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Abstract: Geometallurgical variables have a significant impact on downstream activities of mining
projects. Reliable 3D spatial modelling of these variables plays an important role in mine
planning and mineral processing, in which it can improve the overall viability of the mining
projects. This interdisciplinary paradigm involves geology, geostatistics, mineral processing and
metallurgy that creates a need for enhanced techniques of modelling. In some circumstances,
the geometallurgical responses demonstrate a decent intrinsic correlation that motivates one to
use co-estimation or co-simulation approaches rather than independent estimation or simulation.
The latter approach allows us to reproduce that dependency characteristic in the final model. In this
paper, two problems have been addressed, one is concerning the inequality constraint that might exist
among geometallurgical variables, and the second is dealing with difficulty in variogram analysis.
To alleviate the first problem, the variables can be converted to new variables free of inequality
constraint. The second problem can also be solved by taking into account the minimum/maximum
autocorrelation factors (MAF) transformation technique which allows defining a hybrid approach
of joint simulation rather than conventional method of co-simulation. A case study was carried out
for the total and acid soluble copper grades obtained from an oxide copper deposit. Firstly, these
two geometallurgical variables are transferred to the new variables without inequality constraint
and then MAF analysis is used for joint simulation and modelling. After back transformation of the
results, they are compared with traditional approaches of co-simulation, for which they showed that
the MAF methodology is able to reproduce the spatial correlation between the variables without
loss of generality while the inequality constraint is honored. The results are then post processed to
support probabilistic domaining of geometallurgical zones.

Keywords: MAF; Geometallurgy; joint simulation; inequality constraint

1. Introduction

Geometallurgical mapping allows integration of metallurgical responses of a deposit into 3D
block models for the purpose of mine planning activities. Introducing these parameters into resource
modeling complements traditional geology and grade-based attributes, enabling a more comprehensive
approach to the economic maximization of mineral production through better mine planning and
reduced associated risk and uncertainty [1–3]. Most of the time, geostatistical algorithms are
applicable for producing high-resolution maps of geometallurgical variables [4–6]. However, in some
circumstances such as oxide copper deposits, the complexity of these underlying variables requires
consideration of enhanced geostatistical techniques. For instance, acid soluble copper is a fraction
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of total copper grade that is recovered by heap leaching in these type of deposits [7,8]. Acid soluble
copper grade basically can be found in different minerals such as chrysocolla, atacamite, malaquite
and pseudo-malaquite; however, a proportion of the copper mineralization is in acid insoluble form
due to the presence of copper wad and pitch [7]. The reason why total and soluble copper grades are
considered as the geometallurgical variables is that soluble copper for the mineral processing plant
is important due to leaching purposes, which is able to substantially extract copper when there is
insufficient liberation to make the beneficiation process effective [9]. Based on geochemical nature
of the copper deposits, the appropriate metallurgical methods can reduce the cost of processing
cycle and increase the recovery, but it requires accurate performance of a mine-to-mill operation
depending on geostatistical modeling of the variables. Hence, the geometallurgical mapping of
total and soluble copper grades is important to reach optimum recovery level in the period of
increasing demand for copper [9–12]. Two difficulties often arise for joint spatial modeling of these two
geometallurgical variables. The first difficulty in those oxide copper deposits that frequently happen
is related to geostatistical simulation of total and soluble copper grades with inequality constraint,
as soluble copper grade is always less than or equal to total copper grade. In this respect, conventional
co-simulation approaches are not sufficient to reproduce such a crucial condition. To overcome this
impediment, several avenues have been suggested [7,13–15]. Emery [16] proposed change to the
variables free of inequality constraint integrating the conventional paradigm of co-simulation. To do
so, the data should be converted to a new variable and then after co-simulation, back-transferred
to the original scale. The second difficulty commonly met in practice corresponds to derive the
theoretical cross-variogram structure for that conventional co-simulation algorithm. Such an inference
can be implemented by linear model of coregionalization [17]. Fitting a proper function to the
experimental direct and cross-variograms is somehow demanding [14,18]. One alternative is based
on transformation of converted cross-correlated variables into the factors that have no spatial
interrelationship continuity. Principal component analysis and minimum/maximum autocorrelation
factors (MAF) are the methods that eliminate the use of cross-variograms between correlated variables
by decorrelation techniques [19–21].

The aim of this study is fourfold: (1) change of variables to the new variables free of inequality
constraint has been applied for a dataset composed of total and soluble copper grades in an oxide
copper deposit (converting the soluble copper grades to solubility ratio accompanying the unchanged
total copper grade); (2) apply MAF factorization methodology for joint simulation of the underlying
converted variables; (3) comparing the proposed methodology (via MAF) with the results obtained
from conventional co-simulation approach. (4) probabilistic domaining of the geometallurgical
domains based on the results obtained from the proposed algorithm.

2. Materials and Methods

2.1. Inequality Constraint

In geostatistical modeling of geo-related variables, there are some situations in which one is
dealing with some constraint in a dataset. These constraints mostly can be divided into two families.
The first family corresponds to the case wherever the equality constraint enforces the variables to
be equal to the ground truth that is already known, frequently seen in geophysical attributes [22].
The inequality constraint belonging to second family includes modeling the variables with complexity
in their relations. This phenomenon frequently occurs in datasets due to some reasons such as
geological formation (i.e., different minerals), instrumental devices for assaying the grades and
chemical components restrictions. This type of constraint, for instance, can be investigated by some
defined bounds on the dataset, which restrict the variables to be adjusted to predefined intervals [23].
Particularly in mineral resource evaluation, inequality constraint is related to the grades that are
smaller than a detection limit (e.g., censor samples) or when working with soft data defined by lower
and upper bounds [24].
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Another alternative of this family, which is the target of this research, is based on restriction in
bivariate relation. In case of multi-variables, let Zi(x) denote the stationary random function with
i ∈ {1, . . . n}, n number of variables and x the location of sample points, where xεRd. The inequality
constraint for the underlying variables is defined as Z1(x) < Z2(x) < · · · < Zn.

3D spatial modeling of those variables with such a constraint entails application of enhanced
technique of geostatistical estimation and simulation. In this respect, the underlying variables, Zi(X)

may show either the same or different global distributions. For instance, Figure 1 shows different
inequality constraint settings. In Figure 1a,b, two variables, Z1 and Z2 show the same and different
distributions, respectively, with bivariate linear relationship. More complicated characteristics can
also occur as depicted in Figure 1c; two unequal variables, Z1 and Z2 illustrate not only different
distributions, but also a complex non-linear relationship. This study aims at investigating the first case
(Figure 1a) that is a frequent case in modeling of geometallurgical variables.
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Figure 1. Different settings of inequality constraint in a dataset with their marginal distributions; Z1 and
Z2: the underlying variables, (a): unequal variables with the same distribution and linear relationship,
(b): unequal variables with a different distribution linear relationship, (c): unequal variables with
different distributions and non-linear relationship.
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2.2. Minimum/Maximum Autocorrelation Factor (MAF)

Minimum/maximum autocorrelation factor (MAF) is a decomposition approach in the
geostatistical context that was first coined by Switzer and Green [20] for image analysis. In this
technique, it is of interest to convert the k spatial cross-correlated variables Y(u) = {Y1(u), . . . , Yk(u)}
to k uncorrelated factors (orthogonal) τ(u) = {τ1(u), . . . , τk(u)} through the linear transformation
based on principal component analysis (PCA).

The MAF can be classified into two main families. In first family, model-driven MAF, the
transformation matrix for obtaining the orthogonal factors τ(u), is based on the fitting the linear model
of coregionalization (LMC) on the direct and cross-variograms calculated from the primary variables
Y(u) [25]. However, a critical hypothesis in construction of this version is its restriction to the number
of structures in fitted LMC model in order to ensure the independency between the factors for all the
lag separations [19,26]. In addition, the procedure for inferring a proper LMC model is somewhat
tedious [27,28]. An alternative can be the second family, the data-driven MAF, which originally,
proposed by Switzer and Green [20]. The factors in the latter case are obtained without the requirement
to fit a linear model of coregionalization, in which the transformation matrix is computed directly from
input data through two successive PCA decompositions [29–31]. In this study, the data-driven MAF
approach is taken into account for decorrelation of two cross-correlated geometallurgical variables
based upon the following steps:

1. Transform the original variables to normal score values with a mean of zero and variance
one N(0, 1) : this can be implemented by normal score transformation methodologies such as
Gaussian anamorphosis [32] or quantile-based approach [33].

Z(u) = G−1(F(Y(u))) (1)

where G−1(.) is the standard normal cumulative distribution function, F(.) is the cumulative
distribution function of the original variable Y(u) and, Z(u) is the normal score value.

2. Compute the experimental variance-covariance matrix (V): since we are dealing with normal
score values, this matrix is identical to the sample correlation matrix. In the case of two variables,
this matrix (V) is given by:

V = Corr{Z(u), Z(u)} =
[

ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

]
(2)

where the principal diagonal element equals one which is identical to the total variance.
The upper and lower diagonal elements ρ12(0) and ρ21(0) equal the linear correlation coefficient
between two normal score variables Z1(u) and Z2(u), respectively.

3. Perform the spectral decomposition of above matrix (V) to derive the orthonormal eigenvectors
matrix (M1), associated with the underlying diagonal eigenvalues matrix (E1), such that:

V = M1E1MT
1 (3)

It is necessary to check that the entries of E are in decreasing order.
4. Calculate the PCA transformations at locations u by:

PCA(u) = E−1/2
1 M1Z(u) (4)

where PCA(u) are the scores with normal standard distribution due to the priori multivariate
Gaussian assumption.
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5. Choose a proper nonzero lag distance h and calculate the sample covariance and cross-covariance
matrices Λ̂PCA(h) over the PCA scores, so its related spectral decomposition with diagonal
eigenvalues matrix (E2) and orthonormal eigenvectors matrix (M1) is:

Λ̂PCA(h) = M2E2MT
2 (5)

It is worth mentioning that since the PCA scores are standard values, the variance-covariance
matrix is identical to correlogram matrix.

6. Finally, the MAF factors at location u can be derived:

τ(u) = M2PCA(u) (6)

The back transformation is performed through the inverse of matrix M2:

Z(u) = M−1
2 τ(u) (7)

In this case, M2 is the orthonormal eigenvectors matrix of Λ̂PCA(h) and M−1
2 is its inverse, usable

for back-transformation of simulation results. PCA(u) is also based on the scores obtained from step 4.
In this study, it is of interest to apply MAF transformation to the cross-correlated variables

combined with independent geostatistical simulation. The method allows one to independently
simulate the factors without the need to fit a linear model of coregionalization while all direct and
cross-covariances have been taken into account. Nevertheless, prior to this paradigm, the approach
based on changing the original variables to the new variables free of inequality constraint has been
employed to mitigate the impediment of modeling the total and soluble copper grades (proper
explanation is presented in subsequent section). Joint simulation with MAF is then performed
over the converted variables in order to show the capability of this combined method. First of
all, the conventional co-simulation is utilized in multivariate spatial modeling of the cross-correlated
converted variable. Second, through the same converted variable, the proposed algorithm (joint
simulation with MAF) is used in combination with independent simulation. Finally, the results of first
and second steps are validated and compared to verify the relevancy of the proposed algorithm to
multivariate spatial modeling of cross-correlated variables. The simulation algorithm in both steps
can be on the basis of any Gaussian simulation approach. However, among the most widespread
approaches, turning bands simulation [34] outperforms the sequential Gaussian simulation for better
reproduction of spatial continuity and its versatility [35,36]. The first step is very straightforward as
thoroughly explained in Eze et al., [37] for co-simulation of environmental cross-correlated variables.
For the second step (MAF analysis), the following algorithm is proposed:

1. Convert the original cross-correlated variables to the new variables free of inequality constraint
2. Transform the declustered converted variables into normal score data (Gaussian random field

with mean 0 and variance 1) (Equation (1))
3. Transform the normal score data into orthogonal MAF factors (Equation (6)).
4. Calculate the experimental variograms for each MAF factor
5. Independent Gaussian simulation of MAF factors
6. Back-transformation of the simulation results (realizations) into normal score space (Equation (7))
7. Back-transformation of the normal score realizations into the original space in order to restitute

the intrinsic cross-correlation

A brief illustration of both approaches is presented in Figure 2.
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3. Application to an Actual Case study

The 2D dataset is composed of 3866 samples obtained from blast holes belonging to a porphyry
copper deposit. The dataset is homotopic, means that the data are available for each variable at all
sampling points [38]. Total copper (tCu) and soluble copper grades (sCu) have been measured at all
sampling locations (the patterns are illustrated in Figure 3). As can be seen, the high-grade values are
concentrated mostly in the northern part of the region. In the following subsection, the original values
were multiplied by a constant scale factor in order to preserve the confidentiality of the dataset. Table 1
shows the statistical parameters obtained after applying the cell declustering [39]. The scarcity of
data in some regions makes the sampling pattern irregular and statistical parameters possibly biased.
The idea of declustering is to account for the weights of each location by the cell-based technique
to correct the pseudo skewness in the global distribution of the dataset [33]. The low values of the
coefficient of variation indicate that the data are well distributed in the region [40].
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Figure 3. Base map for the location of samples in the plane (the coordinates are local). (a) Total copper
grade (tCu); (b) Soluble copper grade (sCu).

Multivariate analysis between these two variables by computing the linear correlation coefficient,
ρ = 0.989 explicitly means that those random attributes are highly correlated. This positive correlation
also implies that total copper grade increases as the soluble copper grade increases and vice versa.
Therefore, this characteristic motivates one to jointly estimate or simulate the total and soluble copper
grades in the specified domain [37,41]. The reason is that, due to taking into account the global and local
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cross-correlation structure among the variables in joint spatial modeling, those algorithms are able to
reproduce the underlying correlation measures at target locations after the process of modeling [38,42].
This spatial correlation can be introduced as direct and cross-variograms that are directly obtained from
spatial continuity analysis [17]. However, as explained, the soluble copper grade is always less than
or equal to the total copper grade (i.e., inequality constraint) (Figure 4) following a very sharp linear
relationship, which makes the process of co-simulation difficult by conventional methodologies, since it
is not able to preserve this restriction after the process of modeling. These restricted characteristics can
be revealed through exploratory data analysis. Scatterplot as a qualitative examiner is a satisfactory
tool to investigate the inequality constraint. Other exploratory data analysis approaches including the
comparative statistics such as t-test and f-test can also be applied to compare the mean and variances of
the populations, respectively. In the t-test, for instance, the hypothesis can be based on the inequality of
the mean of the population between tCu and sCu. To come up with the problem of modeling of these
two unequal variables, the original variables can be converted to new variables free of the inequality
constraint. These new variables are taken into account in 3D spatial modeling and then need to be
back-transformed to the original scales. These forward and backward transformations neutralize any
absolute distortion might happen through the process of transformation. In this current study, the sCu
is the only variable that can be converted to another variable, the so-called solubility ratio (SR) [7].
The tCu is kept unchanged and the process of modeling is implemented only by considering the
new variable (SR) and unchanged variable (tCu). This conversion guarantees that the SR is always a
proportion of sCu and consequently, the final model (i.e. after back-transformation) can precisely yield
the relation of interest, sCu < tCu. The solubility ratio (SR) can be calculated by dividing the soluble
copper grade by the total copper grade. As this value has no unit, it can be reported as a percentage:

SR(%) =
sCu
tCu
∗ 100 (8)

Table 1. Statistical properties of tCU and sCu obtained from an oxide copper deposit mine.

Variable Mean Variance Maximum Minimum COV

Original
tCu(%) 0.723 0.233 3.150 0.100 0.667

sCu(%) 0.587 0.232 2.950 0.000 0.820

Declustered
tCu(%) 0.632 0.209 3.150 0.100 0.723

sCu(%) 0.493 0.203 2.950 0.000 0.913
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3.1. Conventional Co-Simulation

After converting the cross-correlated variables (tCu and sCu) into the variables free of the
inequality constraint (tCu and SR), based on the following the steps explained in above section,
it is of interest, to first co-simulate the total copper grade and solubility ratio by conventional
Gaussian algorithm and then back transform them to the original scale (tCu and sCu). All the
Gaussian simulation methodologies can be applied. However, turning bands co-simulation [41]
has been employed in this study because of its versatility and straightforwardness [35]. Paravarzar
et al. [35] showed that turning bands co-simulation algorithms outperform other Gaussian-based
approaches such as sequential Gaussian co-simulation in terms of global and local statistical parameter
reproduction and also in re-establishing the cross-correlation structures. Prior to the modeling,
the converted variables are required to be transformed to the normal score values (Figure 5, right).
This transformation guarantees that the values have standard Gaussian distribution N(0, 1) and can
be used in Gaussian simulation algorithms (Figure 6, right). It is worth mentioning that the scatter
plot of normal scored original data without conversion to the new variables does not convey any
multi-Gaussianity assumption, for which it restricts using the Gaussian simulation (Figure 6, left).
Corroboration of multi-Gaussian assumption can be visually checked by elliptical shapes that appear
in scatterplots of two transformed Gaussian random fields (Figure 6, right).Minerals 2018, 7, x FOR PEER REVIEW  8 of 25 
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and cross-variograms should then be fitted by manual or semi-automatic fitting approaches [43,44]
(Figure 7). In order to detect the anisotropy in the region, the variogram is calculated along different
directions. Visual inspection showed that zonal and geometric anisotropies do not impact the spatial
continuity measure and, consequently, the omni-directional variogram can be considered for describing
the spatial variability in the region. Linear model of coregionalization (LMC) is then fitted consisting
of two nested omni-directional spherical structures:

γtCu−SR(h) =

(
0.5077 0.4272
0.4272 0.5945

)
Sph(30 m, 30 m, 30 m)

+

(
0.4016 0.3741
0.3741 0.4260

)
Sph(200 m, 200 m, 200 m)

(9)

Linear model of coregionalization is widely applicable to fit such direct and cross-variograms, due
to its mathematical simplicity [17,18,38]. The only restriction in LMC, is that the sill matrices should be
positive semi-definite and the structures should be stationary permissible variogram models [44].

Having the fitted theoretical spatial continuity, turning bands co-simulation is then performed on a
regular grid with dimension of 25 m × 10 m × 0.5 m. In this algorithm, it is of interest to stochastically
simulate the cross-correlated variables (more than two). As a consequence, the cross-covariance
function is needed to construct such a multi-dimensional Gaussian random field in the region.
The non-conditional step is the same as tuning bands simulation for independent modeling of each
variable; however, in part of the conditioning mechanism, simple co-kriging should be utilized for
the process of conditioning to hard data (sampling locations). In this study, simple co-kriging is
incorporated with a single searching strategy [45]. The proposed approaches can be substituted for
ordinary co-kriging where the uncertainty is significant in terms of the mean value of the random
field [7]. The type of neighborhood is moving with conditioning maximum up to 50, based on
surrounding data characterized by isotropic distance equal 170 m derived from the variogram analysis.
The number of lines for turning bands should be as large as possible [41]. Henceforth, it is set to 1000
lines for elimination of stripping effects and the number of realizations is considered to be 100.
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3.2. Joint Simulation with MAF Transformation

The MAF factors are derived from the same normal score values (NStCu and NSSR) explained
in the conventional co-simulation section following the steps explained in the methodology section
(i.e., Section 2.2). To do so, since in this study, data-driven MAF is used, it is necessary to consider an
arbitrary lag separation distance except 0 for calculation of cross-correlation matrix; 10 m is chosen
based on sampling spacing and range of spatial continuity. The MAF transformation matrix, which
allows converting the Gaussian variables into factors, is the following:

AMAF =

(
0.891 −1.520
0.128 1.758

)
(10)

In order to check whether the factors are spatially decorrelated, a cross-correlogram was plotted.
This shows that the spatial correlation between two factors τ1 and τ2 is close to zero (Figure 8),
corroborating that the factors are effectively decorrelated at all lags. The histogram of the factors can
also be checked to determine whether they follow the normal score distribution N(0, 1). Figure 9
shows the global distributions of the factors that follow a standard normal distribution.
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Once the spatial decorrelation of factors is validated, the experimental direct variogram for each
factor is computed and fitted:

γτ1(h) = 0.713Sph(30m, 30m, 30m) + 0.324Sph(200m, 200m, 200m)

γτ2(h) = 0.525Sph(30m, 30m, 30m) + 0.335Sph(200m, 200m, 200m)
(11)

The fitted model to each factor is two spherical structures. The spatial continuity direction is
omni-directional, same as the one considered over previous normal score variables (Figure 10).

Having the fitted variogram structures over the factor τ1 and τ2, the turning bands simulation
algorithm [34] is employed to generate 100 realizations conditioned to two random fields of interest
(factors). The size and dimension for independent simulation are the same as mentioned earlier for
conventional Gaussian co-simulation. After simulation, it is necessary to back-transform the realization
within two successive steps. The first back-transformation is from factor to normal score values by
taking into account the inverse of matrix in Equation 10 and simply through its multiplication with the
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simulated factors; the second is from normal score values to total copper grade and solubility ratio.
The latter uses the same function for transforming the total copper grade and solubility ratio to the
normal score standard. This can be done by Gaussian anamorphosis functions [39] or quantile-quantile
approach [36]. Since the aim of this research is to jointly simulate the total and soluble copper grades,
the realizations so obtained are then back-converted by Equation 8 to desired space. The maps of the
average of 100 realizations (E-type) produced from both methods: conventional co-simulation and
joint simulation with MAF, are illustrated in Figures 11 and 12.
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3.3. Validation of Results

In this section, it is of interest to validate the results of simulation realization produced by two
underlying methodologies (TBCOSIM considering the linear model of coregionalization and MAF).
The criteria for such an examination are the statistical parameter of the original dataset that are spatially
declsutered and that effectively, the outputs of two models can be compared with. For this purpose,
the tests are carried out on the basis of two families. The first family aims at comparing the global
statistical parameters of the derived realizations to the declustered raw variables. In this context,
reproduction of global mean, variance and correlation is considered. The second family corresponds
to checking the spatial reproduction of local continuity by applying the variogram analysis over
the produced realizations. A variogram is a good measure of spatial variability for quantification
of dissimilarity between data pairs in a region [39,42]. This can be a good tool for calculation of
local variability.

3.3.1. Validation of Global Statistical Parameter

The first examination consists of analyzing the mean and variance reproductions of simulation
realization for both TBCOSIM and MAF approaches, in order to compare with the original declustered
means of total and soluble copper grades. Although the mean values are the acceptable measure
for comparison of realizations, even with same central value, the simulation results might show
absolutely different distributions. The variance as an additional measure of variation is required for
better interpretation of the data dispersion. Consequently, the mean and variance are calculated over
each realization. The average of those mean and variance values over 100 realizations are presented
in Table 2. As can be seen, the reproduction of the mean is dramatically adequate for two variables,
whereas the reproduction of variance is good and slightly higher compared to the input declustered
variance. This minor difference can be interpreted due to the influence of conditioning data. The
simulation results before back-transformation for SR and tCu are also checked thoroughly to examine
whether the realizations follow a normal standard distribution.

The strength of the relationship between variables can be quantified through correlation
coefficients. In order to measure the interrelation characteristics between the total and soluble
copper grades, the correlation coefficient is calculated taking into account all the realizations.
The average correlation computed value over 100 realizations is obtained from MAF and TBCOSIM
(ρMAF = 0.990 and ρTBCOSIM = 0.990. A comparison to the declustered original correlation coefficient
(ρtCu−sCu = 0.989) indicates that not only is the LMC is sufficient for re-establishing the data cross
correlation, the proposed algorithm (joint simulation with MAF) is also capable of yielding the desired
correlation (Table 2).

Table 2. Reproduction of global mean, variances and correlations obtained from initial data, TBCOSIM
and MAF over 100 realizations.

Mean Variance Correlation

Parameters tCu(%) sCu(%) tCu(%) sCu(%) tCu(%) vs sCu(%)

Original 0.723 0.587 0.233 0.232 0.991

Declustred 0.632 0.493 0.209 0.203 0.989

Average TBcosim 0.616 0.487 0.228 0.219 0.990

Average MAF 0.611 0.483 0.225 0.216 0.990

Figure 13 shows the scatter plot between these two variables before and after modeling. The shape
of the bivariate relationship (dependency) between total and soluble copper grades and also the
inequality constraint are satisfactorily reproduced. These results imply that the proposed algorithm
does not show loss of accuracy.
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3.3.2. Validation of Local Statistical Parameter

Another way to quality check simulation results is to check the spatial continuity. In this respect,
direct and cross-variograms of the simulated realizations should be compared with the fitted theoretical
model [16]. Figure 14 shows the comparison of the direct and cross experimental variogram of
simulations obtained from TBCOSIM and MAF approaches with the variogram model computed from
original declustered variables. In all cases, the spatial continuity has been sufficiently reproduced.
However, a slight difference appeared between average variogram of the simulation results (dashed red
line) and theoretical variogram (solid blue line), because of the impact of conditioning sample points
that distorts the prior model and also the restriction in the size of a domain [41,46,47]. One solution
to avoid such a contrast is to use non-conditional simulation which is not in the scope of this study.
However, the non-conditional simulation is only applicable for validation of statistical parameters and
is not suitable for further analysis and decision-making in a project.
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Figure 14. Direct and cross-variograms of simulated realizations with TBCOSIM and MAF. (solid
blue line: fitted model, dashed red line: average of the realizations; dashed green line: individual
realizations). (a) Direct variogram of tCu(%) for TBcosim values; (b) Direct variogram of tCu(%)
for MAF-TBsim; (c) Direct variogram of sCu(%) for TBCOSIM; (d) Direct variogram of sCu(%) for
MAF-TBSIM; (e) Cross-variogram of tCu(%) vs sCu(%) for TBCOSIM; (f) Cross-variogram of tCu(%)
and sCu(%) for MAF-TBSIM.
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Another measure for evaluation of spatial continuity is the codispersion function based on the
correlation coefficient between lag separation increments. This function for tCu and sCu is given
by [39]:

ν tCu
sCu

(h) =

γ tCu
sCu

(h)

√
γtCu(h).γsCu(h)

∈ [−1,+1] (12)

The codispersion function is computed over the simulation results obtained from the TBCOSIM
and MAF algorithm and is then compared with both of the original codispersion functions calculated
from original declustered dataset (Figure 15). The trend of those curves corroborate that the spatial
correlation between lag separation increments is independent of the increase in the lag itself. This type
of characteristic can be revealed through visual inspection of the graphs, as long as two algorithms
follow the same features (gray and red lines) compared with the original codipersion function (blue
line). However, similar to variogram reproduction, slight deviation of simulation results is due to the
influence of conditioning data.
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Figure 15. Codispersion functions showing the same trend for both approaches (TBCOSIM and MAF)
compared to original data.

3.3.3. Sensitivity Analysis of the Number of Simulations

The concept of simulation is to produce a large number of realizations to quantify the uncertainty
at target locations [40,48]. However, finding the adequate number of realizations is still a meaningful
question in geostatistical modeling of the variables [49]. In this section, it is of interest to perform
a sensitivity analysis over the number of realizations. The test here is to compare the distributions
of the mean values and variances calculated over different numbers of realizations. To do so, three
realizations (20, 50 and 100) are considered. In each case, the mean and variance of each realization are
calculated and the relevant distributions are subsequently deduced and compared with each other.
For instance, in the case of 20 realizations, through Quantile-Quantile plot (QQ-plot) analysis, 20
values of the mean and 20 values of the variance are obtained from TBCOSIM (as the reference) and
the underlying distribution is compared with the 20 values of the mean and 20 values of the variance
that are computed from MAF results. The QQ-plot can be interpreted as follow [50]: a) when all
the points on a QQ-plot fall long the diagonal line, the two distributions are exactly the same; b)
a systematic departure above or below the diagonal line indicates that the mean value of the two
underlying distributions is different; c) a slope different from the diagonal indicates that the variance
of the two distributions is different; d) curvature on a QQ-plot indicates that the two distributions have
different shapes. As can be seen from Figures 16 and 17, the distribution of mean and variance values
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approach the diagonal line by increasing the number of realizations from 20 to 100. This is worse
when one considers small numbers of realizations (e.g., 20) that lead to a systematic departure from
the diagonal line, indicating the significant difference in two distributions obtained from TBCOSIM
and MAF. The results also showed that 100 realizations can be considered as an acceptable number
of realizations for the MAF analysis for reproduction of the desired uncertainty that can be expected
from TBCOSIM.
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The presented Q-Q plots show the reproduced global distribution of the simulation results.
In order to check the sensitivity of variability of mean values versus the number of realizations,
20 groups of cases including {5, 10, 15 . . . 100} realizations are considered for this type of examination.
Figure 18 shows that the variability for both algorithms, MAF and TBCOSIM (blue and black lines,
respectively) following very close trends in both tCu and sCu variables compared to the original
declustered mean (red line). Slight deviation of mean values from the original declustered mean
is due to the influence of conditioning data. It is also worth mentioning that based on Figure 18,
the fluctuations after approximately 30 realizations stabilize in terms of convergence to the declustered
original mean. However, the convergence to the original global distribution is more satisfying
whenever one considers 100 realizations (Figure 17).
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3.3.4. Post Processing the Realizations: Probabilistic Domaining of Geometallurgical Domains

Having the result of realizations, one is able to take them into account for further decision-making
process in a mining project. An advantageous aspect of this act is to define the possible destination of
a mined block for mineral processing plants. Since the uncertainty is estimated through the output of
simulation approaches, the probabilistic areas of the underlying mineral processing destinations such
as flotation, leaching and dump plants can be identified, in which they show a measure of confidence to
decide about the destination of that block of interest. In this respect, the areas with these characteristics
can be considered as the geometallurgical domains. In this oxide copper deposit, each mined block
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can have three possible destinations: flotation plant provided that total copper grade is above 0.4%
and solubility ratio is less than 70%, leaching plant provided that total copper grade is above 0.4% and
solubility ratio is more than 70% and dump otherwise. Figure 19 shows the probable areas of both
leaching and flotation plants obtained from post processing the 100 simulation results produced by
MAF approach. Construction of those probability maps is based on the calculation of the frequency of
occurrence of each geometallurgical domain over 100 conditional realizations. They show the risk of
finding a geometallurgical domain different from others. The sectors with little uncertainty are those
associated with a high probability for a given geometallurgical domain (colored in red in Figure 19),
indicating that there is a little risk of not finding this geometallurgical domain, or those associated with
a very low probability (colored in blue in Figure 19), indicating that one is quite sure of not finding this
domain, while the other sectors (colored in light blue, green or yellow in Figure 19) are more uncertain.
However, those descriptions are probabilistic and not deterministic.
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3.3.5. Validation against Actual Data

The produced model can also be examined versus the actual value of underlying attributes,
that is, mostly based on production data, in which the true values are known after extraction of
the simulated block. In this study, the production data are not available. Henceforth, in order to
assess the proficiency of the simulation results, a typical validation technique, which is suitable for
validation of geostatistical algorithms, is taken into account for both underlying variables, tCu and sCu.
This test, the so-called jackknife approach, aims at resampling without replacement when alternative
data values are re-estimated from other non-overlapping data sets [35]. This type of analysis is
basically applicable for evaluation of the variogram model, type of kriging and the search strategy
in geostatistical contexts. Nevertheless, the jackknife approach can also be applicable for evaluation
of simulation results. To implement this examination technique, the underlying dataset in this study,
consisting of 3866 sample points, was divided randomly into two parts. One set of data is considered as
analysis and another non-overlapping set of data is chosen as test (Figure 20). The analysis data set is
then incorporated to simulate the tCu and sCu at sample locations of test data. To do so, turning bands
co-simulation and the proposed algorithm in this study (MAF) are applied following the procedures,
which are thoroughly discussed in previous sections. Since the true values of tCu and sCu are known
at test sample locations, the average of simulation results in the same locations conditioned to the
analysis dataset can provide the prediction values of tCu and sCu at those corresponding locations.
Therefore, a scatter plot can be drawn though the test sample points, wherever two sorts of data are
available: true and predicted measures of tCu and sCu. The results are depicted in Figure 21, and
the bivariate distribution of points and their tendency to the diagonal line (black line) reveal that
both approaches provide analogous outputs and one is able to use MAF, rather than a co-simulation
approach without loss of generality, in the case when dealing with possible actual data (i.e. production
data) is significant.
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Scatterplot between prediction and true values, somehow provide the visual inspection, mostly
qualitative for examination of proficiency of the geostatistical algorithms. One quantitative measure
can be relative error which is the ratio of the value of the difference of an estimated value and an actual
value compared to the actual value:

Relative error =
estimated value− actual value

actual value
(13)

The mean of relative errors in both approaches (MAF and TBCOSIM) for two variables, tCu and
sCu are very close to each other and also close to zero (Table 3), indicating that not only the simulated
results for prediction of actual data are trustworthy, both techniques produced the tight results in what
concerns the error computation.

Table 3. Mean relative error obtained from TBCOSIM and MAF.

tCu sCu

TBCOSIM 0.284 0.678

MAF 0.268 0.667

4. Discussion on Application and Limitations of the Proposed Approach

This study showed that the use of LMC can be eliminated in order to build a simpler
geometallurgical model through the factorization approach, in the case whenever the inequality
constraint exists among the variables, which significantly requires less computational time and
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resources. In addition to this benefit for removing this spatial continuity inference step in LMC,
another advantage is substituting the co-kriging for kriging in the proposed algorithm that is less
demanding and considerably accelerates the process of modeling, in the particular case wherever there
are plenty of data and sample points. It is also worth mentioning that, although the proposed algorithm
is not an offshoot of conventional co-simulation, it gives the same benefit in preserving the spatial
continuity structures of the dataset. Besides those advantageous, there are some areas of research that
can be proposed for future work of some cases which may restrict using the proposed algorithm for
the time being. For instance, there are situations where the total copper grade is more available than
soluble copper grade, implying a heterotopic sampling pattern. In this situation, although a “change
of variable” technique is suitable, the joint simulation step by MAF is not adequate because of its
restriction into the homotopic sampling pattern. Another issue that can be discovered is related to
the number of structures in the linear model of coregionalization. The MAF technique is limited to
two structures in variogram analysis. More advanced techniques such as Enhanced Coregionalization
Analysis [51] can be proposed instead. A related point when considering the validation technique
against actual data is that the jackknife approach applied here is about the simulation data. The model
can also be validated through reconciliation and availability of actual data from a mining site.

5. Conclusions

Geostatistical modeling has been widely used in spatial modeling of geometallurgical variables.
However, since those variables have inherent complex characteristics such as the inequality constraint,
one needs to consider the improved methodologies. In this study, a new algorithm is proposed to
jointly simulate total and soluble copper grades with inequality constraint. In order to show the
versatility of the presented technique, the results are compared with those obtained from conventional
co-simulation that is based on using the linear model of coregionalization (LMC). A case study from a
copper deposit consisting of total and soluble copper grades, with homotopic sampling was carried
out. In order to circumvent the problem of inequality constraint modeling, the “change of variable”
technique is taken into account to compute a new variable, namely, the solubility ratio (SR). This new
variable, SR, and total copper grade (tCu) are then taken into account for the process of modeling by
the proposed algorithm. The simulated results of SR and tCu are then back-transformed to the original
scales, tCu and sCu. The turning bands co-simulation is also applied as a benchmark to compare the
outputs of the proposed algorithm. Global and local statistical analysis, such as examination of mean,
variance and variogram reproduction, showed quite satisfactory results. The results also approved
that the correlation coefficients between total and soluble copper for both algorithms (conventional
co-simulation and proposed algorithm (MAF)) are reproduced effectively, and multivariate complex
interrelation of variables is regenerated without any deviation from the primary inequality constraint.
In addition, the results of the proposed algorithm for joint simulation with MAF show similar results
as in co-simulation. In order to show the application of simulation results, the realizations are
post–processed to quantify the probabilistic destination of geometallurgical domains (e.g. dump,
flotation and leaching plant). Those maps are appropriate for further analysis of a mining project such
as mine design and geometallurgical plant studies.
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