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Mineral resource classification plays an important role in the downstream activities of a
mining project. Spatial modeling of the grade variability in a deposit directly impacts the
evaluation of recovery functions, such as the tonnage, metal quantity and mean grade above
cutoffs. The use of geostatistical simulations for this purpose is becoming popular among
practitioners because they produce statistical parameters of the sample dataset in cases of
global distribution (e.g., histograms) and local distribution (e.g., variograms). Conditional
simulations can also be assessed to quantify the uncertainty within the blocks. In this sense,
mineral resource classification based on obtained realizations leads to the likely computation
of reliable recovery functions, showing the worst and best scenarios. However, applying the
proper geostatistical (co)-simulation algorithms is critical in the case of modeling variables
with strong cross-correlation structures. In this context, enhanced approaches such as pro-
jection pursuit multivariate transforms (PPMTs) are highly desirable. In this paper, the
mineral resources in an iron ore deposit are computed and categorized employing the PPMT
method, and then, the outputs are compared with conventional (co)-simulation methods for
the reproduction of statistical parameters and for the calculation of tonnage at different
levels of cutoff grades. The results show that the PPMT outperforms conventional (co)-
simulation approaches not only in terms of local and global cross-correlation reproductions
between two underlying grades (Fe and Al2O3) in this iron deposit but also in terms of
mineral resource categories according to the Joint Ore Reserves Committee standard.

KEY WORDS: Mineral resource classification, Projection pursuit multivariate transform, Joint
simulation, Iron deposit, JORC code.

INTRODUCTION

Mineral resource estimation is a classification of
deposits to measured, indicated and inferred based
upon qualified degrees of geological confidence.
This estimation indicates a prominent requirement

for public reporting and internal company assess-
ments, financial institutions and authorities, in-
vestors, environmental risk evaluation, professional
advisors, stock exchanges and government agencies
(Vallée 1999, 2000; Snowden 2001; Dohm 2005;
Dimitrakopoulos et al. 2009; Rossi and Deutsch
2014; Silva and Boisvert 2014; Krzemień et al. 2016;
Fox 2017; Menin et al. 2017). Different classification
standards have been developed in some countries,
mostly similar in purpose and template. The main
widely used standards are from the Joint Ore Re-
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serves Committee (JORC, www.jorc.org) in Aus-
tralia; the Canadian Institute of Mining (CIM)
guidelines (NI 43-101) in Canada (www.cim.org);
the South African Code for the Reporting of
Exploration Results, Mineral Resources and Min-
eral Reserves, i.e., the SAMREC code in South
Africa (www.saimm.co.za/samrec.asp) and the Pan-
European Union and United Kingdom�s Reporting
Code (www.crirsco.com/PERC_REPORTING_CO
DE_jan2009.pdf). Among others, the JORC code
seems popular with wider acceptance. Although
those codes are important guidelines, they do not
provide a straightforward technique for resource
classification (Rossi and Deutsch 2014). The cate-
gorization of mineral resources in the JORC stan-
dard generally depends on the geological model of
the deposit, the sampling quality and the data
spacing (Silva and Boisvert 2014; Rivoirard and
Renard 2016). Based on JORC code, ‘‘Measured
Mineral Resource is a subpart of the Mineral Re-
source in which the estimation of the grade, quan-
tity, density, shape and physical characteristics are
based on the evidence from reliable and detailed
exploration results, sampling, testing collected from
drill holes, trenches, pits and outcrops. The Mea-
sured Mineral Resource has the highest level of
confidence among other parts and can be altered to
a Proved Ore Reserve. Thus, Measured Mineral
Resource can be applied for risk analysis, detailed
mine planning and final assessment of economic
viability of the mine project,’’ ‘‘Indicated Mineral
Resource is a subpart of the Mineral Resource in
which the estimation of the grade, quantity, density,
shape and physical characteristics are based on the
geologic pieces of evidence from proper exploration
results, sampling, testing collected from drill holes,
pits and outcrops. The Indicated Mineral resource
has a higher level of confidence than Inferred Min-
eral Resource and thus can be used for further
analysis of mine planning and assessment of eco-
nomic viability of the mine project.’’ ‘‘Inferred
Mineral Resource is a subpart of the Mineral Re-
source in which the estimation of grade and quantity
is based on the sampling and limited geological
evidence. The Inferred Mineral Resource has the
lowest level of confidence and thus cannot be altered
to an Ore Reserve.’’

The techniques of resource categorizations can
be classified into two main families. The first family,
the deterministic approach, relates to block-by-
block identification of confidence intervals through
either geometric or geostatistical schemes. In a

geometric scheme (e.g., drill hole spacing and
neighborhood restriction), confidence in the esti-
mated block highly relies on data spacing or prox-
imity between sample points (Deutsch et al. 2006;
Emery et al. 2006; Naus 2008; Wilde 2010). In this
approach, however, data redundancy is neglected
and spatial continuity may not be considered (Riv-
oirard and Renard 2016). In a geostatistical scheme,
the estimation outputs (e.g., kriging variance) play
an important role, respecting spatial continuity as it
is significantly considered in the computation (Krige
1996, 1999; Arik 1999, 2002; Yamamoto 2000;
Mwasinga 2001; Sinclair and Blackwell 2002). Nev-
ertheless, the smoothing effect of the conditional
distribution and ignoring the proportional effect in
the kriging system imposes difficulties in interpreting
the kriging variance for mineral resource classifica-
tion (Dimitrakopoulos et al. 2009; Rossi and
Deutsch 2014; Silva and Boisvert 2014). An alter-
native for obtaining more trustworthy results is the
second family, namely stochastic simulations, the
uncertainty for which can be explicitly quantified at
the block locations (Snowden 2001; Dominy et al.
2002; Dohm 2005; Wawruch and Betzhold 2005;
Deutsch et al. 2006; Emery et al. 2006; Manchuk
et al. 2009). Conditional simulations provide real-
izations with true grade variability and are capable
of computing the uncertainty in a global and local
sense in the total amount of resources at different
thresholds and cutoff grades. Although there are
some legitimate criticisms regarding uncertainty
models derived from conditional simulations for
resource classification (Deutsch et al. 2006), due to
its dependency on the implementation parameters
employed in a simulation (Rossi 2003), this ap-
proach still presents greater tractability, depending
on the choice of the geostatistical simulation algo-
rithm and the accurate setting of its relevant
parameters (Murphy et al. 2004; Duggan and Dim-
itrakopoulos 2005; Emery et al. 2006; Sadeghi et al.
2015). Regarding this issue, many approaches have
been proposed and developed to improve stochastic
3D spatial modeling of regionalized variables. For
cross-correlated variables, co-simulation approaches
are highly advocated over independent simulation
approaches because the spatial cross-dependency
can be taken into account (Wackernagel 2003;
Chilès and Delfiner 2012; Paravarzar et al. 2015;
Madani and Ortiz 2017; Eze et al. 2019; Abildin
et al. 2019). In some special circumstances, for
example, the variables behave differently and show
some complex interrelationship characteristics, and
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the use of conventional approaches is restricted
(Boisvert et al. 2013; Deutsch 2013). To address this
problem, enhanced co-simulation algorithms based
on factorization techniques have been developed
(Leuangthong and Deutsch 2003; Barnett et al.
2014). Among others, the projection pursuit multi-
variate transform (PPMT) (Barnett et al. 2014, 2016)
is an approach that can handle any complexity that
exists among the variables (Barnett et al. 2014, 2016;
Hosseini and Asghari 2018).

The objectives of this paper are fourfold: (1)
briefly present the conventional (co)-simulation ap-
proaches and the PPMT (in this study, the turning
bands (co)-simulation (Emery and Lantuéjoul 2006;
Emery 2008) is opted for the conventional ap-
proach); (2) describe the application of these ap-
proaches in a real case study for an iron deposit in
Brazil; (3) describe the stochastic classification of
mineral resources based on the output derived from
objective #2 and compare them in terms of a ton-
nage evaluation; and (4) discuss the pros and cons of
mentioned methods.

METHODS

Turning Bands (co)-Simulation

A turning bands simulation is an approximate
algorithm based on multi-Gaussianity assumption of
an underlying random field. This algorithm was first
introduced by Matheron (1973) and then extended
in some organized program codes by Lantuéjoul
(1994) and Emery and Lantuéjoul (2006). The
principal concept of this algorithm is based on firstly,
drawing numerous randomly orientated lines and
secondly, simulating a one-dimensional Gaussian
random field along each line (Lantuéjoul 1994,
2002). In other words, the core of the turning bands

algorithm is to simplify the simulation problem in R3

or R2 into a R problem. The random field

Y xð Þ; x 2 Rd
� �

is defined in Eq. 1 with a zero mean

and isotropic covariance CY (Eq. 2), where U is a
uniform distribution over Sd, which is the unit
sphere of Rd.

Y xð Þ ¼ X x;Uh ið Þ for any location of 8x 2 Rd ð1Þ

CY rð Þ ¼
ZN

Sd

CX h; uh ið Þxd duð Þ ð2Þ

where < and> are the inner standard products in

Rd, h is a vector of Rd, u is a unit vector of Rd;xd is a
uniform distribution over Sd and r is the modulus of

Rd.
As mentioned above, Matheron (1973) first

introduced and proved the relationship (Eq. 2) be-

tween continuous and isotropic covariances in Rd

with continuous covariances in R. By using this
algorithm, one can substitute a multi-dimensional
simulation with a one-dimensional simulation.

Having the covariance model fitted to the pri-
mary declustered normal score variable, the covari-
ance function is derived in one-dimensional random
fields. The turning bands simulation provides a non-
conditional multi-dimensional random field com-
patible with the target covariance model, in which
the simulated values are practically standard Gaus-
sian (Emery and Lantuéjoul 2006). To generate the
conditional realizations, the non-conditional simu-
lation obtained should be progressed through the
postprocessing of the kriging step (Journel and
Huijbregts 1978; Emery 2008; Chilès and Delfiner
2012).

In the turning bands co-simulation approach, it
is of interest to stochastically simulate cross-corre-
lated variables (e.g., more than two). In this case, the
cross-covariance function is needed to be con-
structed taking into account the transformed vari-
ables in the sample points with multi-dimensional
Gaussian random fields. The non-conditional step is
the same as turning bands simulation for each vari-
able; however, in part of the conditioning mecha-
nism, the co-kriging method must be used rather
than the kriging method to hold the multivariate
characteristics (Carr and Myers 1985; Myers 1989;
Gutjahr et al. 1997; Emery 2008):

YCCS xð Þ ¼ YSCK xð Þ þ YS xð Þ � YSCK
S xð Þ

� �
ð3Þ

where YSCK xð Þ is simple co-kriging of Y xð Þ from
conditioning data, YS xð Þ is non-conditional simula-

tion at location x for the variables; YSCK
S xð Þ is a

simple co-kriging system for the non-conditional
simulation from its value at the data locations. This
simple co-kriging system can also be substituted for
an ordinary co-kriging paradigm (Emery 2007).

The general workflow in the turning bands co-
simulation is similar to the previously explained
turning bands simulation; however, in the variogram
analysis, because the co-kriging system is established
on the basis of the cross-covariance matrix, it is
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necessary to calculate the direct and cross-vari-
ograms. To fit the theoretical direct and cross-vari-
ogram models, as an alternative, a linear model of
co-regionalization (LMC) can be used to fit all
experimental variograms as a linear combination of
the equivalent structures together with the identical
ranges but different sills (Wackernagel 2003; Chilès
and Delfiner 2012). The most tedious part of this job
is to construct the permissible positive semi-defi-
niteness conditions for fitting the sill matrices. Once
this constraint is corroborated, the model can be
used in the variance–covariance matrix required in
the conditioning process (Goovaerts 1997).

Multi-Gaussian Transformation

Because the turning bands (co)-simulation algo-
rithm is based on themulti-Gaussianity assumption of
input data, variables should be transformed to stan-
dard Gaussian model with a mean of 0 and a variance
of 1. The step can be performed through Gaussian
anamorphosis (Rivoirard 1994) or a quantile-based
approach (Deutsch and Journel 1998). Inmultivariate
cases, it is a commonpractice to transfer each variable
separately to a normal standard score and employ one
of the widespread functions of the Gaussian (co)-
simulation. The most important aspect of this ap-
proach in the case of the existence of complexities
among bivariate relations of variables is that the
multi-Gaussian assumption after transformation may
not be valid. Respecting this violation in the multi-
Gaussianity assumption, the conventional Gaussian
co-simulation algorithms, including turning bands co-
simulation, may not be practical. To circumvent this
difficulty in such a situation, factor-based approaches
based on decorrelation techniques can be applied.

Projection Pursuit Multivariate Transform

One of the newly developed transformation-
based approaches is the PPMT method, which is
targeted to handle multivariate complexities, such as
nonlinearity and heteroscedasticity, which intrinsi-
cally exist among the variables (Barnett et al. 2014;
Barnett et al. 2016; Barnett 2017). The PPMT is
suitable in cases in which the traditional normal
standard score transformation does not work prop-
erly. The general steps for the implementation of the
PPMT are based on forward and backward trans-
formations. Forward transformation converts the

original data to an uncorrelated multi-Gaussian
distribution, taking into account any type of com-
plexity that exists among the variables, and the
simulated results can then be back-transformed to
the original scale. This back-transformation is based
on the projection pursuit density estimation algo-
rithm (PPDE) (Friedman 1987). Provided that these
variables are represented by second-order stationary
random fields, the PPMT steps for two variables can
be defined as:

1. Transform the original variables to normal
score values with a mean of zero and a vari-
ance one N 0; 1ð Þ. This can be implemented
by normal score transformation methodolo-
gies such as Gaussian anamorphosis (Riv-
oirard 1994) or a quantile-based approach
(Deutsch and Journel 1998):

Zi uð Þ ¼ G�1 Fi Yi uð Þð Þð Þ i ¼ 1; 2 ð4Þ

where G�1 :ð Þ is the standard normal cumu-
lative distribution function, Fi :ð Þ is the
cumulative distribution function of the
original variables and Yi uð Þ and Zi uð Þ are
normal score values.

2. Data sphering (A): Compute the experi-
mental variance–covariance matrix at lag 0.
Because we are dealing with normal score
values, this matrix is identical to the sample
correlation matrix. In the case of two vari-
ables, this matrix Vð Þ is:

V ¼ Corr Z uð Þ;Z uð Þf g ¼ q11 0ð Þ q12 0ð Þ
q21 0ð Þ q22 0ð Þ

� �

ð5Þ

where the principal diagonal element equals
one, which is identical to the total variance
and the upper and lower diagonal elements
q12 0ð Þ and q21 0ð Þ equal the linear correlation
coefficient between the two normal score
variables Z1 uð Þ and Z2 uð Þ, respectively.

3. Data sphering (B): Perform the spectral
decomposition of the above matrix Vð Þ to
derive the orthonormal eigenvectors matrix
M1ð Þ, associated with the underlying diago-
nal eigenvalues matrix E1ð Þ, such that:

V ¼ M1E1M
T
1 ð6Þ
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It is necessary to check that the entries of E
exhibit a decreasing order.

4. Data sphering (C) Calculate the sphering
transformations at location u by:

ui uð Þ ¼ Zi uð ÞM1E
�1=2
1 MT

1 i ¼ 1; 2 ð7Þ

whereui uð Þ are scores with a normal standard
distribution due to the priori multivariate
Gaussian assumption and are decorrelated.

5. Projection pursuit Although the ui uð Þ are
decorrelated, the complexity still manifests itself
in a bivariate relation. Projection pursuit can
transform thedecorrelated variablesui uð Þ to the
multi-Gaussian variables free of the underlying
complexity.Todoso, taking intoaccount that the
projection of data is s ¼ ui uð Þa, where k � 1 is a
unit vector a, the projection index test statistic is
defined as A að Þ that determines the univariate
non-Gaussianity. When the related projection is
appropriately Gaussian, the projection index
A að Þ ¼ 0. According to Friedman (1987), the
optimized search is used to determine the h,
which will identify the maximum A að Þ. The
ui uð Þ function is transformed to a standard
Gaussian, ui uð Þ0, where the related projection is
s0 ¼ ui uð Þ0a after the optimum a is identified.
The transformation starts with the application of
the Gram-Schmidt algorithm to compute the
orthogonal matrix as (Reed and Simon 1972):

x ¼ a;/1;/2; . . . ;/k�1;

� �
ð8Þ

and transformation can be reached by the
multiplication of ui uð Þ and x, thus:

ui uð Þx ¼ p;ui uð Þ/1;ui uð Þ/2; . . . ;ui uð Þ/k�1;

� �

ð9Þ

Then, to obtain the transformation that
outputs the Gaussian standard projection, s0,
the normal score transform is computed, as:

G
^

ui uð Þxð Þ ¼ s0;ui uð Þ/1;ui uð Þ/2; . . . ;ui uð Þ/k�1;

� �

ð10Þ

and back-transformation to the original basis
is computed as:

ui uð Þ ¼ G
^

ui uð Þxð ÞxT ð11Þ

The transformed data ui uð Þ0 outputs the
Gaussian projection by a, where the projec-
tion index, A að Þ, is zero. Additionally, to
obtain other complexities, an optimized
search can be iterated and used to determine
the maximum projection index.

6. Stopping Criteria This step focuses on the
selection of the target projection index. An
increase in dimensions leads to the difficult
resolution and discovery of complexities, while
the number of observations results in the reli-
ability of the projections for the identification
of appropriate multivariate structures. Ran-
dom samples from the Gaussian cumulative
density function (CDF) can be used by
implementation of a bootstrapping algorithm,
where m is the distribution, k is the dimension
and n is the number of observations for
choosing the target projection index for PPMT
stopping. Then, the value of the projection
index can be computed.

7. Back-Transform Gaussian realizations can
then be back-transformed based on the
mapped data on an original space, where the
configuration between the simulated and
mapped data is preserved.

A schematic illustration of the PPMT is pro-
vided in Figure 1, which explains how the com-
plexities among the variables can be first
decorrelated and then restituted after the process of
modeling and backward transformation.

CASE STUDY

Carajas Mine, the study area, which is one of
the largest iron ore mines in the world, is located in
the Parauapebas municipality, Para state, in north-
ern Brazil. The dataset provided by the Vale Com-
pany pertains to iron deposits consisting of iron (Fe)
and other trace elements, such as phosphorus (P),
manganese (Mn) and aluminum oxide (Al2O3). The
geological characterization and lithostructural set-
ting of the Carajas Mine are related to the
metavolcanic and metasedimentary rocks of the
Grao-Para group, which comprises the Parauapebas
(Meirelles et al. 1984) and Carajas Formation rocks
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(Beisiegel et al. 1973) consisting of volcanic rocks
and ironstones, respectively (Fig. 2). The deposits
consist mainly of anisotropic and heterogenetic rock
masses with different shear strengths. As the deposit
are highly concentrated with iron rocks, the lithol-
ogy includes mainly mafic rocks and ironstones.
Mafic rocks are classified with different geotechnical
parameters depending on resistance, such as
weathered mafic rocks with medium or high resis-
tance and semi-weathered mafic rocks, while the
ironstone classification depends on the chemical and
physical properties of soft hematite, hard hematite,
low content iron ore and jaspelite (Paradella et al.
2015).

Exploratory Data Analysis

The dataset contains 613 samples with isotopic
sampling patterns, indicating that all of the variables
(Fe and Al2O3) are known and share the same
location of samples (Wackernagel 2013). The first
step in exploratory data analysis includes the
detection of all possible outliers and duplicated
samples. To recognize the outliers, the possible
maximum values are first recognized by typical sta-
tistical tools, such as histograms and probability
plots (Rossi and Deutsch 2014). Next, the identified
extreme values are double checked to ensure that
they are valid samples and are not erroneous. Fi-

Figure 1. Illustration of projection pursuit multivariate transformation.
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nally, those valid values are handled through the
capping approach, where values in the upper tail of
the distribution could be moved back and reset to
the previous maximum values. After this step, the
data are declustered to make the global distribution
more representative (David 1977; Deutsch 1989).
The declustering technique is implemented in a
dimension of 800 m 9 800 m 9 80 m based on the
primary pattern of the boreholes. Statistical param-
eters are then calculated, as shown in Table 1.
Declustering ensures that the statistical parameters
are representative and that they are no longer im-
pacted by the scarcity of data in some regions. The
cell declustering technique (Goovaerts 1997;
Deutsch and Journel 1998) is applied in this study to
correct the pseudo-skewness in the global distribu-
tion of Fe and Al2O3. In this method, the area of
interest should first be divided into a grid of cells,
and weights are then assigned to each data value
according to the number of samples falling in the
same cell. The resulting weights in the occupied cells
are greater than zero and in total sum to one, while
vacant cells receive no weight (Rossi and Deutsch
2014; and references herein).

Figure 3 shows the dependency of the covari-
ables and the correlation coefficient between
declustered Fe and Al2O3. The computed correla-
tion coefficient (� 0.82) shows that two variables are
highly correlated. The negative sign also corrobo-

rates that the global variability of Fe in the region is
highly controlled by Al2O3; thus, an increase in the
Fe grade in the region corresponds to a decrease in
the amount of Al2O3. This type of good correlation
advocates the use of co-simulation methods rather
than independent simulation methods because co-
simulation takes into account the intrinsic correla-
tion between covariables (Eze et al. 2019; Abildin
et al. 2019).

As explained earlier, the scope of this research
is to jointly model Fe and Al2O3, taking into account
the correlation coefficient between them and to
reproduce the bivariate relation shape, as illustrated
in Figure 3. Technically, the characteristics of the
bivariate relation reveal that the lower quantiles of
Al2O3 are highly dependent on the upper quantiles
of Fe (red to green points in the scatterplot), and the
linear correlation coefficient is mostly impacted
from this range of values. Therefore, this can be
interpreted as a complexity in the bivariate relation
between Fe and Al2O3, and the idea is to reproduce
the complexity by restituting the intensity of the
correlation beyond the modeling process and then to
consider the variation in the mineral resource esti-
mation and reporting based on the JORC code. To
do so, the results of two methodologies based on the
conventional normal score transformation of vari-
ables and the PPMT transformation are compared
and discussed.

Figure 2. (a) Simplified geological map of the Carajas region. (SR = Serra do Rabo region; CCG = central Carajas granite). (b)

Tectonostratigraphy of the Carajas region (BIF = banded ironstone formation) (Holdsworth and Pinheiro 2000).
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Gaussian Co-simulation Based on the Conventional
Normal Score Transformation

The turning bands (co)-simulation approach in
this study was applied to the joint simulation of Fe
and Al2O3 in the Carajas Mine deposit. The first
step, after declustering, was to separately transform
the variables into normal standards scores (Deutsch
and Journel 1998). The step can be performed
through either Gaussian anamorphosis (Rivoirard
1994) or a quantile-based approach (Deutsch and
Journel 1998). Here, the latter is applied to the da-
taset because of simplicity and tractability in Gaus-
sian transformation. The scatterplot between normal
score variables (Fig. 4) shows that the bivariate
multi-Gaussian assumption is somehow respected,
indicating approximate elliptical shapes that one
expects to see after the transformation. The corre-
lation coefficients also decreased approximately
13% after this normal score transformation. The
bivariate multi-Gaussian examination through this
figure is only valid at lag zero. The spatial multi-
Gaussian assumption can also be separately checked
for each transformed variable. This approach is
validated by checking their experimental modo-
grams and rodograms (Emery 2005) that are

approximately proportional to the square roots of
their experimental variograms (Fig. 5).

To implement the turning bands co-simulation
method, the direct and cross-variograms of Fe and
Al2O3 must be quantified over the transformed
Gaussian values. The anisotropy is checked by
computing the experimental variogram in different
directions, and the results showed that one cannot
recognize any significant different spatial tendency
in experimental variogram characteristics, such as
the range (geometric anisotropy) and sill (zonal
anisotropy). The variogram map which is a 2D plot
of the sample variogram for all experimentally
available separation vectors (Deutsch and Journel
1998) is also calculated. Directions of anisotropy are
usually evident from a variogram map. However, as
can be seen from Figure 6, there is no evidence of
different continuities in different directions for the
main variable in the case, Fe. Therefore, experi-
mental omnidirectional and cross-variograms are
calculated, and a two-structured linear model of the
co-regionalizations was fitted. The proper formula is
(Fig. 7):

Table 1. Statistical analysis of Fe and Al2O3 in the Carajas deposit

Variables (%) Number of samples Minimum Maximum Mean Variance Correlation

Fe 613 21.2 69.17 63.6 59.94 � 0.82

Al2O3 613 0.1 37.2 2.05 19.63

Figure 3. Scatter plot of declustered iron (Fe) and aluminum

oxide (Al2O3). Correlation coefficient: � 0.82.

Figure 4. Scatter diagram of Gaussian Al2O3 and Fe.
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Figure 5. Experimental modograms and rodograms of the Gaussian variables of (a) Al2O3 and (b) Fe as a function of their experimental

variograms. In case of multi-Gaussianity assumption, the points should be approximately distributed along the thick solid line.

Figure 6. Variogram map in both (a) horizontal and (b) vertical plans. There is no evidence of anisotropy in both directions.
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cFe hð Þ cFe�Al2O3
hð Þ

cFe�Al2O3
hð Þ cAl2O3

hð Þ

� 	

¼
0:5185 �0:3799

�0:3799 0:5278

� 	

Spherical 88 m; 88 m; 88 mð Þ

þ
0:5185 �0:3799

�0:3799 0:5278

� 	

Spherical 352 m; 352 m; 352 mð Þ

ð12Þ

Gaussian Co-simulation Based on the Projection
Pursuit Multivariate Transformation (PPMT)

The main privilege of the PPMT is that trans-
formation is built on an iterative algorithm that re-
moves all the complex inter-dependencies, such as
heteroscedasticity or nonlinearity, and consequently
produces new uncorrelated and normally distributed
variables (Adeli et al. 2017). The original declus-
tered data were then converted to PPMT-trans-
formed variables (i.e., PPMT1 and PPMT2) (Fig. 8).
The scatterplot between PPMT1 and PPMT2 shows
that the two PPMT-transformed variables are per-
fectly independent.

Figure 7. Experimental and theoretical omnidirectional direct (a, b) and cross-variograms (c) of Gaussian Fe and

Al2O3; negative correlation between the Gaussian random fields shows the negative graph for cross-variogram.
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Following the same steps in the conventional
Gaussian co-simulation method, we need to calcu-
late the spatial continuity of the direct and cross-
variograms of PPMT1 and PPMT2. However, be-
cause of independency characteristics between both
PPMT-transformed variables, the conditional co-
simulation method can be substituted for the inde-
pendent simulation over each variable. To do so, the
omnidirectional variograms of PPMT1 and PPMT2
were calculated and proper theoretical models were
correspondingly fitted, in which two-structured
spherical variograms with ranges of 88 m and 352 m
were included, respectively (Fig. 9):

cPPMT1 ¼ 0:5018 Spherical 88 m; 88 m; 88 mð Þ
þ 0:5545 Spherical 352 m; 352 m; 352 mð Þ

ð13Þ

cPPMT2 ¼ 0:5018 Spherical 88 m; 88 m; 88 mð Þ
þ 0:5545 Spherical 352 m; 352 m; 352 mð Þ

ð14Þ
The reason for using the omnidirectional vari-

ogram is that the PPMT-transformed variables are
obtained from the original variables (i.e., Fe and
Al2O3). Therefore, it is expected that both PPMT1
and PPMT2 show the same spatial continuity struc-
tures as the original ones. As already discussed
regarding the variography of the original declustered
variables, the spatial continuity can be considered
omnidirectional because no meaningful special ten-
dencies in the range and sill are identified.

Geostatistical Modeling

Once the variogram analysis was obtained,
geostatistical simulation modeling was employed in
a grid of 33 m 9 42 m 9 54 m to model the joint
uncertainty of Fe and Al2O3 in the region, taking
into account their cross-correlation. Three ap-
proaches are considered in this section. The first one
corresponds to the conventional Gaussian co-simu-
lation via the turning bands co-simulation (Emery
2008) to model the Fe and Al2O3 associated with the

Figure 8. Scatterplot of PPMT-transformed variables; the

bivariate distribution of points shows that PPMT1 and

PPMT2 are utterly independent.

Figure 9. Direct variograms of two underlying decorrelated PPMT-transformed variables by PPMT technique.
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linear model of co-regionalizations (hereafter
TBCOSIM). The second one is related to the
Gaussian co-simulation approach based on the
PPMT over the PPMT1 and PPMT2 approaches.
Because there is no significant correlation between
the PPMT-transformed variables (Fig. 8), an inde-
pendent simulation can be applied over each PPMT-
transformed variable. To do so, a turning bands
simulation was separately employed to each PPMT-
transformed variable, and then, the results were
back-transformed to the original scale (hereafter
PPMT). To compare the results, the third family
considers independent simulations (turning bands
simulation) through the transformed variables ob-
tained from the conventional normal score trans-
formation (hereafter TBSIM). In this case, the direct
variograms of the normal score transformed vari-
ables were the only functions that were engaged. In
all the simulation strategies, a moving neighborhood
was selected with parameters set to three times the
range of the variograms considering up to a maxi-
mum of 80 samples to participate in the estimation.
A simple co-kriging method with a multiple search
strategy (Madani and Emery 2019) was selected for
the turning bands co-simulation, and the simple
kriging method in terms of the turning bands simu-
lation was used as a postprocess step for condition-
ing the non-conditional realizations to the sample
locations. To prevent any potential stripping effect,
1000 lines were considered. The number of realiza-
tions was deemed to be 100. E-type maps were
produced by averaging the 100 realizations of the
(co)-simulated elements in each block (Figs. 10, 11).

Validation

The obtained results were considered for the
further reproduction of the statistical analysis vali-
dation. It was of interest to examine different ap-
proaches applied in this research to validate the
outputs. This step was important because it directly
impacts the trustworthiness of the underlying co-
simulation methodology for mineral resource clas-
sification.

Spatial Statistical Analysis

The first test examines the reproducibility of the
spatial cross-correlation among Fe and Al2O3 in the
region. The cross-correlograms are presented for the

original declustered Fe, namely the simulation ob-
tained from the TBSIM, TBCOSIM and PPMT in
Figure 12. The results show that the cross-correlo-
grams of the TBCOSIM and PPMT are fairly similar
to original declustered Fe and behave similar to the
cross-correlogram of the original declustered Fe.
Therefore, the TBCOSIM and PPMT can reproduce
the spatial correlation because these two method-
ologies take into account the inter-dependency be-
tween the covariables: the former through the linear
model of co-regionalization and the latter through
the factorization steps. However, as expected, the
TBSIM was not able to reproduce the shape of the
cross-correlogram because it simulates each variable
independently.

Global Statistical Analysis

The declustered mean of Fe and Al2O3 was
compared with the average mean of the simulated
and back-transformed variables through 100 real-
izations obtained from the TBCOSIM, TBSIM and
PPMT. As shown in Figure 13, the average mean of
Fe and Al2O3 is less than the declustered mean of
the original variables in both the TBCOSIM and
TBSIM outputs. However, in the PPMT, the average
line over the realizations corroborates that the
realizations are dramatically able to reproduce the
original declustered mean value for both Fe and
Al2O3.

Another comparison was made on the variance
of the declustered values with an average variance
value over 100 simulated realizations of the afore-
mentioned three methodologies. The average vari-
ances of the TBSIM and TBCOSIM are higher for
Fe and less for Al2O3 compared to the declustered
variance for both variables (Fig. 14). However, in
the PPMT, the average variance mimics the original
declustered variance for both Fe and Al2O3.

The last examination considers the global cor-
relation coefficients between Fe and Al2O3 obtained
from the three approaches by comparing with the
original declustered correlation coefficient. Fig-
ure 15 shows the difference between the original
correlation coefficient and the reproduced average
correlation coefficient over 100 realizations. The
worst reproduction with almost zero correlation
manifests itself in the TBSIM results. This approxi-
mately zero correlation coefficient can be explained
by the fact that independent simulation does not
consider the intrinsic correlation between covari-
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Figure 10. E-type models of Fe for (a) PPMT, (b) TBCOSIM and (c) TBSIM obtained from 100 realizations. The

most significant differences among three approaches can be recognized in the black circles.

Figure 11. E-type models of Al2O3 for PPMT (left), TBCOSIM (middle) and TBSIM (right) obtained from 100

realizations. The most significant differences among three approaches can be recognized through the red circles.

Categorization of Mineral Resources Based on Different Geostatistical Simulation Algorithms

Author's personal copy



ables in the multi-element deposits (Madani and
Ortiz 2017; Maleki and Madani 2017; Eze et al. 2019;
Abildin et al. 2019). The TBCOSIM methodology
presents a better result with an average correlation
coefficient of almost 0.57, although it is not consid-
ered as a reliable result. The affecting condition for
this type of poor reproduction of the correlation
coefficient may be because of the complex inter-
dependency between covariables (Fe and Al2O3),
leading to such an inadequate measure of correla-
tion. However, the results from the PPMT show that
this approach can effectively handle the complex
inter-dependencies between covariables and is cap-

able of reproducing the original declustered corre-
lation coefficient on average.

MINERAL RESOURCE CLASSIFICATION

Mineral resource classification is vital in the
uncertainty assessment and risk analysis for mineral
resource development. One of the sub-processing
steps of realizations is mineral resource classification
based on international standards such as the JORC
code. The JORC code is the Australian Code for
reporting the results of exploration, mineral re-

Figure 12. Cross-correlogram for (a) original declustered data, (b) TBSIM, (c) TBCOSIM and (d) PPMT. Average (red line) and 100

individual realizations (green lines).
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sources and ore reserves. The reporting of mineral
resources is based on the economic interest in the
Earth�s crust for the extraction of solid materials
with eventual profitability. Mineral resources are
subdivided into inferred, indicated and measured
categories based the level of confidence depending
on the knowledge and geologic evidence comprising
the sampling results. This classification is necessary

for mine planning steps, for which some parts of
either the measured or indicated categories can be
converted to minable sections. Thereafter, modify-
ing factors, such as mining, processing, metallurgical,
infrastructure, economic, marketing, legal, environ-
ment, social and government can be employed,
particularly regarding the final decision of a com-
petent person (JORC 2012).

Figure 13. Mean of iron (Fe) (a–c) and aluminum oxide (Al2O3) (d–f) from TBSIM (a, d), TBCOSIM (b, e) and PPMT (c, f)

methodologies. Red line indicates declustered means of Fe and Al2O3; green line indicates the average mean of 100 realizations; blue line

is the corresponding statistical parameter for each realization.
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The main idea of this research was to compare
the three different approaches of simulations based
on two main Gaussian transformation techniques
(one based on the conventional Gaussian transfor-
mation and one based on the PPMT). Compared to
the TBSIM and TBCOSIM approaches, the PPMT
results corroborate that not only the realizations can

reproduce global statistics but they can also reliably
reproduce local statistics, which is an important
supposition in the further analysis of a mining pro-
ject. For instance, as shown in Figure 10, the E-type
map, which is the average of 100 realizations of the
PPMT, shows less Fe content at the center (black
circles areas) and top of the map, while the E-type

Figure 14. Variance of iron (Fe) (a–c) and aluminum oxide (Al2O3) (d–f) from TBSIM (a, d), TBCOSIM (b, e) and PPMT (c, f)

methodologies. Red line indicates declustered variance of Fe and Al2O3; green line indicates the average variance of 100 realizations; blue

line is the corresponding statistical parameter for each realization.
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maps from the TBSIM and TBCOSIM methods
indicate a higher concentration of Fe with a small
difference on the same level. This dispute is also
examined between the E-type maps of the PPMT
and the two other methodologies. The results indi-
cate that the same analogous feature can be ob-
served on the E-type maps of Al2O3 (Fig. 11), where
the TBCOSIM and TBSIM show fairly low con-
centrations (red circled areas), whereas the PPMT
map illustrates a high content of Al2O3. As the
intrinsic correlation was perfectly reproduced in the
PPMT, the E-type maps of this method directly
support the negative correlation between Fe and
Al2O3 during visual inspection. In contrast, the
TBCOSIM and TBSIM approaches do not support
this feature, which means that these methodologies
cannot handle the complexity in multi-element de-
posits.

Because the results of the PPMT method are
more reasonable and satisfactory in practice, the use

of this method is encouraged for the classification of
the mineral resources in the underlying Fe deposit
into measured, indicated and inferred resources
based on the JORC code. However, to show the
difference between the methodologies, the tonnages
are calculated within the realizations obtained from
three methods (PPMT, TBSIM and TBCOSIM),
depending on the cutoff grades of Fe (35%, 40%,
45%, 50%, 55%, 60% and 65%) (Table 2). The re-
source classification based on uncertainty models is
quantified as measured if the block is known with-
in ± 15% (90% of the time); as an indicated re-
source if the block is known within ± 15%
and ± 30% (90% of the time) and as an inferred
resource if the block is known more than ± 30%
(Rossi and Deutsch 2014). The outputs for the re-
source classifications are then compared and dis-
cussed.

In almost all cases, the total tonnage of the
PPMT is higher than that of either the TBCOSIM or

Figure 15. Correlation coefficients between iron (Fe) and aluminum oxide (Al2O3) of 100 realizations from (a) TBSIM, (b) TBCOSIM

and (c) PPMT methodologies. Red line indicates original correlation coefficient between of Fe and Al2O3; green line indicates the

average correlation coefficient of 100 realizations; blue line is the corresponding correlation coefficient for each realization.
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the TBSIM (Fig. 16). In real life, these types of
crucial differences in the results of the total tonnage
play a vital role with regard to financial issues for

mining companies. The comparison of the measured
mineral resources of each method is quite significant
due to the level of confidence in this category, which

Table 2. Mineral resource classification and calculation of tonnage in each category for Fe in Carajas ore deposit through the simulation

results obtained from PPMT, TBSIM and TBCOSIM approaches

Methods Cutoff grade Measured (Mt) Indicated (Mt) Inferred (Mt) Total tonnage (Mt)

TBSIM 35 11,360.00 971.94 1274.10 13,606.04

40 11,349.00 963.97 1096.30 13,409.27

45 11,337.00 939.20 913.82 13,190.02

50 11,320.00 759.66 854.74 12,934.40

55 11,266.00 585.35 842.36 12,693.71

60 10,756.00 416.38 799.77 11,972.15

65 8239.40 354.43 608.34 9202.17

TCOSIM 35 11,081.00 1016.40 1469.80 13,567.20

40 11,068.00 1007.30 1287.30 13,362.60

45 11,054.00 979.50 1104.50 13,138.00

50 11035.00 799.68 1043.80 12,878.48

55 10,978.00 628.85 1028.30 12,635.15

60 10,472.00 464.92 975.92 11,912.84

65 8042.00 399.36 747.40 9188.76

PPMT 35 11,643.00 747.40 1178.10 13,568.50

40 11,635.00 740.70 1042.10 13,417.80

45 11,629.00 724.23 941.72 13,294.95

50 11,614.00 537.73 896.55 13,048.28

55 11,586.00 435.89 888.92 12,910.81

60 11,046.00 328.34 845.81 12,220.15

65 8519.90 274.05 648.64 9442.59
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Figure 16. Total tonnage vs. cutoff grade.
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leads to the critical further analysis and planning of a
mining project. The PPMT methodology provides
the highest tonnage within all cutoff grades

(Fig. 17). For the indicated resources (Fig. 18), the
PPMT provides small tonnages for all the cutoff
grades, and in the inferred category (Fig. 19), only
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Figure 17. Measured tonnage vs. cutoff grade.
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the TBCOSIM provides the highest values of ton-
nages for each cutoff grade. Notably, the tonnage in
the indicated and inferred categories is not as high as
that obtained from the TBCOSIM and TBSIM. This
significant difference should be seriously considered
whenever the conventional Gaussian co-simulation
or independent simulation are employed in mineral
resource classification.

The application of these methods not only af-
fects the resource estimation but also affects the
cash flow of the project, the net present value (NPV)
calculation, the geometry of the optimal open pit
and the identification of useful blocks. Due to the
different results mentioned above for each method
and the confirmation of the reliability in the PPMT
simulation results, the PPMT technique is recom-
mended for deposits with complex inter-dependen-
cies between covariables over conventional
Gaussian independent simulations and co-simula-
tions, which show inadequate performance for the
reproduction of the spatial and global correlations
and thus the resource estimation and its classifica-
tion.

CONCLUSIONS

Geostatistical simulation methods are becoming
more popular than estimation methods due to their

reliability on the spatial grade distribution and their
ability to provide multiple scenarios, while estima-
tion methods result in unique scenarios. However,
the increasing demand for properly executed simu-
lation methods for resource estimations to obtain
more reliable block models for mine projects has led
to the investigation and modernization of simulation
techniques. In this paper, three simulation methods
were compared and employed in the mineral re-
source classification of an Fe deposit wherever there
is a good correlation between Fe and Al2O3. As
mentioned earlier, it is difficult for the independent
simulation method to reproduce the correlation
coefficient because of its inability to take into ac-
count the intrinsic correlation between covariables.
Although the co-simulation method is based on
conventional Gaussian transformation that consid-
ers the intrinsic correlation between covariables, it
showed unreliable results in the reproduction of the
local and global cross-correlation coefficients. In
contrast, the PPMT methodology showed a positive
performance regarding the reproduction of the cor-
relation coefficient. The results in mineral resource
estimation via the above-mentioned three methods
also provided different outputs with respect to ton-
nage evaluation. Furthermore, the idea of this paper
was to show that employing a proper geostatistical
simulation algorithm impacts definitely the further
analysis of a mining project such as mineral resource
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categorization, following an international standard
such as the JORC code. Through the paper, it was
shown mathematically that the PPMT approach
outperforms the independent and joint simulation in
terms of reproducing the statistical parameters,
leading to different tonnages for all different cate-
gories (i.e., measured, indicated and inferred). One
of the aim of this paper concerning this issue is that
employing a proper geostatistical simulation algo-
rithm does not necessarily imply that output of
tonnage calculation should be as high as possible.
Conversely, even utilizing a suitable algorithm may
provide much less tonnage compared to other
methods that deliver biasedly pseudo high tonnage.
The application of the PPMT methodology is highly
encouraged for multi-element deposits wherever
there exists a complex inter-dependency among
covariables. This method accounts for better global
and spatial statistical parameters and correlation
reproduction, leading to a better estimation and
classification of mineral resources based upon
international standards.
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