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Abstract 

Neural Network (NN) algorithms have existed for long time now. However, 

they started to reemerge only after computers had been invented, because 

computational resources are required to implement NN algorithms. In fact, 

computers themselves are not fast enough to train and run the NNs. It can take days 

to train some complex neural networks for certain applications. One of the complex 

NNs that became widely used is Long-Short Term Memory (LSTM) NN algorithm. 

As a broader approach to increase the computation speed and decrease power 

consumption of neural network algorithms, hardware realizations of the neural 

networks have emerged. Mainly FPGA and analog hardware are used for these 

purposes. On this occasion, it happens to be only FPGA implementations of LSTM 

exist. Using this lack, this thesis work mainly aims to show that LSTM neural 

network is realizable and functional in analog hardware. In fact, analog hardware 

using memristive crossbars can be a potential solution to the speed bottleneck 

experienced in software implementations of LSTM and other complex neural 

networks in general.  

This work mainly focuses on implementation of already trained LSTM neural 

networks in analog circuitry. Since training consists of both forward and backward 

pass computations through NNs, first, there should be focus on implementing the 
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circuitry that can run forward passes. This forward running circuit further can be 

extended to a complete circuit which would include training circuitry.  

Additionally, there exists various LSTM topologies. Software analysis has 

been done to compare the performance of each LSTM architecture for time-series 

prediction and time-series classification applications. Each of the architectures can 

be implemented in analog circuitry without great difficulty using voltage-based 

LSTM circuit parts due its easiness to reconfigure. Fully functional implementation 

of the voltage-based memristive LSTM in SPICE circuit simulator is the main 

contribution of this thesis work. In comparison, current-based LSTM circuit parts 

may not be easily rearranged due to the difficulty of passing currents from one stage 

to the next without degradation in magnitude.  
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Chapter 1 – Introduction 

1.1 General 

Since the invention of transistors in 1947 by William Shockley, John Bardeen, 

and Walter Brattain the world has experienced technological boom. First flip-flop 

consisting two bipolar transistors was built by Jack Kilby of Texas Instruments [1]. 

Later transistors became the integral part of any electronic device. During the course 

of technological advancements, there was mainly a single change: transition from 

bipolar junction transistors (BJTs) to Metal Oxide Semiconductor Field Effect 

Transistors (MOSFETs) in digital IC design. Since then CMOS process technologies 

have been scaled down steadily by abiding the “Moore’s Law”.  However, this 

transistor shrinking trend cannot continue when semiconductor industry reaches the 

point where further reductions in size will be intolerable resulting in unreliable 

operation of CMOS devices. Therefore, there is a need for alternative solution to 

continue manufacturing smaller, faster, and power-efficient electronic devices. 

Particularly, scaling down of CMOS memory devices (Flash, SRAM, etc.) is of 

utmost concern for semiconductor industry. In this regard, a new physical element 

called memristor has been proposed by scientists as a potential solution to replace 

transistor-based memory cells. In fact, memristors have found wide range of 

applications in electronics area [2]. They are used to realize neural networks in 
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hardware: implementation of both neuromorphic computing systems [3] inspired by 

human brain; and their training algorithms such as back propagation [4] and Spike-

Timing-Dependent-Plasticity [5-7]. Another application is using memristors in 

analog circuits as tunable resistors that can change the operation modes of the 

circuits [8]. They can be used in digital circuits as well replacing the transistors in 

implementing the logic gates [2]. These wide range of applications comes due to the 

properties of memristors: their metal-insulator-metal (MIM) structure, small 

footprint on a chip, memory in the form of resistance, low-switching time, high 

endurance, and low switching energy [2].  

Therefore, memristors are believed to have bright future and become the next 

fundamental building block in both analog and digital IC design replacing the 

transistors where possible; and memristive systems with in-memory computing 

replacing the von Neumann architecture. 

  

1.2 Research aims and Methods 

The purpose of this thesis is to design fully functional analog circuit of LSTM 

using memristive crossbars and test it on solving machine learning problems.  

The overall design was done on pen and paper. Then each part of the design 

was built and tested using circuit simulator program such as LTspice. After verifying 
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each part works well, all the parts of the whole design were put together and tested 

again. The circuit-level testing of the circuit was compared to the software 

implementation results. The software implementation of LSTM was accomplished 

using Python programming language and Keras library. However, to dissect the 

algorithm and get the intermediary results of the algorithm, it has been implemented 

in Matlab from scratch as well without using LSTM library of Matlab. In addition, 

“recurrent.py” file from Keras library was extended to be able to build and run 

different topologies of LSTM in simple way. 
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Chapter 2 – Literature Review 

2.1 Background Theory 

2.1.1 Memory Resistor – Memristor 

Leon Chua was the first person to notice that there was a missing fundamental 

circuit element and to publish a work in 1971 about the memristor [9].  He put 

forward that a memristor would complement the following list of fundamental 

circuit elements: resistor, capacitor, and inductor. In fact, it can be best shown by 

studying the relationship of fundamental circuit elements with the fundamental 

circuit variables as shown in Figure 2.1. In the figure, the diagonal line contains the 

fundamental circuit variables of charge, current, voltage, and flux. Each row 

contains the equations where corresponding diagonal variable is expressed in terms 

of the other circuit variables and the circuit elements. Whereas, each column 

contains the equations where corresponding diagonal variable is part of the 

expressions. It is not difficult to see the missing relationship between charge 𝑞 and 

flux 𝜑. Mathematically, following relationships of charge-controlled memristance 

with voltage and flux-controlled memristance with current were established by Chua 

[9]:  

𝑣(𝑡) = 𝑀(𝑞(𝑡))𝑖(𝑡),                                     (2.1) 

𝑀(𝑞(𝑡)) =
𝑑𝜑(𝑞)

𝑑𝑞
.                                       (2.2) 



12 
 

Likewise, the current can be expressed as 

𝑖(𝑡) = 𝑊(𝜑(𝑡))𝑣(𝑡),                                   (2.3) 

𝑊(𝜑(𝑡)) = 𝑑𝑞(𝜑)/𝑑𝜑.                                 (2.4) 

 The memristor’s unit is memristance (short for “memory resistance”) 

𝑀(𝑞(𝑡)) and has units of resistance. Similarly, flux-controlled memristor’s unit is 

memductance 𝑊(𝜑(𝑡)) which has units of conductance. Therefore, memristor is a 

passive two-terminal fundamental circuit component exhibiting memory property by 

changing its resistance depending on how much charge in total went through the 

memristor.  

   Chua and Kang, in 1976, extended the theory of memristors to memristive 

devices [10]. Memristive devices differ from memristors in the way how the change 

in their resistance occurs. Basically, a memristive device has an internal state 𝑥 

which influences its resistance. The internal state changes depending on how much 

and for how long voltage signal applied across or current passed through it. The 

internal state is not directly related to flux or charge as in the case of memristors. 

Mathematically, the same equations for memristors can be expressed as following 

[10]: 

𝑣(𝑡) = 𝑀(𝑥, 𝑖)𝑖(𝑡),                                     (2.5) 
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𝑖(𝑡) = 𝑊(𝑥, 𝑣)𝑣(𝑡).                                     (2.6) 

where 𝑀(𝑥, 𝑖) is the memristance of time-invariant current-controlled memristive 

device; and 𝑊(𝑥, 𝑣) is memductance of time-invariant voltage-controlled 

memristive device. Also, 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑖) is valid for the former case and  

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑣) 

for the latter case. 

 Both memristors and memristive devices demonstrate hysteresis in their I-V 

curve as shown in Figure 2.2. The shapes may differ from device to device, but the 

hysteresis always goes through the origin. Memristive devices is a broad group that 

includes memristors which have 𝑓(𝑥, 𝑖) = 𝑖. 

 

Figure 2.1. Symmetry of relationships between the fundamental circuit variables and elements. 

Also, bottom left corner contains the symbol of memristor. 
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Figure 2.2. Example of I-V characteristic of a memristive device based on [11]. Sinusoidal 

voltage signal is applied across the memristive device for different frequencies. 

 

Up until 2008, when Hewlett Packard proposed 𝑇𝑖𝑂2 resistive switches as 

memristive devices [12], research on memristors and memristive devices was frozen. 

Hewlett Packard proposed the structure of the 𝑇𝑖𝑂2 device as depicted in Figure 2.3 

and the model of their 𝑇𝑖𝑂2 device as following: 

𝑀(𝑥, 𝑖) =
𝑅𝑜𝑛𝑥(𝑡)

𝐷
+ 𝑅𝑜𝑓𝑓(1 −

𝑥(𝑡)

𝐷
),                          (2.7) 

𝑓(𝑥, 𝑖) =
µ𝑉𝑅𝑜𝑛

𝐷
𝑖(𝑡),                                      (2.8) 

where 𝑅𝑜𝑛 represents the lowest resistance which occurs at 𝑥(𝑡) = 𝐷 and 𝑅𝑜𝑓𝑓 is 

the highest resistance which occurs at 𝑥(𝑡) = 0. 𝐷 represents the total length of the 

device and 𝜇𝑉 is the dopant mobility. 
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 However, the model proposed by Hewlett Packard does not fit well real 

devices. In fact, many other models have been developed that better represent real 

memristive devices [2], but still idealistic.  

 

Figure 2.3. Memristor structure representation based on [12]. 

 

2.1.2 Memristive Crossbar Arrays 

 As already mentioned in the introduction, memristors can be used in many 

areas of electronics. Mostly they are used in crossbar configurations as shown in 

Figure 2.4 (and the idea of 2-dimensional resistive crossbar arrays was first proposed 

in 1961 by Steinbuch [13]). In the figure, particularly, implementation of neural 

network using memristive crossbar is illustrated. Its operation is simple. The inputs 

𝑥1, 𝑥2, and 𝑥3 are represented by voltage sources 𝑣1, 𝑣2, and 𝑣3 in the circuit. The 

weights from 𝑤11 to 𝑤33 correspond to the memristor conducatnces from 𝐺11 to 𝐺33 

in the same order. Finally, as expected, the outputs 𝑦1, 𝑦2, and 𝑦3 correspond to 
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currents 𝑖1, 𝑖2, and 𝑖3. In practical implementations, the currents go to virtual grounds 

created using operational amplifiers. Note that here linear activation functions in the 

output layer was used for simplicity.  

Basically, the crossbar executes vector-matrix multiplication (VMM) 

operation very fast and in parallel. Another advantage comes when the neural 

network size becomes large resulting in execution bottleneck (sequential execution 

of processing units) and data transfer bottleneck between processing unit and 

memory in computers while implementing the network training using software. In 

the case of the memristive crossbar there is no need to store weight values 

somewhere else – training of the weights happens in-place [14].  

 

Figure 2.4. Simple neural network (left) and its crossbar implementation (right). 
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2.1.3 Long-Short Term Memory (LSTM) 

LSTM, a type of Recurrent Neural Network (RNN), was invented by 

Hochreiter and Schmiduber in 1997 to solve the issue of vanishing and exploding 

gradients in RNNs [15]. The problem arises during the training of RNNs for patterns 

that are spread in long time steps. Diagram of RNN and its unrolled equivalent 

version with a vanishing gradient descent problem is visualized in Figure 2.5. In the 

figure, the RNN has a single input unit, a single recurrent hidden unit, and a single 

output unit. As neatly explained in [16], consider that the input at time t is non-zero 

and at the next time steps it is zero. Then, if we have recurrent weight value smaller 

than one, it means that the input at time t will contribute very little to the output at 

time t+3. In fact, as the difference of time steps between the input and the output 

increases the vanishing of the input’s influence on the output happens exponentially 

fast. Therefore, the error derivative with respect to the input will vanish. Similarly, 

exploding gradient problem occurs when the recurrent edge has weight value higher 

than one. In addition, the type of activation function also contributes to the vanishing 

and exploding gradient problems. For instance, in the case of a sigmoid activation 

function, the vanishing gradient problem is more likely to happen since it will always 

output values smaller than one. Whereas, in the case of a rectified linear unit with 

its output equal to max(0, 𝑥), it tends to explode as its output value is not restricted 

to one.    
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Figure 2.5. RNN representation on the left. Equivalent diagram on the right when RNN 

experiences a vanishing gradient problem. 

 

So, there is no control over the information that is fed into and out of a simple 

RNN cell. Whereas, an LSTM RNN cell has control over what is forgotten, what is 

fed into, and what is outputted in a cell. This is achieved through gates: forget, input, 

and output gates which utilize sigmoid activation functions. Sigmoid function 

changes smoothly and ranges between zero and one. When a gate’s output is one, it 

allows to pass all the current stage information to the next stage using hadamard 

multiplication operation. Similarly, when it is zero, the gate does not allow to pass 

any information to the next stage. From Figure 2.6, it can be seen that the structure 

of all three gates are the same: shared input vector which is the concatenation of 

network input value 𝑥𝑡 at the current time step and the output value ℎ𝑡−1, which is 

the output of the previous time-step LSTM cell; and the same activation functions 

and hadamard multiplication units. They differ only in different values of weights 

for the input vector ([𝑥𝑡, ℎ𝑡−1, 1]) as it can be seen below in mathematical form [17]: 
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Figure 2.6. LSTM cell architecture based on [17]. 

𝑓𝑡 =  𝜎(𝑏
𝑓1 + 𝑤

𝑓𝑥𝑡 + 𝑢
𝑓ℎ𝑡−1),                            (2.9) 

𝑖𝑡 =  𝜎(𝑏
𝑖1 + 𝑤

𝑖𝑥𝑡 + 𝑢
𝑖ℎ𝑡−1),                            (2.10) 

𝑜𝑡 =  𝜎(𝑏
𝑜1 + 𝑤

𝑜𝑥𝑡 + 𝑢
𝑜ℎ𝑡−1).                          (2.11) 

The cell state 𝐶𝑡 of an LSTM cell is updated by forgetting some portion of the old 

cell state 𝐶𝑡−1 and adding some portion of the candidate value 𝐶′𝑡, which has the 

same structure as the gates, except with different activation function: 

𝐶′𝑡 = 𝑡𝑎𝑛ℎ(𝑏
𝐶′1 + 𝑤

𝐶′𝑥𝑡 + 𝑢
𝐶′ℎ𝑡−1),                      (2.12) 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡
′                                   (2.13) 
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Finally, the current output of the LSTM cell is the some portion of the filtered cell 

state 𝐶𝑡: 

ℎ𝑡 =  𝑜𝑡 ∗ tanh(𝐶𝑡).                                       (2.14) 

Note that the equations (2.9)-(2.14) correspond to the case of a single LSTM hidden 

unit. In practice, LSTMs are used with larger weight matrices meaning that the size 

LSTM hidden layer is much larger. Also note that Keras library of Tensorflow uses 

the version of LSTM that was presented above [18]. Other architectures of LSTM 

will be presented in the methodology section of this thesis.  

It is no wonder that LSTM became quite popular in recent times, since it is 

used widely in machine learning field. Particularly, application of LSTM can be 

found in natural language translation [19], image captioning [20-22], video 

captioning [23], speech recognition [24], and time-series prediction (part of this 

thesis).  
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2.2 Relevant Literature 

 As it has been already mentioned in the section 2.1.2, memristive crossbar 

arrays are more efficient in implementing neural networks than computers are with 

their software. Since memristors and memristive systems are still emerging as a 

technology, not many chip implementations of neural networks using memristive 

crossbar arrays exist. Instead, FPGA implementations of neural networks have 

become a general trend in literature works. Particularly, FPGA implementations of 

LSTM have been presented each year since 2015 by research community [25-29]. 

These works report efficiency of FPGA implementations of LSTM compared to the 

software implementations of LSTM. However, there are still a few works that are 

related to the implementation of LSTM in memristive crossbar arrays [30-32] and 

ultimately, it is believed that memristive crossbar implementations would 

outperform the digital implementations as memristor technology matures [31].  

In [30], purely analog implementation of memristive LSTM in 0.18 µm 

CMOS technology is proposed. However, this work does not provide full circuit 

simulation of the whole system solving a particular machine learning problem. They 

propose only the separate analog building blocks of the whole system. Particularly, 

analog circuits for activation function and element-wise (hadamard) multiplication 

operation are proposed. In addition, an existing crossbar configuration is presented. 
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As opposed to the work in [30], authors of [31] solve a real-world problem 

(language modeling problem) and accomplish a system level simulation. Their 

simulations are done in their own built software tool (written in C++) rather than on 

circuit simulator such as SPICE. They use so-called non-linear function units 

(NLFs), which are digital blocks, to implement all the mathematical operations 

required to implement LSTM except for vector-matrix multiplication (since it is 

implemented using memristive crossbars). They set some constraints in the software 

to incorporate the non-idealities associated with the analog VMM operation. Their 

main finding is that memristors need to have symmetric change in conductance 

values when given positive and negative voltages across for good performance 

results. The slightest variation as low as 2% in the asymmetry can severely affect 

the performance results in large LSTM networks with the sizes of up to 512 hidden 

units compared to fully connected networks with smaller size and smaller training 

dataset. 

Finally, the work by [32] presents a fabricated chip consisting of one-

transistor one-memristor (1T1R) type crossbar array that implements the VMM 

operation part of the LSTM algorithm. However, the rest of the operations were 

implemented in software in their work. They were able to train their weight matrix 

of memristors in-situ and solve successfully time-series prediction and classification 

problems. The used memristors were from Ta/HfO2. 
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Chapter 3 – Methodology 

In this thesis, the problems that are solved using LSTM algorithm are framed 

as following: predict sample point at current time step 𝑡 using previous sample points 

at time steps 𝑡 − 1, … , 𝑡 − 𝑑. Selection parameter 𝑑 is a look-back number or a 

prediction delay. Then, output of a single LSTM cell (neuron) can be expressed as 

following: 

𝑦(𝑡) = 𝑓𝐿𝑆𝑇𝑀(𝑥(𝑡 − 1), … ,  𝑥(𝑡 − 𝑑)).                                     3.1 

 

3.1 Selected Machine Learning Problems 

3.1.1 Time-series prediction problem 1 

As a first step in implementing LSTM neural network algorithm in analog 

hardware (in circuit simulator) using memristive crossbar arrays, a simple machine 

learning problem - prediction of international airline passenger count - was selected. 

In fact, a web-tutorial by Brownlee [33] was already solving the problem using 

LSTM in Keras library (which became the main tool for software simulations of 

different LSTM architectures in this thesis). This simple problem does not require 

large LSTM neural network to achieve satisfactory prediction results. Having 

smaller LSTM network means smaller weight matrices are used in the network 

resulting in smaller memristive crossbar arrays being used in the analog 
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implementation of the algorithm. In addition, the dataset [34] of the problem is also 

small enough to run all the testing data in a circuit simulator. It contains 144 sample 

points which are monthly number of international airline passengers in thousands 

from 1949 to 1960. The plot of the dataset is shown in Figure 3.1 below. This dataset 

is used both in system-level and circuit level simulations involving LSTM algorithm. 

 

Figure 3.1: Plot of data samples of time-series prediction problem 1. Monthly data of 

international airline passenger count from 1949 to 1960 [34]. 

 

3.1.2 Time-series prediction problem 2 

 Another time-series prediction problem that was picked is the prediction of 

CO2 emission volumes at volcano Mauna Loa. The dataset [35] of the problem 

contains 192 sample points which are monthly CO2 emission levels starting from 

1965 to 1980. The plot of the dataset is shown in Figure 3.2 above. However, the 

dataset of this problem was only used in system-level simulations for analysis of 
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different LSTM architectures. It was chosen, because its plot has a little different 

shape and pattern than that of the problem 1 dataset. 

 

Figure 3.2: Plot of data samples of time-series prediction problem 2. Monthly data of CO2 

emission volumes at volcano Mauna Loa from 1965 to 1980 [35]. 

 

3.1.3 Time-series prediction (classification) problem 3  

 The last problem is a wafer quality classification problem. It is a binary 

classification problem which is modeled as a time-series prediction problem where 

the predicted value represents a class rather than a more meaningful quantity as in 

the previous two problems. A wafer in this problem can be classified as either normal 

or abnormal. Therefore, here we are not highly concerned about the exact value of 

the prediction. As long as the predicted value is in one range for one class and in the 

other range for the other class, we can successfully classify a wafer. This problem 

contains large database consisting of 7164 datasets [36] each of them having 152 
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data samples and a single associated class label. These datasets are used both in 

system-level and circuit level simulations involving LSTM algorithm. Figure 3.3 

shows plot of four different testing datasets from the wafer classification database.  

 

Figure 3.3: Plot of data samples of time-series classification problem for test wafers 23, 7, 47, 

and 3. A single inline sensor measures 152 times to obtain the samples [36]. 

 

3.1.4 Selected Models 

Since the tutorial in [33] was already solving the problem, the model selection 

process was minimal for the first problem. To solve the problem a two layer neural 

network consisting of LSTM and Dense (fully-connected) layers was used as in the 

tutorial. The LSTM layer in the network contains four (a not too small and not too 

large value) hidden units and the dense layer contains a single unit which squashes 
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the four outputs of the LSTM layer into a single output – prediction value. Another 

parameter is a look-back number or the number of recurrent operations before 

obtaining the last time step output and it was chosen to be equal to two, unlike the 

values in the tutorial. It was chosen empirically: for the same number of hidden units, 

it gave a better result for a look-back value of two than for values of one and three. 

One might question that if LSTM is good at learning long patterns of data through 

time then why it did not do well for a look-back value of three. It may be due to the 

lack of extra features or there is a bad pattern in the data. As for the training of the 

network, it was trained using mean square error loss function and adam optimizer 

[37] with default parameters [38]. However, instead of 100 epochs as in the tutorial, 

an epoch size of 500 was chosen while keeping a batch size of one. It was done to 

obtain approximately same performance results as in the former case while having 

weight constraints between ±1 to keep input voltages into a memristive crossbar 

array small enough for a given range of memristances, [Ron, Roff]. Then trained 

weights are extracted for setting memristance values in the memristive crossbar 

arrays. The training to testing data ratio used is 2/1. 

The same model was used for solving problem 2 since it is similar to the first 

problem. However, in system-level simulations for analysis of different LSTM 

architectures, the epoch size of 300 was used for both problems. This is a middle-

ground value which gives enough learning opportunity to detect the performance of 
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each LSTM architecture. It helps to accelerate system-level Monte Carlo 

simulations. The third problem, time-series classification problem, also used the 

same model as the first two except that a look-back value of 152, an epoch size of 

40 with batch size of 1, training to testing ratio of roughly 1/7, and no weight 

constraints were used. Here a look-back value of 152 is a fixed value unlike in the 

first two problems. Epoch size was reduced, because this problem has large training 

data (6164 datasets). For the system-level analysis, however, the epoch size was 

reduced to 25 and a batch size of 15 was used for speeding up the Monte Carlo 

simulations. Weight constraints were lifted, otherwise classification accuracy 

reduces significantly. Interestingly, without the constraints only a few weights went 

up beyond the weight range of [-1, 1] and by small amounts. These weights were 

represented by two parallel memristors in the circuit implementation of the problem 

to keep memristances in the allowed range of [Ron, Roff].   

The summary of selected models for each problem is shown in Table 3.1 

below. 144 total sample points were converted to 142 datasets with each having 2 

samples and a single target value. Similarly, 192 total sample points were converted 

to 190 datasets with each having 2 samples and a single target value. Data samples 

were scaled down linearly to be in the ranges of [0, 1] for the first two problems and 

[-0.5, 0.5] for the last problem. These are the ranges where LSTM performs well for 

the selected problems. 
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Table 3.1: Summary of the selected models for each problem.  

 Problem 1 Problem 2 Problem 3 

Network Config. 

[L1(units)+L2(units)] 

LSTM(4)+ 

Dense(1) 

LSTM(4)+ 

Dense(1) 

LSTM(4)+ 

Dense(1) 

Train/Test data ratio 2/1 2/1 1/7 

Look-back number 2 2 152 

Dataset size 

(features, samples) 

(1, 3) (1, 3) (1, 153) 

Total # of Datasets 142 190 7164 

Epoch size (weight 

extraction/analysis) 

500/300 NA/300 40/25 

Batch size (weight 

extraction/analysis) 

1/1 NA/1 1/15 

Weight Constraints [-1, 1] [-1, 1] None 

Input range [0, 1] [0, 1] [-0.5, 0.5] 

Loss function MSE MSE MSE 

Optimizer adam adam adam 

 

3.2 Current-based LSTM 

In this thesis, the first attempt to implement LSTM algorithm in analog 

hardware using memristive crossbar array resulted in a LSTM circuit design based 

on current-based activation function circuits [39]. These circuits implement sigmoid 

and hyperbolic tangent functions using currents as inputs. It forces to use other types 

of circuits in the overall design such as current-mirror [39] and voltage-to-current 

converter; and therefore the overall design can be called current-based LSTM. 
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Figure 3.4: Circuit diagram of memristive current-based LSTM. Activation function, current 

mirror, and multiplier circuits were taken from [39]. Memristor Ron/Roff values are based on 

[40]. Circuit implementation was done using TSMC 0.18 um CMOS technology. 

Figure 3.4 shows memristive crossbar implementation of a single LSTM layer 

with N inputs and M LSTM blocks (neurons). The features x1 to xN are input samples 

at time step t; and hidden unit values h1 to hM are the LSTM layer outputs of previous 

time step t-1. The biases for input, forget, and output gates are bi, bf, and bo, 

respectively. The bias bc is for the intermediary cell state ct (also known as candidate 

cell state). The real cell state is Ct. In the figure, the four structures delimited by 
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dashed blue lines compute the outputs of the gates: it, ft, and ot; and the intermediary 

cell state ct. The transistors in those structures serve as switches that allow the 

execution of weighted summation once at a time per block. The resulting currents 

going to current mirrors are the summed values. The mirrored currents are then fed 

to corresponding activation function circuits: sigmoid and hyperbolic tangent 

circuits. The activation function circuits then output voltage values for it, ft, ct, and 

ot. At this point, we have computed everything to obtain the cell state Ct except for 

Ct-1, cell state from previous time step. Ct-1 is fetched from a memory unit and the 

computed Ct is stored in the same memory unit. Then voltage of Ct is converted to 

current before filtering it through hyperbolic tangent function. Finally, the current 

time-step output ht of a current LSTM block is obtained as a voltage after multiplying 

the filtered Ct voltage and the voltage of ot. However, M cycles of execution are 

required to obtain all hidden unit outputs ht. This sequential operation of the circuit 

can save on-chip area in the expense of execution speed. 

 

3.3 Voltage-based LSTM 

In this section, voltage-based LSTM circuit design is proposed. Unlike 

current-based activation function circuits and current mirrors, voltage-based 

activation function circuits and voltage buffers provide us with higher accuracy and 

more predictable outputs. Current-based implementation could be used in solving a 
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classification problem. This is because we are not interested in the analog output 

voltage – as long as it is high enough or low enough, we know that it is either digital 

1 or digital 0. Whereas, in the case of time series prediction problem, we are 

interested in the analog output voltage to be much accurate rather than it being higher 

or lower of some threshold value. Therefore, high-accuracy sigmoid and hyperbolic 

tangent function circuits, which are voltage-based, were implemented. In addition, 

high accuracy four-quadrant multiplier circuit was adapted from [41]. They help to 

obtain accurate values at each stage to finally arrive to an accurate output value. 

Additionally, control circuit has been implemented to carry out the multiple time 

step feature of the LSTM RNN.  

It is a fact that time series prediction will yield some error, for instance mean 

square error (MSE) or root mean square error (RMSE). If the RMSE of the circuit 

and the software implementations are close enough, then we can conclude that we 

successfully implemented the LSTM neural network in analog hardware. 

The voltage-based memristive LSTM circuit diagram for solving the first 

time-series prediction problem is shown in Figure 3.5 below. In the figure, the 

ultimate sign of ht1 is consistent with its real sign in the LSTM algorithm equations. 

It is achieved by using activation function circuits that output inverted values. 
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Figure 3.5: Full neural network circuit design consisting of LSTM and Dense layers which 

solves the time-series prediction problem 1. The network uses two previous time-steps (𝒙𝒕𝟏, 𝒙𝒕𝟐) 

to predict 𝒙𝒕𝟑 which corresponds to 𝑽𝒑𝒓𝒆𝒅. It means that there are two full cycles of operations 

inside the LSTM layer before its output is captured at memory unit ht2 for subsequent VMM 

operation in the dense layer. LSTM layer has 4 hidden units and dense layer has a single unit 

(no activation function). The design corresponds to the latest optimized version with RNIC-1 

three-stage op-amps [42] and the multipliers based on symmetric complementary structure 

squarer circuits [43]. Ratios of  
𝑹𝟐

𝑹𝟏
 and 

𝑹𝟒

𝑹𝟑
 are equal to 10. The input voltage range of the network 

is [-0.1, 0.1]. The values in the yellow boxes are obtained in the same way as 𝒊𝒕𝟏.  



34 
 

 Similar circuit design is also used to solve the time-series classification 

problem. Their differences are only in memory unit circuits and control voltages. 

Memory unit circuits and control voltages for the first design are shown in Figure 

3.6 and Figure 3.7, respectively. The memory units are used to store the previous 

time-step cell state values and the previous time-step outputs of LSTM hidden units. 

Since four hidden units are used in the network configuration, there are four sample 

and hold circuits in each memory unit. As for the control voltages, they ensure that 

each LSTM cell output is obtained in sequential manner, the same way as in current-

based LSTM design. It takes 40 us to obtain all four LSTM hidden unit outputs at a 

current time step and total of 88 us to predict the target value of a single dataset. 

 

Figure 3.6: Memory units used in voltage-based LSTM (problem 1) consisting of sample and 

hold; and pass-transistor logic circuits. For the final design W/L ratio of 45um/0.18um is used 

for both NMOS and PMOS transistors in the pass logic switches. 
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Figure 3.7: Control Voltage signals for voltage-based LSTM solving problem 1. Obtaining a 

single prediction value 𝒙𝒕𝟑 takes 88us. Amplitude of the pulses is 1.8V. The complements of the 

control voltages have the same pattern, but amplitude of -1.8V. Voltages 𝑉11 to 𝑉14; and 𝑉21to 

𝑉24 are not shown in this figure, but they are first and second halves of signals 𝑉121to 𝑉124, 

respectively.  

 

 Corresponding memory units and control voltage signals are shown in Figure 

3.8 and 3.9, respectively for the voltage-based LSTM design solving the time-series 

prediction problem 3. In Figure 3.9, control voltages 𝑉1 to 𝑉4 correspond to voltages 

V121 to V124  from the voltage-based LSTM solving problem 1 and they are periodic 

until 6.384 ms. Voltages 𝑉ℎ and 𝑉ℎ1234 are periodic starting from 40us and ending 

at 6.384 ms. Unlike the memory units of the first design, the memory units of the 

second design use more sample and hold circuits and more capacitance values. These  
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Figure 3.8: Memory units used in voltage-based LSTM (problem 3). Pass-transistor logics have 

W/L ratio of 18um/0.18um. . The input voltage range of the network is [-0.5, 0.5].  

 

 

Figure 3.9: Control Voltage signals for voltage-based LSTM solving problem 3. Performing a 

single classification takes 6.387 ms. Voltages 𝑽𝟏𝒅 to 𝑽𝟒𝒅 are not shown in the figure, but they 

are the delayed versions of 𝑽𝟏 to 𝑽𝟒 with a delay of 40 us.  

changes are due to the usage of a look-back number greater than two and the usage  

of two-stage op-amps [39], respectively. Initially, the first design also used two-stage 
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op-amps, but later they were replaced with three-stage op-amps for greater 

prediction accuracy. Since we are classifying in the second design, we are not greatly 

concerned in the accuracy of the predicted analog values. Therefore, the second 

design used the older circuit parts: the two-stage op-amps and multiplier circuits 

based on Flipped Voltage Follower cells [41]. The input voltage range of the second 

design is [-1, 1]. 

 

3.4 Circuit Parts 

3.4.1 Vector-Matrix-Multiplication (VMM) Circuit 

The power of memristive crossbar circuits is the implementation of VMM 

operation in an efficient way. Op-amps are handy as always and provide virtual 

grounds for accumulating the currents in a crossbar column. In addition, they convert 

the accumulated current to voltage at its output. However, using single op-amp per 

column and single memristor per synapse restricts the range of implementable 

weights. In fact, that way we can only implement positive weights. The problem can 

be solved using two memristors per synapse and two op-amps per column in 

memristive crossbar [44]. The configuration of two op-amps in a crossbar is shown 

in Figure 3.10. The first column op-amp acts as inverting amplifier and the second 

column amplifier acts as summing amplifier. This configuration enables to subtract 

the current in the second column from the first one. The subtracted current is then 
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multiplied to Rf and results in an accurate voltage at the output of the second op-

amp. The voltage-based designs 1 and 2 use only single pair of op-amps per single 

sub-crossbar (total four of them). This is due to the use of sequential mode operation 

in the design. 

 

Figure 3.10: Memristive crossbar circuit with two memristors representing single synapse. 

Switches represent pass-transistor logic units. They are used for implementing VMM operation 

in sequential manner. The whole circuit of the voltage-based LSTM designs would have four of 

these crossbars. Output voltage is read at node 𝒚𝒋. R=1.25kΩ and Rf = 1kΩ/1.24kΩ for 

continuous/discrete memristance states.  

 The inference of problem 1 in the voltage-based LSTM circuit was simulated 

using both continuous and discrete memristance values. In the former case Ron and 



39 
 

Roff of memristors were chosen to be 10kΩ and 10MΩ, respectively based on the 

memristor device from [45]. In the latter case discrete memristance values between 

1.1kΩ and 10kΩ were used [46]. The reason of using discrete weights is that in real 

memristive crossbar arrays, we cannot obtain an exact memristance states, rather we 

get some noisy states with Gaussian distribution [46]. According to the empirical 

data from [46], 68 memristance states were obtained between 1.1kΩ and 10kΩ 

range. The inference of problem 3 using the discrete weights is the part of future 

work. 

 In the previous section, it was mentioned that in the circuit designs of LSTM 

there were used two types of op-amps. The two-stage op-amp used in the designs is 

shown in Figure 3.11 and the three-stage op-amp is shown in Figure 3.12. 

 

Figure 3.11: 2-stage op-amp used in the current-based and voltage-based LSTM designs [39]. 
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Figure 3.12: Three-stage op-amp – RNIC-1 op-amp based on [42]. 

 

3.4.2 Activation Function Circuit 

Sigmoid and hyperbolic tangent functions can be obtained using circuit in 

Figure 3.13. It basically employs the property of differential amplifier – gradual and 

smooth increase of the output voltage when the differential input is swept between 

a desired range. The desired output range and form can be obtained by varying 

supply voltage 𝑉𝑑𝑑, current 𝐼1, and the sizes of NMOS transistors (𝑁1 and 𝑁2). 

Voltage source values of 𝑉1, 𝑉2, and 𝑉3 are used to shift the output values to match 

the graphs of the sigmoid and hyperbolic tangent functions. Since these two 

functions are different, the above mentioned parameters also change for each 

function. DC transfer characteristics for sigmoid and hyperbolic tangent function 

circuits are shown in Figure 3.14 and Figure 3.15, respectively. The graphs’ input 
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and output ranges are scaled down by -10 (negative part is canceled at later stages) 

to meet the operation range of the other circuit elements. 

 

Figure 3.13: Proposed activation function circuit. 

 

 

Figure 3.14: Comparison of sigmoid function implementations: red – circuit implementation, 

blue – software implementation. Inputs and outputs are scaled down by 10. 
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Figure 3.15: Comparison of hyperbolic tangent function implementations: red – circuit 

implementation, blue – software implementation. Inputs and outputs are scaled down by 10. 

 

3.4.3 Analog Multiplier Circuits 

Four-quadrant analog multiplier based on flipped voltage followers (FVFs) 

[41] was used in the implementation of hadamard multiplication operation. The 

circuit schematic and DC transfer characteristics of the FVF-based multiplier is 

shown in Figures 3.16 and 3.17, respectively. The core of the multiplier consists of 

NMOS transistors 𝑀1–𝑀4. Current source 𝐼𝑏 and transistors 𝑀𝑎 and 𝑀𝑏 form a FVF 

cell. The difference between currents 𝐼𝐸 and 𝐼𝐹 results in output current 𝐼𝑜𝑢𝑡 =  𝐼𝐸 −

𝐼𝐹 =  µ𝑛𝐶𝑜𝑥𝑊/𝐿. This expression holds true only if 𝑉𝐸 = 𝑉𝐹 , all the transistors 

are in triode mode, and if the sources driving nodes A and B have significantly low 
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impedance. These conditions can be met using FVFs in feed-forward structure as 

current sensing elements and voltage buffers. The bottom FVFs create low 

impedance nodes E and F; and enable sensing the currents that pass through these 

nodes. Additionally, they are used to replicate these currents. The top FVFs 

implement very low impedance sources that drive nodes A and B. The resulting 

multiplier produces good linearity, operates at high frequencies, and has low supply 

(sub-volt) requirements in comparison with op-amp based multipliers. 

 

Figure 3.16: Four-quadrant analog Multiplier 1. All the transistors operate in linear region. 

Vcm =Vcm1 = Vcm2 = 1.4V; Ib = 600uA; R = 2kΩ; Input range is between ±0.4V [41]. 



44 
 

Figure 3.17: DC transfer characteristics of Multiplier 1 based on Flipped Voltage Follower 

cells. The multiplier circuit implements a scaled down (by -4) version of real multiplication. 

 

In spite of its good linearity, the FVF-based multiplier was replaced in the 

final version of the voltage-based LSTM design by a more linear and more 

symmetric multiplier. This multiplier is based on symmetric complementary 

structure squarer circuits [43]. The circuit schematic and DC transfer characteristics 

of the latter multiplier is shown in Figures 3.18 and 3.19, respectively. In the former 

figure, the left-hand side transistors 𝑀1 to 𝑀6 constitute an analog voltage squarer 

with a “symmetric complementary push-pull source follower structure” [43]. 

Transistors 𝑀5 and 𝑀6 operate in triode region. The drain currents of  𝑀5 and 𝑀6 

are expressed as following: 

𝐼𝐷5 = 𝛽[(𝑉𝐺𝑆5 − 𝑉𝑇𝑛)𝑉𝐷𝑆5 −
1

2
𝑉𝐷𝑆5
2 ],                                (3.2) 
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𝐼𝐷6 = 𝛽[(𝑉𝐺𝑆6 − 𝑉𝑇𝑛)𝑉𝐷𝑆6 −
1

2
𝑉𝐷𝑆6
2 ],                                (3.3) 

where 𝛽 = 𝜇𝑛𝐶𝑜𝑥 (
𝑊

𝐿
)
𝑛

. Then due to symmetry output currents in the circuit will be: 

 𝐼𝑜+ = 𝐼𝐷5 + 𝐼𝐷6 = −𝛽(𝐴 + 𝐵)2,                                  (3.4) 

𝐼𝑜− = 𝐼𝐷11 + 𝐼𝐷12 = −𝛽(𝐴 − 𝐵)2.                                (3.5) 

The difference of the above two currents will be: 

𝐼𝑜 = 𝐼𝑜+ − 𝐼𝑜− = −4𝛽𝐴𝐵.                                      (3.6) 

 

Figure 3.18: Four-quadrant analog Multiplier 2. Vg = 1.5V; R = 1kΩ. Input range is between 

±0.5V, but ±0.1V is enough for implementation of LSTM [43]. 
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Figure 3.19: DC transfer characteristics of Multiplier 2 based on Symmetric Complementary 

Structure squarer circuits. The multiplier circuit implements a same-scale version of real 

multiplication. 

 

3.5 LSTM Architectures 

3.5.1 Vanilla LSTM 

Hochreiter and Schmidhuber [15] invented the very first LSTM. Later the 

original LSTM evolved into the most common architecture [47] known as vanilla 

LSTM [48]. Figure 3.20 shows the detailed diagram of the vanilla LSTM layer. 

Vanilla LSTM differs from the standard LSTM used in Keras library [18] by 

additional weighted connections known as peepholes. Peephole weight vectors; and 

half-transparent dashed lines and math elements (multiplication and addition) are 

extra additions that separate the standard LSTM from the vanilla LSTM. 
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Figure 3.20: Detailed Vanilla LSTM layer diagram. Letters subscripted with t or t - 1 represent 

vectors of size M, except 𝒙𝒕 which has size N. Bias is a scalar which is equal to unity. 

 

All the lines in the diagram represent vectors. Blue line is the concatenation 

of following inputs along column axis: input vector (or feature vector) 𝑥𝑡 of size 1-

by-N, output vector from previous cell ℎ𝑡−1 of size 1-by-M, and a scalar bias value. 

Then the size of blue line is N+M+1 = S (denoted as S for short). The matrices inside 

Vector Matrix Multiplication (VMM) units represent weight matrices. They 
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combine input, recurrent, and bias weights. The outputs of VMM units are row 

vectors of length M. In fact, all the black lines have size 1-by-M, where M is the 

number of LSTM hidden units or blocks. Therefore, ideally we should get M parallel 

operations and M outputs at each stage in the diagram. However, in hardware parallel 

operations may be implemented sequentially to save up chip area as in the proposed 

designs in this chapter. Then, as expected, multiplication elements perform element-

wise (hadamard) multiplications; and addition elements perform vector additions.  

 

3.5.2 Other Architectures 

There are total of nine existing architectures of LSTM [48]. They can be 

classified into six categories: 1) Vanilla; 2) Standard (No Peepholes); 3) Full Gate 

Recurrence (FGR); 4) Coupled Input and Forget Gate (CIFG); 5) with a Linear 

Activation Function; and 6) with a Constant Gate of Unity. 

The vanilla LSTM shown in Figure 3.20 can be described in concise 

mathematical forms below [48], where 𝑸 having size of S-by-M is the concatenation 

of input weight matrix 𝑾, recurrent weight matrix 𝑹, and bias weight vector 𝒃 along 

row axis; and 𝒒 is the input vector of size 1-by-S: 

𝒇𝒕 = 𝜎(𝒒𝒕𝑸𝒇 + 𝑪𝒕−𝟏 ∗ 𝒑𝒇),                                  (3.6) 

𝒊𝒕 = 𝜎(𝒒𝒕𝑸𝒊 + 𝑪𝒕−𝟏 ∗ 𝒑𝒊),                                  (3.7) 
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𝑪′𝒕 = 𝑡𝑎𝑛ℎ(𝒒𝒕𝑸𝑪′),                                       (3.8) 

𝑪𝒕 = 𝒊𝒕 ∗ 𝑪𝒕
′ + 𝒇𝒕 ∗ 𝑪𝒕−𝟏,                                   (3.9) 

𝒐𝒕 = 𝜎(𝒒𝒕𝑸𝒐 + 𝑪𝒕 ∗ 𝒑𝒐),                                (3.10) 

𝒉𝒕 = 𝒐𝒕 ∗ tanh(𝑪𝒕),                                     (3.11) 

where 𝒑𝒇, 𝒑𝒊, and 𝒑𝒐 represent peephole weight vectors. 

No peepholes version is self-explanatory. It has the same architecture as that 

of the vanilla LSTM except no peephole connections in its topology.  

FGR is the most complex architecture of LSTM. As its name suggests, Full 

Gate Recurrence LSTM is featured by recurrent connections between its all gates. 

FGR is basically vanilla LSTM (except peephole weights of output gate are element-

wise multiplied to previous cell state vector) plus the new recurrent connections 

among the gates. It adds to the weight matrix 𝑸 of each gate additional 3M-by-M 

recurrent weight matrix. Mathematically in detail, it can be described as following 

[48]:   

𝒇𝒕 = 𝜎(𝒒𝒕𝑸𝒇 + 𝒊𝒕−𝟏𝑹𝒊𝒇 + 𝒇𝒕−𝟏𝑹𝒇𝒇 + 𝒐𝒕−𝟏𝑹𝒐𝒇 + 𝑪𝒕−𝟏 ∗ 𝒑𝒇),        (3.12) 

𝒊𝒕 = 𝜎(𝒒𝒕𝑸𝒊 + 𝒊𝒕−𝟏𝑹𝒊𝒊 + 𝒇𝒕−𝟏𝑹𝒇𝒊 + 𝒐𝒕−𝟏𝑹𝒐𝒊 + 𝑪𝒕−𝟏 ∗ 𝒑𝒊),         (3.13) 

𝒐𝒕 = 𝜎(𝒒𝒕𝑸𝒐 + 𝒊𝒕−𝟏𝑹𝒊𝒐 + 𝒇𝒕−𝟏𝑹𝒇𝒐 + 𝒐𝒕−𝟏𝑹𝒐𝒐 + 𝑪𝒕−𝟏 ∗ 𝒑𝒐).       (3.14) 
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CIFG architecture of LSTM is more known as GRU [49]. Again, its name 

(Coupled Input and Forget Gate) explains itself: 𝒇𝒕 = 𝟏–𝒊𝒕 . However, other than 

that, 1) there are also no peephole connections and no output activation function; 2) 

candidate cell state’s recurrent inputs are filtered through output gate before being 

multiplied with recurrent weight matrix; and 3) cell state and cell output are 

combined together. The differences can be easier to see in mathematical equations: 

𝑪′𝒕 = 𝑡𝑎𝑛ℎ(𝒙𝒕𝑾𝑪′ + (𝒉𝒕−𝟏 ∗ 𝒐𝒕)𝑹𝑪′ + 𝒃𝑪′),                   (3.15) 

𝒉𝒕 = (𝟏 − 𝒇𝒕) ∗ 𝑪𝒕
′ + 𝒇𝒕 ∗ 𝒉𝒕−𝟏.                             (3.16) 

The next category falls into LSTM architectures with a linear activation 

function either in a) candidate cell state generation stage or b) in output gate stage. 

From the vanilla LSTM equations only equations 3.8 and 3.11 change. In 

architecture a), known as No Input Activation Function (NIAF), equation 3.8 

becomes 𝑪𝒕
′ = (𝒒𝒕𝑸𝑪′). In architecture b), known as No Output Activation Function 

(NOAF), equation 3.11 becomes 𝒉𝒕 = 𝒐𝒕 ∗ 𝑪𝒕.  

The last category includes LSTM architectures which have a constant gate of 

unity in one of its gates and everything else is the same as in the vanilla LSTM. Then 

there are three different such architectures: a) No Input Gate (NIG): 𝒊𝒕 = 𝟏; b) No 

Forget Gate (NFG): 𝒇𝒕 = 𝟏; and c) No Output Gate (NOG): 𝒐𝒕 = 𝟏. 
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Chapter 4 – Results and Discussions 

4.1 Current-based LSTM 

Area of the proposed LSTM circuit is 83,493.5 µm2 (without memory unit). 

The total power consumption of the single cell LSTM circuit is 105.9mW for input 

voltages between 0 and 1 Volts. Since this part does not provide a full circuit-level 

simulation solving the prediction problem, there are no results comparing circuit-

level and system-level implementations of LSTM. The full circuit-level simulation 

was left out, because it was clear enough that voltage-based LSTM implementation 

would give higher accuracy of prediction. However, as a thorough comparison 

between the two implementations, the full circuit-level simulation of current-based 

LSTM used inside a neural network configuration can be considered as an open 

problem. 

 

4.2 Voltage-based LSTM for time-series prediction problem 

 Figure 4.1 below shows the comparison of the results for the case with 

continuous weight values. The plots in this figure obtained while using 2-stage op-

amps [39] and Flipped Voltage Follower [41] based multipliers. The numerical 

comparison of the plots is shown in Table 4.1. 



52 
 

 

Figure 4.1: Visual Comparison of LSTM Software and Memristive (continuous weights) Analog 

implementation results against the Target values. 

 

Table 4.1. Numerical Comparison Results for Figure 4.1 above. 

 

 

Note that, in Table 4.1, performance results when estimating target values 

using software implementation of the algorithm are not good enough. An R2 score 

of only 0.41 means a not so good estimation. Probably, choosing more hidden units 

and more LSTM layers would result in higher scores. However, this was not the first 

priority in this work. The main goal was to demonstrate a successful implementation 
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of the algorithm in analog hardware using memristive crossbar arrays. So far, this 

goal is achieved for some extent with an estimation score R2 of 0.932. 

Figure 4.2 below shows the comparison of the results for both cases: with 

continuous and discrete weight values. In addition, the plots in this figure were 

obtained while using 3-stage RNIC-1 [42] op-amps and multiplier based on a 

symmetric complementary structure [43] for obtaining more accurate results. Again, 

the numerical comparison of plots is provided and shown in Table 4.2. From the 

table, it can be seen that new circuit units have helped to attain almost ideal circuit-

level implementation of the whole neural network consisting of an LSTM layer and 

a Dense layer. R2 score jumps from 0.932 up to 0.995 when using the more accurate 

circuit components – op-amps and multipliers. With these new components even the 

implementation with discrete weights gives high enough R2 score – 0.975. This is a 

good score and promises that real memristors can give decent implementation 

scores. However, the last score was obtained when considering no noise in the 

memristors used in the circuit crossbar. Whereas, adding Gaussian noise to 

memristances of the memristors with the noise standard deviation equal to 5%, 10%, 

and 20% and running 30 Monte Carlo simulations give an expected degrading 

performance results as shown in Table 4.3. In addition, there is a need to simulate 

the real effect of wire resistances in the crossbar arrays similar to the case with 
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memristor noises. Finally, combined effect of both non-idealities should be also 

tested in circuit simulations. This can be part of future work. 

 

Figure 4.2: Visual Comparison of LSTM Software and Memristive (continuous and discrete 

states) Analog implementation results against the Target values using more accurate circuit 

parts. Total circuit simulation time take 3.96 ms to predict all 45 sample points. 

 

Table 4.2: Numerical Comparison Results for Figure 4.2 above. 
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Table 4.3: Average Performance results of 30 Monte Carlo simulations with Discrete Weights 

by adding to them Gaussian Noise with std. deviation equal to 5%, 10%, and 20% of Ron/Roff. 

Performance 

Metrics 

AvgAnalogDiscr2Soft 

(5% weight noise) 

AvgAnalogDiscr2Soft 

(10% weight noise) 

AvgAnalogDiscr2Soft 

(20% weight noise) 

'MSE' 0.001163364 0.004764 0.014253 

'RSE' 0.065070512 0.188028 0.332639 

'MAE' 0.025969842 0.052764 0.092112 

'MAPE' 0.047967865 0.097868 0.17319 

'RMSE' 0.029740075 0.056086 0.095285 

'RRSE' 0.231074325 0.385007 0.529074 

'R2' 0.934929488 0.811972 0.667361 

 

4.3 Voltage-based LSTM for time-series classification 

The wafer quality classification can be solved in two ways: using sequential 

and parallel (window) methods. In the former case, a neural network consisting of 

an LSTM layer (with four hidden units) plus a dense layer (with a single unit) is used 

to predict the 153rd element (wafer quality) using 152 single sensor measurement 

values as a single feature spread in time. In the latter case a single LSTM layer with 

a single hidden unit and 152 features is used. That is those 152 single sensor 

measurement values are now fed in single time-step and therefore no time 

dimensionality exists among the sensor measurement values anymore. The output of 

the LSTM layer is a predicted wafer class in this latter method.    

Each of them has different advantages and shortcomings. The case with 

sequential LSTM learns significantly slower than the one with parallel or single-time 

step predicting LSTM. This is due to the complexity of the former configuration 
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However, it steadily improves in performance as the number of epoch size is 

increased. It gives accuracies of 97.26%, 98.51%, and 98.86% for epoch sizes of 25, 

40, and 55 respectively. The circuit of the sequential network consumes 255.8mW 

when the maximum input voltage values set to 0.5V. The on-chip area of the circuit 

is 257,503.20 um2 which accounts the sizes for memory unit circuits and switches. 

On the other hand, the parallel LSTM has smaller on-chip area – 115,967.4 um2. 

However, as expected, it consumes more power – 312.4 mW. The single-unit single-

time step LSTM gives accuracy of 96.09% when using epoch size of 40 for training. 

Interestingly, the accuracy reaches up to 99.29% when epoch size is increased to 

100. These kinds of high accuracy values are impressive considering the large 

imbalance in the data of wafer classification task: 10.7% of the training data and 

12.1% of the testing data have abnormal labels. It may suggest that even the simple 

LSTM structure in fact complex enough to give such high accuracy percentages. 

The circuit implementation of the sequential network configuration was 

proposed in the previous chapter. The results of the circuit simulations of the 

network are presented in figures below. In addition to the sequential operation of 

LSTM in the network, each hidden unit outputs and cell state values were obtained 

in sequential manner in the circuit. That is, four hidden units were not executed in 

parallel. It helps to save on chip-area, but sacrifices the overall execution speed. In 

Figure 4.3, we can see that total simulation time to obtain all 152*4 hidden unit 
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values or to predict the last element/classify is 6.387ms. Whereas, parallel circuit 

implementation of the same network would take approximately 1.6ms. Extraction of 

outputs from the plot in Figure 4.3 results in separate plots that are illustrated in 

Figure 4.4 which also compares them with their corresponding software results. 

From the figure, it can be seen that in general the analog circuit results for the hidden 

units follow the plots obtained from the software implementation of the LSTM layer 

in the network. The spikes in the plot are results of the saturated outputs of the 

multiplier used in the circuit. The value of cell state Ct when accumulated through 

152 time-steps, it exceeds the input range of the multiplier. However, we are more 

interested in the predicted value’s sign: positive – normal wafer, negative – abnormal 

wafer. In fact, Table 4.4 shows that analog hardware testing results of 10 wafers, 

taken randomly from 1000 wafer datasets, match software testing results using 

LSTM algorithm.   

 

Figure 4.3: Plot of V(ht) voltage values from sequential operation of the LSTM circuit 

predicting the wafer quality class of test wafer 23. Total circuit simulation time is 6.387ms. 
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Figure 4.4: LSTM cell outputs for analog and software implementations for test wafer 23. The 

analog outputs were extracted from the plot in Figure 4.3. 

 

Table 4.4: Comparison of Software and Hardware Implementation Results of LSTM. 
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4.4 Power consumption and chip size 

In Table 4.5, the first three implementations of the LSTM correspond to the 

network configuration designed for solving the time-series prediction problem 1 

(prediction of international airline passenger count). The last two implementations 

correspond to the configuration solving the problem 3 (classification of wafer 

quality). The first and last implementations do not offer simulation results solving 

the problems 1 and 3, respectively. They can be a part of future works. 

From the table, implementations 1 and 2 use two-stage operational amplifiers 

and the rest of the implementations use three-stage operational amplifiers.  The 

difference between the two operational amplifiers is shown in Table 4.6. In addition, 

the third implementation, voltage-based 1b, uses different type of analog multiplier 

than the one used in the other voltage-based implementations. The difference of the 

two multiplier types in terms of power and area is shown in Table 4.7. 

Table 4.5: Area and Power statistics from different LSTM circuit implementations.  

# LSTM circuit 

implementation 
Area 

(µm2) 

Power 

(mW) 
Mem. Units/ 

Dense layer? 

Input 

Range (V) 

Roff(Ω)/ 

Ron(Ω) 

1 Current-based 83,494 105.9 No/No [0, 1] 2M/200k 

2  Voltage-based 1a 117,075 225.67 Yes/Yes [-1, 1] 10M/10k 

3 Voltage-based 1b 126,062 228.11 Yes/Yes [-0.1, 0.1] 10k/1.1k 

4 Voltage-based 2 seq. 257,503 237.03 Yes/Yes [-1, 1] 10M/10k 

5 Voltage-based 2 par. 115,967 312.4 NA/NA [-0.1, 0.1] 10M/10k 
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Table 4.6: Area and Power statistics for the two types of op-amps in buffer configuration. 

 Area (µm2) Power (mW) 

at -0.1 V input 
Power (mW) 

at 0.1 V input 
Power (mW) 

at -1 V input 
Power (mW) 

at 1 V input 

two-stage 

op-amp 
847.56 3.10 3.00 3.51 2.58 

three-stage 

op-amp 

1977.8 3.59 5.54 0.75 10.23 

 

In Table 4.6, the area difference is mainly due to the more usage of 

capacitance values in the three-stage op-amp for stability purposes than in the two-

stage op-amp. In addition, the two-stage op-amp uses ideal current source for 

biasing, while the three-stage op-amp uses two MOSFETs and a resistor. The supply 

voltage rails used are (-1.8V, 1.8V) for the two-stage op-amp and (-1V, 1.8V) for 

the three-stage op-amp. 

Three-stage amplifier has larger on-chip area and generally higher power 

consumption than that of the two-stage op-amp. However, accuracy-wise three-stage 

amplifier delivers good performance and works well with small-signal voltage 

values. This accuracy helps to obtain accurate intermediate voltage values in the 

circuits for LSTM and results in accurate final voltage values. Particularly, inverting, 

scaling up or down, summation, and multiplication of voltage signals decides the 

overall accuracy of a circuit-level LSTM compared to system-level LSTM. 

In Table 4.7, the first multiplier is Flipped Voltage Follower cell based four-

quadrant analog multiplier. The second multiplier is based on symmetric 
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complementary structure squarer circuits. The first one uses the two-stage op-amps 

for its interface circuitry and for the extension of its outputs to make a single-ended 

output. Whereas, the second one uses the three-stage op-amps for the same purposes. 

In the table, for the comparison sake, the input voltages were set to the same values 

– (0.4, 0.4) Volts. However, multiplier 2 is used in the LSTM circuit implementation 

with input voltage range of [-0.1, 0.1] Volts (can work between [-0.5, 0.5] Volts, 

though). For maximum inputs of (0.1, 0.1) Volts, multiplier two consumes 29.05 

mW power. Overall, multiplier 2 is smaller in size, consumes less power, and 

contributes to higher R2 score when used inside the complete circuit of the neural 

network consisting LSTM and dense layers. Therefore, it is a good candidate for 

future circuit designs, not only the circuit implementation of LSTM. Circuit designs 

Voltage-based 2 sequential and Voltage-based 2 parallel can be decreased in size by 

at least 45,000 um2
 each.  

Table 4.7: Area, Power, and contributed accuracy statistics for the two types of multipliers. 

 Area (µm2) Power (mW) for max 

inputs of (0.4,0.4) Volts 
R2 of LSTM + 

Dense circuit 

Multiplier 1 24,430 35.36 0.932 

Multiplier 2 9,139 30.12 0.995 

    

4.5 LSTM architectures 

Average test and train performance metrics from 10 Monte Carlo simulations 

were obtained for the Simple RNN and the LSTM architectures from the previous 
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chapter. In addition, for exploration purposes two more sets of simulations with 

peephole weight matrices having sizes of M-by-M and 0-by-0 (i.e. ne peephole 

connections) were performed. M is the number of hidden units. These are contrary 

to the usual peephole weight matrix size of 1-by-M. The simulations were trained 

and tested on three different datasets from the selected problems.  

It is important to note from tables 4.9-4.14 that the least average test RMSE 

(highlighted in yellow) does not necessarily correspond to the least average train 

RMSE (highlighted in yellow, as well). Even though, there is a general trend of 

correspondence, one should not solely rely on train scores when comparing the 

different architecture performances of RNN. In the tables 4.15-4.17 the 

correspondence exists between testing and training performance metrics. It may be 

due to the large training data available in the wafer classification case which leaves 

no chance for mixed results. Tables 4.9-4.17 can be summarized in Table 4.8 below: 

Table 4.8: Winner types of RNN for different problems and peephole weight matrix sizes. Left 

half columns correspond to the best performers on the testing data and the right half columns 

on the training data. The color intensity corresponds to the ranking of a performer inside a 

column. For example, NOAF LSTM 2 is the best in the first column. 

Peephole weight 

matrix size 

Airflight passenger 

count prediction  

CO2 emission 

prediction 

Time Ser. Classification 

of wafer quality 

M-by-M NFG LSTM FGR LSTM NOG LSTM FGR LSTM FGR LSTM FGR LSTM 

1-by-M NOAF LSTM NOG LSTM NOG LSTM FGR LSTM NOG LSTM NOG LSTM 

0-by-0 NOAF LSTM 2 GRU GRU FGR LSTM 2 NOG LSTM 2 NOG LSTM 2 
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As it was already tested in other study [48], there are mixed performance 

results from different LSTM architectures for each task. The study was carried out 

on classification tasks, while in this work it is done on time-series prediction and 

time-series classification tasks. From Table 4.8, it can be concluded that there are 

mixed results with time-series prediction tasks as well. Note that wafer classification 

task is modeled as time-series prediction task where the last predicted point 

determines the class of the wafer under study. Positively predicted number indicates 

non-defective wafer and vice-versa.  

However, some patterns can be observed from Table 4.8. The peephole 

connections do not improve the performance of LSTM architectures for the first two 

cases. That is, as the size of the peephole weight matrices grows, the peephole 

connections only degrade the performances of RNN types for the cases with small 

training data. The performances of the two cases for the training data give mixed 

results, but their difference is very small. However, both of the performances 

improve for the third case as the peephole weight matrix size grows. This is probably 

caused by the large training data and the large number of time-steps used for 

prediction in the third case. Also, note that the most complex architecture, FGR 

LSTM, beats the others in the third case. Therefore, it may be sound to conclude that 

in general as the training data becomes large, the more complex LSTM architectures 



64 
 

outperform the rest of the architectures. Using the same logic, for small training data 

less complex LSTM architectures outperform the less complex ones. 

Table 4.9: Performance comparison of LSTM architectures and Simple RNN for prediction of 

number of international air-flight passengers (a peephole weight matrix has M-by-M size). 

# Type of RNN Avg. Test RMSE Avg. Train RMSE 

1 Vanilla LSTM 0.107112 0.040618 

2 No-output-gate LSTM 0.111376 0.040731 

3 No-input-gate LSTM 0.113707 0.041158 

4 No-forget-gate LSTM 0.102329 0.044298 

5 No-input-activation-function LSTM 0.121440 0.040357 

6 No-output-activation-function LSTM 0.105856 0.040538 

7 Full-Gate-Recurrence LSTM 0.116826 0.040008 

 

Table 4.10: Performance comparison of LSTM architectures and Simple RNN for prediction 

of number of international air-flight passengers (a peephole weight matrix has 1-by-M size). 

# Type of RNN Avg. Test RMSE Avg. Train RMSE 

1 Vanilla LSTM 0.100513 0.042934 

2 No-output-gate LSTM 0.105852 0.040247 

3 No-input-gate LSTM 0.104337 0.040982 

4 No-forget-gate LSTM 0.107426 0.046170 

5 No-input-activation-function LSTM 0.105890 0.042321 

6 No-output-activation-function LSTM 0.097092 0.042351 

7 Full-Gate-Recurrence LSTM 0.109990 0.041353 

 

Table 4.11: Performance comparison of LSTM architectures for prediction of the number of 

international air-flight passengers (a peephole weight matrix has 0-by-0 size). 

# Type of LSTM with no peepholes  Avg. Test RMSE Avg. Train RMSE 

1 Vanilla LSTM 2 (simple LSTM) 0.102161 0.043653 

2 No-output-gate LSTM 2 0.105260 0.040340 

3 No-input-gate LSTM 2 0.103408 0.041291 

4 No-forget-gate LSTM 2 0.108595 0.046391 

5 No-input-activation-function LSTM 2 0.106734 0.042972 

6 No-output-activation-function LSTM 2  0.095907 0.043334 

7 Full-Gate-Recurrence LSTM 2 0.109751 0.041412 

8 Gated-Recurrent-Units   0.110889 0.040264 

9 Simple RNN 0.113199 0.041263 
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Table 4.12: Performance comparison of LSTM architectures and Simple RNN for prediction 

of CO2 emission volumes at volcano Mauna Loa (a peephole weight matrix has M-by-M size). 

# Type of RNN Avg. Test RMSE Avg. Train RMSE 

1 Vanilla LSTM 0.048001 0.036825 

2 No-output-gate LSTM 0.046437 0.033924 

3 No-input-gate LSTM 0.048494 0.034320 

4 No-forget-gate LSTM 0.049900 0.041443 

5 No-input-activation-function LSTM 0.062435 0.036595 

6 No-output-activation-function LSTM 0.046583 0.036172 

7 Full-Gate-Recurrence LSTM 0.051111 0.033119 

 

Table 4.13: Performance comparison of LSTM architectures and Simple RNN for prediction 

of CO2 emission volumes at volcano Mauna Loa (a peephole weight matrix has 1-by-M size). 

# Type of RNN Avg. Test RMSE Avg. Train RMSE 

1 Vanilla LSTM 0.045750 0.041151 

2 No-output-gate LSTM 0.044268 0.034532 

3 No-input-gate LSTM 0.044485 0.034321 

4 No-forget-gate LSTM 0.055494 0.047465 

5 No-input-activation-function LSTM 0.056436 0.041155 

6 No-output-activation-function LSTM 0.045708 0.039960 

7 Full-Gate-Recurrence LSTM 0.045578 0.033110 

 

Table 4.14. Performance comparison of LSTM architectures for prediction of CO2 emission 

volumes at volcano Mauna Loa (a peephole weight matrix has 0-by-0 size). 

# Type of LSTM with no peepholes  Avg. Test RMSE Avg. Train RMSE 

1 Vanilla LSTM 2 (simple LSTM) 0.046509  0.042726 

2 No-output-gate LSTM 2 0.044248 0.034823 

3 No-input-gate LSTM 2 0.044519 0.034716 

4 No-forget-gate LSTM 2 0.057674 0.049057 

5 No-input-activation-function LSTM 2 0.051584 0.042861 

6 No-output-activation-function LSTM 2  0.044520 0.041993 

7 Full-Gate-Recurrence LSTM 2 0.045378 0.033151 

8 Gated-Recurrent-Units 0.043872 0.034458 

9 Simple RNN 0.055096 0.033425 
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Table 4.15: Performance comparison of LSTM architectures and Simple RNN for 

classification of wafer quality (a peephole weight matrix has M-by-M size). 

# Type of RNN Avg. Test Accuracy Avg. Train Accuracy 

1 Vanilla LSTM 0.938546 0.948100 

2 No-output-gate LSTM 0.954932 0.961500 

3 No-input-gate LSTM 0.897599 0.911800 

4 No-forget-gate LSTM 0.896966 0.912300 

5 No-input-activation-function LSTM 0.939195 0.948000 

6 No-output-activation-function LSTM 0.934523 0.944200 

7 Full-Gate-Recurrence LSTM 0.965688 0.967300 

 

Table 4.16: Performance comparison of LSTM architectures and Simple RNN for 

classification of wafer quality (a peephole weight matrix has 1-by-M size). 

# Type of RNN Avg. Test Accuracy Avg. Train Accuracy 

1 Vanilla LSTM 0.934523 0.942600 

2 No-output-gate LSTM 0.950584 0.957900 

3 No-input-gate LSTM 0.891467 0.907000 

4 No-forget-gate LSTM 0.891467 0.907000 

5 No-input-activation-function LSTM 0.936016 0.944600 

6 No-output-activation-function LSTM 0.919825 0.932100 

7 Full-Gate-Recurrence LSTM 0.935886 0.944600 

 

Table 4.17: Performance comparison of LSTM architectures with no peephole connections for 

classification of wafer quality (a peephole weight matrix has 0-by-0 size). 

# Type of LSTM with no peepholes Avg. Test Accuracy Avg. Train Accuracy 

1 Vanilla LSTM 2 (simple LSTM) 0.925146 0.935600 

2 No-output-gate LSTM 2 0.942213 0.949100 

3 No-input-gate LSTM 2 0.891467 0.907000 

4 No-forget-gate LSTM 2 0.891467 0.907000 

5 No-input-activation-function LSTM 2 0.930565 0.940500 

6 No-output-activation-function LSTM 2  0.930419 0.940100 

7 Full-Gate-Recurrence LSTM 2 0.933274 0.942900 

8 Gated-Recurrent-Units   0.897972 0.912900 

9 Simple RNN 0.891467 0.907100 

 

 



67 
 

Chapter 5 – Conclusions 

In this thesis, a functional circuit-level implementation of a neural network 

consisting of LSTM layer has been performed. The neural network was used to solve 

several time-series prediction problems. Therefore, custom circuits for each problem 

was built and tested in SPICE circuit simulator using TSMC 0.18 um process 

technology. In addition, extensive study of LSTM architectures was performed using 

Keras library, which was extended in this work. 

 

5.1 Time-Series Prediction 

Circuit simulation of problem 1 with discrete weight/conductance levels and 

discrete input voltages gives less accurate results as expected: R2 of 97.5 against 

99.52; and RRSE of 0.158 against 0.0693. It is important to remember that training 

was performed in software and the extracted weights were discretized to 68 levels 

then used as stable conductance levels of memristors in the circuit. However, those 

68 states themselves, in fact, are not clear-cut states. Each state will have some noise 

and we have seen that as the noise increases, the prediction accuracy in analog 

hardware degrades. If, however, training was performed on the circuit, it would be 

able keep running epochs until reaching some point where the states including their 

noises are contributing for the performance of the algorithm used in the circuit. In 
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addition, time-series predictions are not 100% accurate and gives some room to 

tolerate the errors coming from the real circuits.  

 

5.2 Wafer Classification 

In the classification problem 3, using high accuracy circuit parts eliminates at 

the final stage additional circuitry such as circuit implementing softmax function 

required for classifying. Reading of the analog outputting voltage would already tell 

the predicted class. In addition, having less complex neural network due to omitting 

softmax function would make the network train faster both in hardware and 

software.  

In addition, one can further simplify the neural network circuit by eliminating 

activation functions and use VMM outputs as approximate activated values [44]. 

This can be a close approximation if VMM outputs fall into linear part of sigmoid 

and hyperbolic tangent functions. This can be achieved by scaling feature input 

values going into the network. For example, scaling the feature values between -0.5 

and 0.5 gives better results than scaling them between -1 and 1 in the wafer 

classification problem.  
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5.3 Flexibility of the Design 

Since there is a trade-off between computation time, chip-area, and power 

consumption and depending on an application, the final design of the circuit will be 

different. In that sense, it would be convenient if the base circuit can be easily 

transformed to suit the requirements of a particular application. Voltage-based 

LSTM architecture comes to be handy on this occasion. In addition, adding M-by-

M peephole weight matrices becomes effortless in hardware implementation, 

because VMM operation is very efficient in the hardware. However, sneak path 

problem will become more serious as the size of a crossbar becomes larger. It can 

be solved by transistors in series with each memristor as in [46]. 

  

5.4 Performance of LSTM architectures  

 Different LSTM architecture were used in a two-layer network for solving 

three different time-series prediction problems. It was found that complexity of an 

LSTM architecture becomes an advantage when using large training datasets. 

Whereas, less complex LSTM architectures such as NOAF and GRU outperform 

more complex FGR LSTM for problems with small training datasets. In addition, 

using more peephole connections increases the performance of FGR LSTM for large 

available training data. 
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