from an exact
place [10]. Both these approaches are perspectives for future
telepresence models, however now, they are problematic in
terms of general usage, since they are restricted in workspaces
or have very specific tasks. Chae et al. have proposed a
control system for humanoid locomotion with low - level
Cartesian event functions such as walking forward or turning
left/right [3]. Though, those functions are not low - level from
mechanics perspectives, since humanoid walking is a complex
dynamical problem, and the robot is already pre-trained to
walk in a factory. The aim of this work is to extend such
design style, by creating a framework where robots can be
easily trained and controlled by BCI to perform those skills.
Robot training is done using programming by demonstration
technique based on Gaussian Mixture Models and Regression.
Such framework satisfies the principle of unconscious human
learning and cognitive decision making model [1]. We present
an architecture based on synchronous P300 BCI system that is
more reliable/accurate than the other similar systems and has
respectively short training time which is crucial for paralyzed
people.

II. MATERIALS AND METHODS

A. System Architecture Overview

Overall system flow is managed by Fieldtrip Buffer which
regulates BCI and NAO robot control systems, handles and
sends events. Subject interacts with P300 graphical user inter-
face and gets feedback from NAO robot in the form of video
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Fig. 1: Overall system pipeline controlled by a Fieldtrip Buffer

and audio stream. Calibration is requested by BCI system at
the beginning, signal processing is performed on raw EEG, the
model is trained and stored in the buffer for current session.
At testing stage BCI model classifies processed EEG data
and the buffer handles events on a real-time basis. Events are
continuously listened by NAO control script implemented on
Python. The script avoids events stacking to improve real-time
response of the system, i.e. in case 2 events came one after
another, script will execute only first event and will ignore
any other events till NAO finishes current task. Moreover,
we do not need to train the NAO before BCI session, since
BCI and PbD models are independent of each other. NAO
can be retrained anytime, even while BCI session holds on.
In such case, at the next call of that event, NAO will perform
retrained new action. Training is done using Gaussian Mixture
Models technique from PbD field, where Gaussian Mixture
Regression for end-effector motion is retrieved from demon-
strations and performed by the robot. Finally, NAO robot
used for telepresence, since it has several advantages such
as: convenient psychological perception of humanoid, various
sensors on whole body, 2 cameras, 4 directional microphones
and WiFi.

B. BCI Experimental setup

1) Electroencephalography: Scalp EEG was recorded us-
ing a 16-channel, active Ag/AgCl electrodes (g.USBamp,
g.LADYbird, Guger Technologies OG, Schiedlberg, Austria)
with a sampling frequency = 256 Hz, resolution = 16-bit, dy-
namic range = £ 3:2768 mV, and bandwidth = 0-1000Hz. The
EEG electrodes were positioned according to the International
10-20 system and covered centroparietal lobe of the cortex.
The right earlobe of participant’s were used for a ground
electrode, whereas the FCz location were used for a reference
electrode.

2) Calibration session: We implemented a visual stimulus
presentation to control a humanoid robot using a 4 x 4 grid
of characters presented via an LCD monitor. The commands
correspond to different controls as depicted in Fig.2. Each
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Fig. 2: A visual cue used to evoke P300 and provide direct
control commands to the NAO robot

participant performed a single session during which their
EEG signals were measured. Total number of sequenced to
acquire training data was fixed at five. Each sequence consisted
of three complete row/col stimulus repetition. Inter stimulus
duration and the duration of a row/col intensification was equal
to 100 msec. The minimum time between the same target
letter highlights were set to 600 msec. Inter sequence duration
was set to 2 seconds while feedback duration was equal to 3
seconds.

3) Signal Processing and Classification: Continuous EEG
data were segmented into a target and non-target trials with
600 ms duration after the cue onset. Any arbitrary offsets in
data were removed by subtracting the total mean from each
channel. Further, data were artifact edited for bad trials and
channels, i.e., any trial or channel with values greater than
three standard deviations over the median trial and/or channel
were excluded. In the next step, a spatial whitening filter was
applied to minimize the source mixing and volume conduction
effects. Finally, EEG data were band-pass filtered between
0.5-12 Hz range by a Fourier filter. This was achieved by 1)
applying a weight in Fourier domain to suppress unwanted fre-
quencies outside the frequency of interest, and 2) performing
inverse Fourier transform to obtain filtered EEG data.

Given n-trials of EEG data by {(x;,y:)"_,},x € X", an
observation y € {£1}" and a prediction f(x;) denoted by a



triplet (x,y, f(x)) € X xY x Y. We use a supervised learning al-
gorithm to estimate f:X — {£1} or f: X — R which predicts
outputs as a target P300 or non-target P300 events for a new
observation x € X. Specifically, we adopt a /2-norm regularized
logistic regression to learn optimal f*:X — {£1} by mini-
mizing cross-entropy error E(f) =1In(1+exp(—y(f))) +Af
using a stochastic gradient descent technique. A tenfold cross
validation was performed for a model selection where optimal
hyper/parameters of classifier were estimated.

C. Programming by Demonstration

Robot programming by demonstration (PbD) provides a
user-friendly way of transferring skills from humans to the
robots, not requiring specific programming/robotics skills,
and this makes the robots more applicable in many areas,
such as homes, hospitals, or factories [12]. There are several
approaches available for PbD, and in this work the one based
on Gaussian mixture models (GMM) is employed [11]. GMM
parameters are initialized using K-means clustering. After the
parameters of the GMM are learned, it could be used to
reproduce a new trajectory, using the Gaussian mixture regres-
sion (GMR). Demonstration data are collected by performing
a task for several times. Each demonstration m € 1,....M
contains T datapoints of D dimension {¢} € RP*T. To deal
with demonstrations of different length, dynamic time warping
(DTW) is applied on the trajectory data to make them of
the same size. The GMM model parameters are defined by
{m;, u,',E,-}lK:l, where 7; are the priors/mixing coefficients,
p; and 3; are the center and covariance matrix of the i-th
Gaussian component. These GMM parameters are estimated
using the EM algorithm. In the reproduction phase, Gaussian
Mixture Regression (GMR) algorithm is used to estimate the
trajectory. GMR relies on the joint probability density function
D7 ,67)~ YK m A (i, 2;) of the dataset €. At each time
step ¢, the datapoint &; is decomposed into 5;/“ and &7 where
the superscripts .# and & denote dimensions spanned by the
input and output variables, respectively. Similarly, &, p; and
3 can be written as:
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P(&71€7) is calculated as the conditional distribution at each

reproduction step ¢ and the evaluated étﬁis used as the position
of the end-effector of the robot for that time step # [11].

III. RESULTS

1) Real-time operation: Following the calibration task, a
classifier model was optimized on the acquired training data
without taking off the EEG cap, which took less than a minute
duration. Once the optimal model was obtained, subjects were
instructed to voluntarily control the humanoid robot without
any time constraint predefined. NAO robot is placed at specific
location on the floor. The sequence of tasks should be as
follows: go forward, turn right, go forward, turn left, say
“hello” and perform “hello gesture”, turn left and go forward
several times until reaching a box with a trash on top of
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Fig. 3: Right hand “Handshake” trajectory demonstration data
(in green) and reproduction by GMR (in dark blue): a) x
- axis position b) y - axis position c) z - axis position d)
X -axis orientation e) y-axis orientation f) z-axis orientation.
The highlighted area shows the estimated covariance for the
trajectory.
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Fig. 4: Top view of the experimental setup of Nao robot and
sequence of his tasks to perform

it, say “who left trash here?” and perform “knock down a
trash” motion, turn left and go forward several times, say
”Goodbye” and perform “handshake motion”. The top view
of the experimental scenario is depicted in Fig. 4. As an
example of reproduced trajectories, the demonstrations and
reproduction data for the "Handshake” motion of the right arm
of the robot are illustrated in Fig. 3. The reproduced trajectory
is denoted by the dark solid line, and the highlighted area
depicts the estimated covariance.

2) BCI performance: Data from five subjects were analyzed
in total to perform specific sequence of tasks. Fig. 5 show an
example of a typical grand averaged P300-waveforms obtained
after pre-processing and data cleaning (first column) and the
topographic distribution of P300 potential across different
subjects both for target and non-target events. These inputs
were used to model a classifier to further control the humanoid
NAO robot. One can notice a highly variable topographic
distribution of P300 waveforms in Fig. 5 across subjects.
This kind of variation was also observed within trials, that
potentially affected the classifier performances. Figure 6 shows
variable results of a classier modeling step from tenfold cross-
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Fig. 5: Grand averaged P300 potentials and its topographic distributions across five subjects {S1... S5}. Top-row: target P300

and Bottom-row: non-Target P300 waveforms.

validation and the performance of a BCI step from a real-time
operation session.
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Fig. 6: Overall accuracy of BCI system from real-time ex-
periments in terms of area under the ROC curve for all five
subjects (S1, S2, S3, S4, S5) .

IV. CONCLUSIONS

This paper presents a framework for P300-BCI based telep-
resence robot to facilitate the life of severely disabled people
for being socially active thus improve their quality of life.
One particular feature of study is that the robot is trained
using a programming by demonstration approach which adds
extra flexibility to the conventional BCI-based telepresence
paradigms. The real-time accuracy of P300-BCI was above
78% on average. Improving the BCI accuracy including de-
vising motor imagery based approaches, and integrating more
advanced PbD approaches (such as task-parameterized GMM
and its various derivatives as [13] ) into the current system,
to increase the range and type of the tasks that could be done
by the robot, would be considered in the future work.
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