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The growth of large scale structure is a battle between gravitational attraction and cosmic accel-
eration. We investigate the future behavior of cosmic growth under both general relativity (GR)
and modified gravity during prolonged acceleration, deriving analytic asymptotic behaviors and
showing that gravity generally loses and growth ends. We also note the “why now” problem is
equally striking when viewed in terms of the shut down of growth. For many models inside GR the
gravitational growth index γ also shows today as a unique time between constant behavior in the
past and a higher asymptotic value in the future. Interestingly, while f(R) models depart in this
respect dramatically from GR today and in the recent past, their growth indices are identical in the
asymptotic future and past.

I. INTRODUCTION

The growth of cosmic structure is what allows us to
exist, taking initial seeds of density inhomogeneity from
quantum fluctuations in inflation and under gravitational
instability forming the massive structures of galaxies and
clusters of galaxies. Yet we also live in a presently acceler-
ating universe, and this is already shutting down cosmic
growth.
We explore the future consequences of the battle be-

tween gravitational attraction (possibly even stronger
than in GR) and the accelerating expansion, whether due
to dark energy (with Newton’s constant unaffected) or
modified gravity. Our focus is on the future and we de-
rive the conditions for the end of cosmic growth, in terms
of the growth rate and the gravitational growth index γ.
While [1] explored possible values of γ today and in the
recent past as well as their model and scale dependence,
[2] addressed also the future asymptotic behaviour γ∞
however only inside GR. Early papers such as [3–9] fo-
cused mostly near the present, and did not use γ as a
test of growth separate from the expansion effects until
[10].
A linear density perturbation δ ≡ δρ/ρ evolves with

scale factor a according to its growth factor D(a) as
δ(a)/δ(ai) = D(a)/D(ai). The cosmic growth rate
f ≡ d lnD/d lna is especially useful to characterize its
slow down, and for a given Fourier mode f evolves in
subhorizon, linear theory according to

f ′+f2+

[

2 +
1

2

d lnH2

d ln a

]

f−
3

2
Geff(a, k)Ωm(a) = 0 , (1)

where a prime denotes the derivative d/d ln a, H is the
Hubble expansion rate, Ωm(a) is the matter density as
a fraction of the critical density, and Geff(a, k) is the
(dimensionless) effective time and scale dependent grav-
itational strength divided by Newton’s constant G (see
e.g. [11]). We can write the growth rate as f = Ωγ

m(a),
which defines the growth index γ = ln f/ lnΩm(a).

II. FUTURE GROWTH IN GENERAL

RELATIVITY

Taking gravity to be described by general relativity
(GR), Geff = 1. Cosmic acceleration enters growth
through the Hubble friction term and the diminished
source term Ωm(a). It has a rather dramatic impact on
the growth rate. We see in Fig. 1 that f plunges from 90%
of its matter dominated value (f = 1) to 10% in less than
2 e-folds of expansion. The present value is close to the
middle of this sharp cutoff (fΛCDM ≈ 0.5 for the present
value of the matter density fraction Ωm,0 ≈ 0.3). One can
view this as an alternate, growth view of the coincidence
or “why now” problem familiar from the expansion his-
tory. This reflects in the departure of γ starting around
the present time from a nearly constant behavior in the
past [2, 10].

We can analytically derive the late time asymptotic
behavior of the suppression as

f ∼ cf a
(3w−1)/2 . (2)

As the growth rate goes to zero, the density perturbation
freezes, D → D∞ and cosmic growth ends.

Within GR, the expansion history fully determines the
growth history (in the linear regime, with negligible per-
turbations in components other than matter, and given
the initial conditions). To form a test of general relativ-
ity, [10] separated out the effects on the growth of the cos-
mic expansion from the gravitational coupling strength
using the growth index γ. For observational data (i.e.
at a ≤ 1) cosmic growth can be accurately described
in many cosmologies by a constant value for γ [10, 12].
For example, for smooth noninteracting models includ-
ing ΛCDM, within GR, the growth amplitude D(a) is
fit to within 0.1% of the exact value by using γ = 0.55
and the growth rate f(a) to within 0.3%. Note that next
generation data is expected to constrain these quantities
at about the percent level, so this approximation is suf-
ficient for a consistency test of such models.
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FIG. 1. The growth rate f shows steep behavior vs log a,
even for models far from ΛCDM (w = −1). Growth is sup-
pressed relative to the matter dominated era (f(a ≪ 1) = 1)
as cosmic acceleration begins near today (a = 1), and under-
goes a sharp transition shutting off growth. The three solid
curves show the behavior for different values of the effective
dark energy equation of state w. The short green dotted
curves at a ≫ 1 give the asymptotic behavior f ∝ a(3w−1)/2

for each curve.

However, the near constancy of γ until today [13] is
due to the relatively recent onset of cosmic acceleration.
We find a very different behavior for future growth. The
growth index rapidly rises starting near the present, in-
dicating that the growth rate f is more sensitive to the
diminishing matter density fraction Ωm(a) and hence
weakens rapidly. However, γ then tends to a new higher
asymptotic value γ∞. The approach goes inversely with
the logarithm of the matter density [2],

γ(a → ∞) ∼
3w − 1

6w
+

cγ
lnΩm(a)

≡ γ∞+
cγ

lnΩm(a)
. (3)

Note that since at late times Ωm(a) ≈ [Ωm,0/(1 −
Ωm,0)]a

3w then lnΩm(a) ≈ 3w ln a and γ∞ is recovered
using Eq. (2). For example, within general relativity and
ΛCDM, γ∞ = 2/3. For arbitrary w we can just use the
asymptotic value w∞. Figures 1 and 2 illustrate these
results and Table I summarizes the late time asymptotic
behaviors for three different values of the effective dark
energy equation of state.

III. FUTURE GROWTH IN MODIFIED

GRAVITY

Modified gravity enters through the source term in the
growth equation, as shown by the factor Geff in Eq. (1).
This loosens the connection between expansion history

FIG. 2. The gravitational growth index γ shows sudden
evolution in the near future, after a predominantly constant
behavior in the past. Although growth freezes in the future,
γ asymptotically goes to a new finite constant value because
Ωm → 0 too. The three solid curves show the behavior for
different values of w. The green dotted curves at a ≫ 1
give the asymptotic behavior γ = γ∞+ cγ/[ln Ωm(a)] for each
curve.

Model γ∞ cγ (d ln f/d ln a))
∞

cf

w = −1 2/3 0.553 −2 0.989
w = −0.8 0.708 0.772 −1.7 1.19
w = −1.5 0.611 0.309 −2.75 0.811

TABLE I. Values for the constants entering the asymptotic
formulas for the gravitational growth index γ and the growth
rate f . While γ∞ and d ln f∞/d ln a can be derived analyti-
cally, the coefficients cγ and cf depend on the entire growth
evolution and are found numerically.

and growth history, and has the potential to change the
balance between the cosmic growth battle. Interestingly,
with regard to asymptotic future growth, we find that if
the source term involving Geff(a)Ωm(a) ≪ f then Geff

will not affect the asymptotic behavior f ∼ a(3w−1)/2

derived in the previous section. Thus growth still loses
against acceleration.

How strong does gravity need to become to allow
growth to continue? We need that Geff(a)Ωm(a) does
not tend to zero. Since we are interested in asymptotic
behavior, consider Geff ∝ ap asymptotically. This then
gives the condition p+3w ≥ 0 (p ≥ 3 for ΛCDM). When
p + 3w < 0 the growth will eventually end, f → 0,
however the approach to shutdown can differ depend-
ing how gravity strengthens at late times (just being
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Geff ∼ ap f∞ (d ln f/d ln a)
∞

γ∞

p ≤ −3w−1
2

0 3w−1
2

3w−1
6w

−3w−1
2

≤ p < −3w 0 p+ 3w p+3w
3w

p = −3w const (Eq. 4) 0 0

p > −3w ∞ (Eq. 5) p/2 < 0

TABLE II. Asymptotic growth behaviors are given for modi-
fied gravity, depending on how rapidly it strengthens asymp-
totically.

stronger today is insufficient). Two cases can arise for
p < −3w: looking at Geff(a)Ωm(a) ∼ ap+3w against
fGR ∼ a(3w−1)/2, we see that the dividing behavior oc-
curs for p = (−3w − 1)/2 (so p = 1 for a ΛCDM back-
ground). For smaller p, i.e. gravity strengthening but
not fast enough, the asymptotic behaviors of f and γ are
the same as GR. For larger p < −3w, growth will still
end but with a different asymptotic behavior. All the
behaviors are summarized in Table II.
The first case applies to GR (p = 0) obviously, to mod-

ified gravity with weakening strength (p < 0), or even to
gravity with strength increasing but not fast enough. For
the second case the source term becomes larger than the
perturbation decaying mode in the δ growth factor equa-
tion, or of the same order as the friction term in the f
growth rate equation. This is sufficient to alter γ∞ and
the asymptotic approach of f → 0, but growth still ends.
Only when p = −3w does growth continue. Then the
source term stays constant and from Eq. (1) f → const
with solution

f =
3w − 1

4
+

√

(

1− 3w

4

)2

+
3

2

Ωm,0

1− Ωm,0
cg , (4)

where Geff(a) ∼ cga
p asymptotically with p = −3w.

Finally, an even more increasing gravitational strength
with p > −3w will cause the growth rate itself to increase.
Then the f2 term dominates over the friction term, giving
the asymptotic solution

f(a) ∼

√

3

2
Geff(a)Ωm(a) ∼ ap/2 if p > −3w . (5)

Strong enough gravity, i.e. Geff(a) ∼ ap>−3w, can over-
come cosmic acceleration and continue the growth of cos-
mic structure in the future. However, this is a formal so-

lution only since such increasing growth, with D ∼ ea
p/2

,
will rapidly invalidate the linear theory formalism used.
We do not propose any specific theory of gravity with
such properties, but note that the Horndeski class of gen-
eral scalar-tensor theories have considerable freedom to
enable high values of p.
We verify all these behaviors numerically and illustrate

them in Figs. 3 and 4. Adopting the form Geff = 1 +
cga

p we see that indeed when p < (−3w − 1)/2 then the
asymptotic growth has the same value of γ as for GR.

(The asymptotic behavior is independent of cg, which
here we choose to be 0.1, simply for visual convenience.)
When p increases further (and p < −3w), the growth
rate is still suppressed, despite the strengthening gravity,
with an asymptotic gravitational growth index given by

γ =
p+ 3w

3w
= γGR −

2p+ 3w + 1

6|w|
. (6)

Increasing p reduces γ, which is a sign of increased rel-
ative growth (the growth rate itself may still be dimin-
ishing, just at a slower pace than in GR). The growth
rate stops going to zero for p = −3w, where γ∞ = 0,
and so cosmic growth no longer ends for such increas-
ing gravity; rather the growth factor D ∼ af where f
is the small constant value given by Eq. (4). This is in
contrast to all smaller p where the growth amplitude D
freezes asymptotically – the end of cosmic growth. Even
stronger gravity, i.e. even higher p, drives γ negative and
the growth rate climbs again, breaking the linear regime.

Note that in some theories of modified gravity, a de
Sitter asymptotic expansion implies that Geff will freeze
in the future (for example in f(R) gravity the scalaron
mass goes to a constant, see below), and so we expect
the asymptote p = 0, despite a present strengthening or
weakening. Thus in such cases there is an end to cosmic
growth. Also note that while our focus is on growth
at late times, at early times an enhanced gravitational
strength increases growth, leading to a growth rate f > 1
and so, by γ = ln f/ lnΩm, a negative γ. This is discussed
in [14], and we exhibit the analytic formula derived there,
f = 1 + [3/(5 + 2p)]cga

p in Fig. 4 as an excellent match
to the numerical solution.

Finally, as an example with scale dependent growth, we
investigate an exact f(R) gravity model. These models
are important representatives of viable modified gravity
models. We use the exponential gravity model of [15].
In the approach to the late time de Sitter state the Ricci
scalar and scalaron mass freeze. Thus the effective grav-
itational strength, which can rise to 4/3 times Newton’s
constant near the present for scales small enough, goes
back to its GR value in the future. This corresponds
to the p = 0 asymptote and hence cosmic growth indeed
ends and with asymptotic behavior similar to that of GR.
Figure 5 exhibits this f(R) model’s exact numerical so-
lution for the scale dependent growth and Fig. 6 shows
the numerical evolution of the gravitational strength, il-
lustrating the freezing to GR.

There are worse things than the end of cosmic growth –
growth can actually be undone in a Big Rip scenario with
w < −1 [17]. However that breaks assumptions used here
such as the subhorizon approximation. Conversely, if the
dark energy itself can cluster on subhorizon scales, then
the growth equation gains an additional source term. For
the great majority of models as considered here, though,
cosmic growth ends.
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FIG. 3. Modified gravity does not generally qualitatively
alter the growth rate, its future vanishing, and today mark-
ing roughly the halfway point in the process. Only if the
gravitational strength increases very rapidly, Geff ∼ ap with
p ≥ −3w, is there a significant effect. The curves show f
for various values p, with w = −1 (ΛCDM background). The
green dotted curve at a ≪ 1 gives the early asymptotic behav-
ior due to initial conditions different from general relativity
(GR).

IV. CONCLUSIONS

In general there is an end to cosmic growth and today
is unique in that roughly an efold ago the growth rate
was greater than 90% of its maximum, and roughly an
efold in the future it will be 90% of the way to vanish-
ing. While accelerating universes in GR lead to an end
of cosmic growth, the asymptotic growth can be discrim-
inated through the growth index γ as it is affected by the
perturbation decaying mode.
Even in modified gravity with strengthened gravity,

acceleration generally wins and growth ends. We detail
the conditions under which this – or alternate outcomes –
occurs. Interestingly, f(R) gravity and ΛCDM GR have
identical growth behaviors in both asymptotic future and
past. At the present time however, they differ strongly

with for f(R) a dip in the growth index in the recent
past resulting from a bump in Geff , a substantially lower
value today γ0 ≈ 0.42, and a large slope. We happen
to live at the right epoch in order to detect a decisive
observational signature of these models.

FIG. 4. Modified gravity alters the gravitational growth in-
dex γ behavior at late times only if the gravitational strength
increases rapidly enough. For Geff ∼ ap, the asymptote re-
mains that of GR for p < (−3w − 1)/2. The curves show
γ for various values p, with w = −1 (ΛCDM background).
The green dotted curves at a ≫ 1 give the asymptotic late
behavior for the p = 2, 3 curves. Since enhanced gravity
strengthens growth at early times, driving f > 1, then γ < 0
at early times.
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