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Abstract— Molecular communication is an emerging communi-
cation technology for applications requiring nanoscale networks.
Transferring vital information about external and internal condi-
tions of the body through the nervous system is an important type
of intra-body molecular nanonetworks. Thus, investigating the
performance of such systems from the communication theoretic
perspective gives us insight on the limitation of neuro-spike
communication and ways to design artificial neural systems.
In this letter, we study the performance of the neuro-spike
communication under different stochastic impairments such as
axonal shot noise, synaptic noise, and random vesicle release.
The objective is to optimally detect the spikes at the receiving
neuron. Since several uncertainties occur under each hypothesis,
composite hypothesis is employed to find the optimum detection
policy. Furthermore, we obtain closed-form solutions for the
optimal detector and derive the binary decision error at the
postsynaptic terminal.

I. INTRODUCTION

The molecular communications has recently received a lot
of attention in the area of communication theory due to its
capability in nano-scale communications (see, e.g., [1]–[3]). A
widely used molecular communication in biological systems is
the nervous system which is responsible for the transmission
of vital information through the body and brain. Although
electric signals are used for carrying information in axons,
adjacent neurons are connected by molecular communications.
The latter is called neuro-spike communication and occurs at
the synaptic terminals. For example, a hybrid (molecular and
electromagnetic) communication paradigm is investigated in
[4] to characterize the signal propagation in neuronal systems.
To be able to have a long-range communication and to excite
the release of molecules at the synapses, a wide-band spike-
like waveform is used in the nervous system.

Most of the existing work on the encoding and decoding
of neural systems has focused on the problem of predicting
neural responses to estimate the stimuli, and thus, the rest of
the synaptic communication system is observed as a black-box
[5]. However, in this work, similar to [6], [7], we consider the
mathematical model of neuro-spike transmission through the
central synapses and investigate the detection of spikes at the
receiving neurons. The neuro-spike communication consists of
two main noise types, i.e., axonal noise and synaptic noise. In
this letter, in contrast to [6], [7], we take both of these noise
sources into account. As stated in [8], the axonal noise is
more prominent in thin axons of less than 1 mm of diameter.
Examples consist of C-fibres in sensory and pain transmission,
cerebellar parallel fibres, and cortical pyramidal cell axon
collaterals that form most of the local cortical connectivity [8].
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In this letter, we consider a point-to-point communication
between two neurons at the central synapses which consists of
several sources of randomness including axonal noise, random
vesicle release, random amplitude, and synaptic noise. We in-
vestigate the performance of the neuro-spike transmission and
detection under the mentioned communication channel. Due to
the refractory effect [5], the inter-spike interval cannot be less
than a certain time. Thus, the synaptic signal can be modeled
by a binary random process, in which zero and one mean the
events of no-spike and one-spike, respectively. The optimum
binary detector is found. Since several uncertainties occur
under each hypothesis, composite hypothesis is employed to
find the optimum spike detection. Furthermore, the closed-
form solution for the likelihood-ratio is derived. Moreover,
the probability of error at the receiving neuron is investigated.
In numerical results, we show that impairments like axonal
noise should be considered in the mathematical modeling of
neuro-spike communications.

II. CHANNEL MODEL OF A NEURO-SPIKE SYSTEM

As shown in Fig. 1, we consider a mathematical model for
the neuro-spike communication channel between the presy-
naptic neuron and postsynaptic neuron in central synapses,
e.g., the synapse in the hippocampus of cerebral cortex. The
spike train is generated from the stimuli through the process of
neural spike response (see, e.g., [9]). Thus, the generated spike
train in the axon can be represented as s(t) =

∑
k δ(t − tk),

where δ(·) is a Dirac delta function and tk is the time that a
spike occurs. A spike is generated by a rapid change on the
membrane potential and is also called action potential (AP).
The duration of AP is about 1 ms with roughly 100 mV electric
voltage fluctuation [5, p. 4], and thus, it can be well modeled
by a delta function.

The continuous time in s(t) can be split into time slots of
size τf . The time slots are chosen small enough such that
no more than one impulse occurs in a bin. Note that this
assumption is quite realistic since as a result of the relative
refractory effect (see, e.g., [5, p. 32]), short inter-spike inter-
vals become less likely than the one Poisson model predicts.
Thus, the interval between consecutive impulses usually gets
larger than τf , and the occurrence of two impulses in a time
slot of size τf becomes almost impossible. Each time slot is
labeled as X = 0 when no spike occurred and as X = 1 when
there is a spike in the bin. It is shown in Fig. 1 that the spike
train can be modeled by passing the binary input through the
binary encoding or on-off-keying modulation with delta-like
pulses.

The axonal noise is caused by the random opening of ion
channels, which is independent of spike train s(t). Similar to
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Fig. 1. The mathematical model for the neuro-spike communication channel.

[7], we model the axonal noise as a binary stochastic process.
That is, in time t, one erroneous spike due to the axonal noise
occurs with probability of pa, and with probability of 1− pa,
there is no erroneous spike. The spike train exposed to axonal
noise is called z(t). It is shown in Fig. 1 that the output of
axonal noise block at time t can be represented by a binary
random variable Z. The event Z = 1 means that there is one
spike in a time slot with probability of Pr{Z = 1} = Pr{X =
1} + pa Pr{X = 0} = 1 − p0 + pap0. where p0 = Pr{X =
0} is the prior probability of spike absence. In addition, the
event of no spike in z(t) in the range between t and t + τf
can be represented by Z = 0 and its probability is given by
Pr{Z = 0} = (1− pa) Pr{X = 0} = p0 − pap0.

When an AP reaches the synapse, its voltage transient
causes the release of neurotransmitters from at most one of
vesicles residing at the presynaptic side of a neuron [5]. The
vesicles inside the presynaptic terminal contain neurotransmit-
ters. The neurotransmitters are transmitted with probability
pr which is the vesicle release probability. This mechanism
is shown in Fig. 1 and is modeled by a binary Z channel
with probability of pr. Note that, in response to an AP, the
probability of vesicle release could be quite low. For example,
pr could be as low as 0.1 (see [10] for the exact amount of
pr in different types of synapses).

Besides axonal noise and vesicle release process, there is
another form of uncertainty in the mathematical model of
synaptic transmission. This uncertainty is due to the variable
postsynaptic response to vesicle release and is called variable
quantal amplitude denoted by q. The influx of neurotransmit-
ters from the presynaptic terminal is absorbed by receptors at
the postsynaptic terminal of the receiving neuron. This part
of the channel is diffusion-based molecular communication.
The diffused neurotransmitters bind to the receptors at the
postsynaptic terminal. By opening of the receptors, excitatory
postsynaptic current (EPSC) are driven into the receiving
neuron to produce an AP there. The induced potential across
the membrane of the receiving neuron is called excitatory post-
synaptic potential (EPSP). The EPSP amplitude distribution is
optimally fitted with a kth-order Gamma distribution [11]

fq(q) =
λk

(k − 1)!
qk−1 exp (−λ q) , (1)

where λ = µ/σ2, k = µ2/σ2, and µ and σ2 are the mean
and variance of the random amplitude q of the postsynaptic
response, respectively. Moreover, the EPSP waveform can be
represented by an α function as [6]

h(t) =
hmax t

τmax
exp (1− t/τmax) u(t), (2)

where hmax and τmax denote the peak point of the waveform
and its corresponding time-to-peak, respectively, and u(t) = 1
for t > 0 and 0 otherwise. Note that h(t) gets close to δ(t)
asymptotically as hmax → ∞ and τmax → 0. The value of
hmax and τmax depend on the type of receptors (e.g., AMPA,
NMDA, GABA, etc) [5].

Finally, in a time slot of length τf , i.e., t ∈ [t0, t0 + τf ),
where t0 is the start of a time slot in which at most one
spike may occur, the postsynaptic membrane voltage becomes
v(t) = W q h(t) + n(t), where n(t) is the synaptic back-
ground white noise with variance σ2

n which has a Gaussian
distribution due to central limit theorem [7]. In v(t), W is
a Bernoulli random variable representing the vesicle release
process, where the event W = 1 stands for the vesicle release
from the presynaptic terminal, and W = 0 otherwise.

III. ANALYSIS OF THE SIGNAL DETECTION

In this section, based on the observation of the received
postsynaptic signal v(t), we recover the binary information X
and calculate the probability of binary decision error.

It is well known that for minimizing the error of binary
transmission in additive white Gaussian noise (AWGN), the
matched filter can be used. Equivalently, the correlation be-
tween the received signal and the EPSP response h(t) can be
calculated to make the optimal binary decision.

Now, formulating the problem as a statistical hypothesis
test, we try to find the probability of error in recovering the
transmitted binary random variable X . We assume that the
received postsynaptic signal v(t) is observable in a single time
slot of length τf . The hypothesis test for each spike decision
can be represented as{

H0 : v(t) = n(t),
H1 : v(t) = Wq h(t) + n(t),

(3)

where H0 and H1 refer to the hypotheses of spike absence
(X = 0) and spike presence (X = 1), respectively. The choice
of τf should be long enough for one spike only. Because of
the randomness in n(t), W , and q, the outcomes of H0 and
H1 are stochastic processes.

By defining v = [v(t1), v(t2), . . . , v(tn)] in the interval of
length τf , the n-dimensional joint probability density function
(PDF) of v(t) conditioned on H0 and H1 are given by
fV {v |X = 0} and fV {v |X = 1}, respectively.

By applying the Bayes criterion [12], the likelihood ratio
for the hypothesis test in (3) is defined as

LX(v) =
fV {v |X = 1}
fV {v |X = 0}

. (4)

For the binary decision, the region H0 consists of values of
v for which LX(v) < L0, and H1 of values of v for which
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LX(v) > L0. The critical threshold L0 is given by L0 =
p0/(1− p0).

Since W in H1 is also a random variable, in the following,
we try to write the likelihood ratio in (4) in terms of

LW (v) =
fV {v |W = 1}
fV {v |W = 0}

. (5)

Using the law of total probability, we have

fV {v |X = 0} =fV {v |W = 0, X = 0}Pr{W = 0|X = 0}
+ fV {v |W = 1, X = 0}Pr{W = 1|X = 0}

= fV {v |W = 0}Pr{W = 0|X = 0}
+ fV {v |W = 1}Pr{W = 1|X = 0}. (6)

By using the marginal probability and chain rules, the condi-
tional probabilities in (6) can be represented in terms of axonal
noise probability pa as:

Pr{W = 0|X = 0} =Pr{W = 0, Z = 0|X = 0}
+ Pr{W = 0, Z = 1|X = 0}

= Pr{W = 0|Z = 0}Pr{Z = 0|X = 0}
+ Pr{W = 0|Z = 1}Pr{Z = 1|X = 0}

= (1− pa) + (1− pr)pa = 1− papr,
(7)

where in the second equality, we used the facts that
Pr{W = 0|X = 0, Z = 0} = Pr{W = 0|Z = 0} and
Pr{W = 0|X = 0, Z = 1} = Pr{W = 0|Z = 1}. Similarly,
we have Pr{W = 1|X = 0} = papr. Hence, the conditional
PDF in (6) can be rewritten as

fV {v |X=0} =fV {v |W =0}(1− papr) + fV {v |W =1} papr.
(8)

Similarly, it can be shown that

fV {v |X = 1} = (1− pr)fV {v |W = 0}+ prfV {v |W = 1}.
(9)

Combining (4), (5), (8), and (9), the likelihood ratio LX(v)
is expressed as

LX(v) =
pr LW (v) + 1− pr

1− papr + papr LW (v)
. (10)

Thus,the binary decision can be expressed in terms of LW (v)
as

LW (v)
H1

≷
H0

(1− papr)L0 − 1 + pr
pr − paprL0

, L1. (11)

Thus, as shown in Fig. 1, the decision rule in (11) can be used
as the optimum detector at the receiving neuron.

Since the amplitude q of the transmitted signal under
H1 is random, we employ the composite hypothesis testing
used in detection of signals with unknown parameters [12].
Conditioned on q, v has jointly Gaussian distribution under
both hypotheses. Thus, from (5) and by using the Cameron-
Martin formula for signal detection in continuous time [12],
when n → ∞, we have

LW (v|q) = exp

{
2 q

∫ τf
0

h(t)v(t)dt− q2Eh

N0

}
, (12)

where N0 is the power spectral density of n(t) and Eh =∫ τf
0

h2(t) dt is the energy of the EPSP response h(t). To
avoid inter-symbol interference, h(t) should be zero outside
the support interval of length τf , i.e., h(t) ∼= 0 for t > τf .
Thus, from (2), we have

Eh
∼=

h2
maxe

2

τ2max

∫ +∞

0

t2e
−2t
τmax dt =

e2

4
τmax h

2
max. (13)

Next, in the composite hypothesis testing, the conditional
likelihood ratio should be averaged over unknown parameter
as

LW (v) =

∫ ∞

0

fq(q) exp

{
2 q r(v)− q2Eh

N0

}
dq

=

∫ ∞

0

λkqk−1

(k − 1)!
e−λ qe

2 q r(v)−q2Eh
N0 dq, (14)

where r(v) =
∫ τf
0

h(t)v(t)dt is the correlation between the
received signal and EPSP waveform h(t).

From [13, Eq. 3.462], the closed-form solution for the
integral in (14) can be obtained as

LW (v) =λk

(
2Eh

N0

)−k/2

exp

[
(λN0 − 2 r(v))2

8N0Eh

]
×D−k

(
λN0 − 2 r(v)√

2N0Eh

)
(15)

where Dp(·) is the parabolic cylinder function of order p [13,
Eq. 9.240]. Hence, we obtained a closed-form solution for the
optimal detector.

The parameter k in the amplitude distribution of fq(q) in
(1) is used to model the variability of q [6]. For the case of
k = 1, the gamma distribution has the highest variability or
the worst-case scenario, and by using [13, Eq. 3.322], LW (v)
becomes

LW (v) =λ

√
N0π

Eh
e

(λN0−2 r(v))2

4N0Eh Q

(
λN0 − 2 r(v)

2
√
N0Eh

)
(16)

where Q(x) = 1/
√
2π

∫∞
x

exp(−u2/2)du is the q-function or
the tail probability of the standard normal distribution.

Next, we calculate the error in detecting the transmitted
spikes. From the law of total probability, the average proba-
bility of error incurred by the decision rule in (11) is given by

Pe =p0PF + (1− p0)PM . (17)

The probability PF of selecting hypothesis H1 when H0 is
correct is called false detection probability and is calculated as

PF = Pr{Y = 1|X = 0} = Pr{LW (v) > L1|X = 0} (18)

where Y = 1 denoted the event that spike is detected at the
optimal detector output. In addition, the probability PM of
selecting hypothesis H0 when H1 is correct is called miss-
detection probability and is calculated as

PM = Pr{Y = 0|X = 1} = Pr{LW (v) ≤ L1|X = 1} (19)

where Y = 0 denoted the event that spike is not detected at
the optimal detector output. Then, similar to the procedure to
obtain (8) and (9), PF and PM can be simplified to

PF =papr Pr{LW (v) > L1|W = 1}
+ (1− papr) Pr{LW (v) > L1|W = 0}, (20)
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Fig. 2. The average detection error probability Pe curves versus the signal-
to-noise ratio for different parameters of axonal noise, vesicle release, and
random amplitude q in a neuro-spike communication channel.

PM =(1− pr)Pr{LW (v) ≤ L1|W = 0}
+ pr Pr{LW (v) ≤ L1|W = 1}. (21)

The likelihood ratio LW (v) in (15) is a function of random
variable r(v), and thus, the CDF of LW (v) can be expressed
in terms of the CDF of r(v). If W = 0, we have r(v) =∫ τf
0

h(t)v(t)dt = nout, where nout is again a white Gaussian
noise. In addition, if W = 1, we have r(v) = Ehq + nout,
which is the summation of gamma and zero-mean Gaussian
random variables.

IV. NUMERICAL RESULTS

In this section, the numerical results are performed to
illustrate the performances of the detection scheme presented
in the previous section. The elements of channel amplitude are
generated by the Gamma distribution model with the mean
µ = 1 and k = 1, 4. Similar to [6], we assume the EPSP
waveform with hmax = 2 mV and τmax = 1 msec. The
refractory period can be chosen as a Gaussian random variable
with mean 5 msec [5]. Thus, we choose τf = 5 msec.

In Fig. 2, the performance of binary neuro-spike commu-
nication system under different stochastic impairments are
examined. The curves are obtained by averaging the false
alarm and miss-detection error events over 100000 transmitted
spikes. The average detection error curves versus SNR, i.e.,
Eh/N0, at the postsynaptic neuron are shown for different
values of axonal shot noise parameter pa, synaptic release
probability pr, and the variable quantal amplitude with Gamma
distribution parameter k. It is shown that at Pe = 0.2, around
6 dB more SNR required when there is axonal noise with
pa = 0.1, compared to a system with no axonal noise, in
a channel with pr = 0.7 and k = 4. It is also shown that at
high SNR conditions, there is an error-floor caused by random
vesicle release and axonal shot noise. In addition, one can
observe that by increasing the parameter k, the performance is
improved due to the reduction in channel amplitude variability.
In Fig. 3, the average probability of error is shown versus
the axonal noise parameter pa for different vesicle release
probabilities pr = 0.3, 0.5, 0.7, 0.9, when SNR = 10 dB and
k = 1. In all cases, the performance is degraded considerably
for pa > 0.1.
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Fig. 3. The average detection error probability Pe curves versus the axonal
noise parameter pa for different vesicle release probabilities pr in a channel
with SNR = 10 dB and k = 1.

V. CONCLUSION

In this paper, we have studied the performance of the neuro-
spike transmission and detection under the communication
channel consisting of several sources of randomness including
axonal noise, random vesicle release, random amplitude, and
synaptic noise. The optimum binary detector was found.
Furthermore, the probability of error at the receiving neuron
was derived. It was also shown that impairments like axonal
noise which is prominent in thin axons should be considered
in the mathematical modeling of neuro-spike communications.
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