
LSTM NEURAL NETWORK IMPLEMENTATION USING

MEMRISTIVE CROSSBAR CIRCUITS AND ITS VARIOUS

TOPOLOGIES

Kazybek Adam, B.S.

Submitted in fulfilment of the requirements

for the degree of Master of Science

 in Electrical and Computer Engineering

School of Engineering

Department Electrical and Computer Engineering

Nazarbayev University

53 Kabanbay Batyr Avenue,

 Astana, Kazakhstan, 010000

 Supervisors: Alex James

 December 13, 2018

2

DECLARATION

I hereby, declare that this manuscript, entitled “LSTM Neural Network Implementation

Using Memristive Crossbar Circuits and Its Various Topologies”, is the result of my own work

except for quotations and citations which have been duly acknowledged. I also declare that, to

the best of my knowledge and belief, it has not been previously or concurrently submitted, in

whole or in part, for any other degree or diploma at Nazarbayev University or any other national

or international institution.

Name: Kazybek Adam

Date: December 13th, 2018

3

Abstract

Neural Network (NN) algorithms have existed for long time now. However,

they started to reemerge only after computers had been invented, because

computational resources are required to implement NN algorithms. In fact,

computers themselves are not fast enough to train and run the NNs. It can take days

to train some complex neural networks for certain applications. One of the complex

NNs that became widely used is Long-Short Term Memory (LSTM) NN algorithm.

As a broader approach to increase the computation speed and decrease power

consumption of neural network algorithms, hardware realizations of the neural

networks have emerged. Mainly FPGA and analog hardware are used for these

purposes. On this occasion, it happens to be only FPGA implementations of LSTM

exist. Using this lack, this thesis work mainly aims to show that LSTM neural

network is realizable and functional in analog hardware. In fact, analog hardware

using memristive crossbars can be a potential solution to the speed bottleneck

experienced in software implementations of LSTM and other complex neural

networks in general.

This work mainly focuses on implementation of already trained LSTM neural

networks in analog circuitry. Since training consists of both forward and backward

pass computations through NNs, first, there should be focus on implementing the

4

circuitry that can run forward passes. This forward running circuit further can be

extended to a complete circuit which would include training circuitry.

Additionally, there exists various LSTM topologies. Software analysis has

been done to compare the performance of each LSTM architecture for time-series

prediction and time-series classification applications. Each of the architectures can

be implemented in analog circuitry without great difficulty using voltage-based

LSTM circuit parts due its easiness to reconfigure. Fully functional implementation

of the voltage-based memristive LSTM in SPICE circuit simulator is the main

contribution of this thesis work. In comparison, current-based LSTM circuit parts

may not be easily rearranged due to the difficulty of passing currents from one stage

to the next without degradation in magnitude.

5

Acknowledgements

 I would like to thank my supervisor, Professor James for providing me an

opportunity to work on such an interesting research topic and helping on my

research. I also would like to thank the research group members for their help.

Particularly, Kamilya Smagulova and Olga Krestinskaya helped me in exploring my

research topic for this thesis.

6

Table of Contents

Abstract ………………..……………………………………………………………………….. 3

Acknowledgements …………………………………………………………………………….. 5

List of Publications ….………………………………………………………………………….. 7

Chapter 1 – Introduction

1.1 General …………………………………………………………………………………... 8

1.2 Research Aims and Objectives …………………………………………………………... 9

Chapter 2 – Literature Review

2.1 Background Theory …………………………………………………………………….. 11

 2.1.1 Memory Resistor – Memristor ……………………………………………………. 11

 2.1.2 Memristive Crossbar Arrays ……………………………………………………… 15

 2.1.3 Long-Short Term Memory (LSTM) ……………………………………………… 17

2.2 Relevant Literature ……………………………………………………………………… 21

Chapter 3 – Methodology

3.1 Selected Machine Learning Problems …………………………………………………... 23

 3.1.1 Time-series prediction problem 1 …………………………………………………. 23

 3.1.2 Time-series prediction problem 2 ………………………………………………… 24

 3.1.3 Time-series prediction (classification) problem 3 ………………………………… 25

 3.1.4 Selected Models ………………………………...………………………………… 26

3.2 Current-based LSTM …………………….……………………………………………... 29

3.3 Voltage-based LSTM ……………….…………………………………………………... 31

3.4 Circuit Parts ….. 37

 3.4.1 Vector-Matrix Multiplication (VMM) Circuit……………………………………. 37

 3.4.2 Activation Function Circuit …….………………………………………………… 40

 3.4.3 Analog Multiplier Circuits ………………………...……………………………… 42

3.5 LSTM Architectures 46

 3.5.1 Vanilla LSTM ……………………………….……………………………………. 46

 3.5.2 Other Architectures ……….…….………………………………………………… 48

Chapter 4 – Results and Discussions

4.1 Current-based LSTM ………………………………………………………………........ 51

4.2 Voltage-based LSTM ………………………………………………………………........ 51

4.3 Voltage-based LSTM for time-series classification ……………………………………. 55

4.4 Power consumption and chip area .…………………………………………………........ 59

4.5 LSTM architectures ……………………………………………………………….......... 61

Chapter 5 – Conclusions ………………………………………………………………………... 67

5.1 Time-series Prediction ………………………………………………………………...... 67

4.2 Wafer Classification ……………………………………………………………….......... 68

4.3 Flexibility of the Design ………………………………………………………………… 69

4.4 Performance of LSTM architectures ………………………………………………........ 69

References ……………………………………………………………………………………... 70

7

List of Publications

1. Smagulova K, Adam K, Krestinskaya O, et al (2018) Design of CMOS-memristor Circuits

for LSTM architecture. In: 2018 IEEE International Conference on Electron Devices and

Solid State Circuits (EDSSC), Electron Devices and Solid State Circuits (EDSSC), 2018

IEEE International Conference on, p. 1. doi: 10.1109/EDSSC.2018.8487179

2. Adam K, Smagulova K, James AP (2018) Memristive LSTM network hardware

architecture for time-series predictive modeling problem. arXiv preprint

arXiv:1809.03119, URL http://arxiv.org/abs/1809.03119.

3. Adam K, Smagulova K, Krestinskaya O, et al (2018) Wafer Quality Inspection using

Memristive LSTM, ANN, DNN and HTM. arXiv preprint http://arxiv.org/abs/1809.10438,

URL http://arxiv.org/abs/1809.10438.

http://arxiv.org/abs/1809.03119
http://arxiv.org/abs/1809.10438

8

Chapter 1 – Introduction

1.1 General

Since the invention of transistors in 1947 by William Shockley, John Bardeen,

and Walter Brattain the world has experienced technological boom. First flip-flop

consisting two bipolar transistors was built by Jack Kilby of Texas Instruments [1].

Later transistors became the integral part of any electronic device. During the course

of technological advancements, there was mainly a single change: transition from

bipolar junction transistors (BJTs) to Metal Oxide Semiconductor Field Effect

Transistors (MOSFETs) in digital IC design. Since then CMOS process technologies

have been scaled down steadily by abiding the “Moore’s Law”. However, this

transistor shrinking trend cannot continue when semiconductor industry reaches the

point where further reductions in size will be intolerable resulting in unreliable

operation of CMOS devices. Therefore, there is a need for alternative solution to

continue manufacturing smaller, faster, and power-efficient electronic devices.

Particularly, scaling down of CMOS memory devices (Flash, SRAM, etc.) is of

utmost concern for semiconductor industry. In this regard, a new physical element

called memristor has been proposed by scientists as a potential solution to replace

transistor-based memory cells. In fact, memristors have found wide range of

applications in electronics area [2]. They are used to realize neural networks in

9

hardware: implementation of both neuromorphic computing systems [3] inspired by

human brain; and their training algorithms such as back propagation [4] and Spike-

Timing-Dependent-Plasticity [5-7]. Another application is using memristors in

analog circuits as tunable resistors that can change the operation modes of the

circuits [8]. They can be used in digital circuits as well replacing the transistors in

implementing the logic gates [2]. These wide range of applications comes due to the

properties of memristors: their metal-insulator-metal (MIM) structure, small

footprint on a chip, memory in the form of resistance, low-switching time, high

endurance, and low switching energy [2].

Therefore, memristors are believed to have bright future and become the next

fundamental building block in both analog and digital IC design replacing the

transistors where possible; and memristive systems with in-memory computing

replacing the von Neumann architecture.

1.2 Research aims and Methods

The purpose of this thesis is to design fully functional analog circuit of LSTM

using memristive crossbars and test it on solving machine learning problems.

The overall design was done on pen and paper. Then each part of the design

was built and tested using circuit simulator program such as LTspice. After verifying

10

each part works well, all the parts of the whole design were put together and tested

again. The circuit-level testing of the circuit was compared to the software

implementation results. The software implementation of LSTM was accomplished

using Python programming language and Keras library. However, to dissect the

algorithm and get the intermediary results of the algorithm, it has been implemented

in Matlab from scratch as well without using LSTM library of Matlab. In addition,

“recurrent.py” file from Keras library was extended to be able to build and run

different topologies of LSTM in simple way.

11

Chapter 2 – Literature Review

2.1 Background Theory

2.1.1 Memory Resistor – Memristor

Leon Chua was the first person to notice that there was a missing fundamental

circuit element and to publish a work in 1971 about the memristor [9]. He put

forward that a memristor would complement the following list of fundamental

circuit elements: resistor, capacitor, and inductor. In fact, it can be best shown by

studying the relationship of fundamental circuit elements with the fundamental

circuit variables as shown in Figure 2.1. In the figure, the diagonal line contains the

fundamental circuit variables of charge, current, voltage, and flux. Each row

contains the equations where corresponding diagonal variable is expressed in terms

of the other circuit variables and the circuit elements. Whereas, each column

contains the equations where corresponding diagonal variable is part of the

expressions. It is not difficult to see the missing relationship between charge 𝑞 and

flux 𝜑. Mathematically, following relationships of charge-controlled memristance

with voltage and flux-controlled memristance with current were established by Chua

[9]:

𝑣(𝑡) = 𝑀(𝑞(𝑡))𝑖(𝑡), (2.1)

𝑀(𝑞(𝑡)) =
𝑑𝜑(𝑞)

𝑑𝑞
. (2.2)

12

Likewise, the current can be expressed as

𝑖(𝑡) = 𝑊(𝜑(𝑡))𝑣(𝑡), (2.3)

𝑊(𝜑(𝑡)) = 𝑑𝑞(𝜑)/𝑑𝜑. (2.4)

 The memristor’s unit is memristance (short for “memory resistance”)

𝑀(𝑞(𝑡)) and has units of resistance. Similarly, flux-controlled memristor’s unit is

memductance 𝑊(𝜑(𝑡)) which has units of conductance. Therefore, memristor is a

passive two-terminal fundamental circuit component exhibiting memory property by

changing its resistance depending on how much charge in total went through the

memristor.

 Chua and Kang, in 1976, extended the theory of memristors to memristive

devices [10]. Memristive devices differ from memristors in the way how the change

in their resistance occurs. Basically, a memristive device has an internal state 𝑥

which influences its resistance. The internal state changes depending on how much

and for how long voltage signal applied across or current passed through it. The

internal state is not directly related to flux or charge as in the case of memristors.

Mathematically, the same equations for memristors can be expressed as following

[10]:

𝑣(𝑡) = 𝑀(𝑥, 𝑖)𝑖(𝑡), (2.5)

13

𝑖(𝑡) = 𝑊(𝑥, 𝑣)𝑣(𝑡). (2.6)

where 𝑀(𝑥, 𝑖) is the memristance of time-invariant current-controlled memristive

device; and 𝑊(𝑥, 𝑣) is memductance of time-invariant voltage-controlled

memristive device. Also,
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑖) is valid for the former case and

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑣)

for the latter case.

 Both memristors and memristive devices demonstrate hysteresis in their I-V

curve as shown in Figure 2.2. The shapes may differ from device to device, but the

hysteresis always goes through the origin. Memristive devices is a broad group that

includes memristors which have 𝑓(𝑥, 𝑖) = 𝑖.

Figure 2.1. Symmetry of relationships between the fundamental circuit variables and elements.

Also, bottom left corner contains the symbol of memristor.

14

Figure 2.2. Example of I-V characteristic of a memristive device based on [11]. Sinusoidal

voltage signal is applied across the memristive device for different frequencies.

Up until 2008, when Hewlett Packard proposed 𝑇𝑖𝑂2 resistive switches as

memristive devices [12], research on memristors and memristive devices was frozen.

Hewlett Packard proposed the structure of the 𝑇𝑖𝑂2 device as depicted in Figure 2.3

and the model of their 𝑇𝑖𝑂2 device as following:

𝑀(𝑥, 𝑖) =
𝑅𝑜𝑛𝑥(𝑡)

𝐷
+ 𝑅𝑜𝑓𝑓(1 −

𝑥(𝑡)

𝐷
), (2.7)

𝑓(𝑥, 𝑖) =
µ𝑉𝑅𝑜𝑛

𝐷
𝑖(𝑡), (2.8)

where 𝑅𝑜𝑛 represents the lowest resistance which occurs at 𝑥(𝑡) = 𝐷 and 𝑅𝑜𝑓𝑓 is

the highest resistance which occurs at 𝑥(𝑡) = 0. 𝐷 represents the total length of the

device and 𝜇𝑉 is the dopant mobility.

15

 However, the model proposed by Hewlett Packard does not fit well real

devices. In fact, many other models have been developed that better represent real

memristive devices [2], but still idealistic.

Figure 2.3. Memristor structure representation based on [12].

2.1.2 Memristive Crossbar Arrays

 As already mentioned in the introduction, memristors can be used in many

areas of electronics. Mostly they are used in crossbar configurations as shown in

Figure 2.4 (and the idea of 2-dimensional resistive crossbar arrays was first proposed

in 1961 by Steinbuch [13]). In the figure, particularly, implementation of neural

network using memristive crossbar is illustrated. Its operation is simple. The inputs

𝑥1, 𝑥2, and 𝑥3 are represented by voltage sources 𝑣1, 𝑣2, and 𝑣3 in the circuit. The

weights from 𝑤11 to 𝑤33 correspond to the memristor conducatnces from 𝐺11 to 𝐺33

in the same order. Finally, as expected, the outputs 𝑦1, 𝑦2, and 𝑦3 correspond to

16

currents 𝑖1, 𝑖2, and 𝑖3. In practical implementations, the currents go to virtual grounds

created using operational amplifiers. Note that here linear activation functions in the

output layer was used for simplicity.

Basically, the crossbar executes vector-matrix multiplication (VMM)

operation very fast and in parallel. Another advantage comes when the neural

network size becomes large resulting in execution bottleneck (sequential execution

of processing units) and data transfer bottleneck between processing unit and

memory in computers while implementing the network training using software. In

the case of the memristive crossbar there is no need to store weight values

somewhere else – training of the weights happens in-place [14].

Figure 2.4. Simple neural network (left) and its crossbar implementation (right).

17

2.1.3 Long-Short Term Memory (LSTM)

LSTM, a type of Recurrent Neural Network (RNN), was invented by

Hochreiter and Schmiduber in 1997 to solve the issue of vanishing and exploding

gradients in RNNs [15]. The problem arises during the training of RNNs for patterns

that are spread in long time steps. Diagram of RNN and its unrolled equivalent

version with a vanishing gradient descent problem is visualized in Figure 2.5. In the

figure, the RNN has a single input unit, a single recurrent hidden unit, and a single

output unit. As neatly explained in [16], consider that the input at time t is non-zero

and at the next time steps it is zero. Then, if we have recurrent weight value smaller

than one, it means that the input at time t will contribute very little to the output at

time t+3. In fact, as the difference of time steps between the input and the output

increases the vanishing of the input’s influence on the output happens exponentially

fast. Therefore, the error derivative with respect to the input will vanish. Similarly,

exploding gradient problem occurs when the recurrent edge has weight value higher

than one. In addition, the type of activation function also contributes to the vanishing

and exploding gradient problems. For instance, in the case of a sigmoid activation

function, the vanishing gradient problem is more likely to happen since it will always

output values smaller than one. Whereas, in the case of a rectified linear unit with

its output equal to max(0, 𝑥), it tends to explode as its output value is not restricted

to one.

18

Figure 2.5. RNN representation on the left. Equivalent diagram on the right when RNN

experiences a vanishing gradient problem.

So, there is no control over the information that is fed into and out of a simple

RNN cell. Whereas, an LSTM RNN cell has control over what is forgotten, what is

fed into, and what is outputted in a cell. This is achieved through gates: forget, input,

and output gates which utilize sigmoid activation functions. Sigmoid function

changes smoothly and ranges between zero and one. When a gate’s output is one, it

allows to pass all the current stage information to the next stage using hadamard

multiplication operation. Similarly, when it is zero, the gate does not allow to pass

any information to the next stage. From Figure 2.6, it can be seen that the structure

of all three gates are the same: shared input vector which is the concatenation of

network input value 𝑥𝑡 at the current time step and the output value ℎ𝑡−1, which is

the output of the previous time-step LSTM cell; and the same activation functions

and hadamard multiplication units. They differ only in different values of weights

for the input vector ([𝑥𝑡, ℎ𝑡−1, 1]) as it can be seen below in mathematical form [17]:

19

Figure 2.6. LSTM cell architecture based on [17].

𝑓𝑡 = 𝜎(𝑏
𝑓1 + 𝑤

𝑓𝑥𝑡 + 𝑢
𝑓ℎ𝑡−1), (2.9)

𝑖𝑡 = 𝜎(𝑏
𝑖1 + 𝑤

𝑖𝑥𝑡 + 𝑢
𝑖ℎ𝑡−1), (2.10)

𝑜𝑡 = 𝜎(𝑏
𝑜1 + 𝑤

𝑜𝑥𝑡 + 𝑢
𝑜ℎ𝑡−1). (2.11)

The cell state 𝐶𝑡 of an LSTM cell is updated by forgetting some portion of the old

cell state 𝐶𝑡−1 and adding some portion of the candidate value 𝐶′𝑡, which has the

same structure as the gates, except with different activation function:

𝐶′𝑡 = 𝑡𝑎𝑛ℎ(𝑏
𝐶′1 + 𝑤

𝐶′𝑥𝑡 + 𝑢
𝐶′ℎ𝑡−1), (2.12)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡
′ (2.13)

20

Finally, the current output of the LSTM cell is the some portion of the filtered cell

state 𝐶𝑡:

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡). (2.14)

Note that the equations (2.9)-(2.14) correspond to the case of a single LSTM hidden

unit. In practice, LSTMs are used with larger weight matrices meaning that the size

LSTM hidden layer is much larger. Also note that Keras library of Tensorflow uses

the version of LSTM that was presented above [18]. Other architectures of LSTM

will be presented in the methodology section of this thesis.

It is no wonder that LSTM became quite popular in recent times, since it is

used widely in machine learning field. Particularly, application of LSTM can be

found in natural language translation [19], image captioning [20-22], video

captioning [23], speech recognition [24], and time-series prediction (part of this

thesis).

21

2.2 Relevant Literature

 As it has been already mentioned in the section 2.1.2, memristive crossbar

arrays are more efficient in implementing neural networks than computers are with

their software. Since memristors and memristive systems are still emerging as a

technology, not many chip implementations of neural networks using memristive

crossbar arrays exist. Instead, FPGA implementations of neural networks have

become a general trend in literature works. Particularly, FPGA implementations of

LSTM have been presented each year since 2015 by research community [25-29].

These works report efficiency of FPGA implementations of LSTM compared to the

software implementations of LSTM. However, there are still a few works that are

related to the implementation of LSTM in memristive crossbar arrays [30-32] and

ultimately, it is believed that memristive crossbar implementations would

outperform the digital implementations as memristor technology matures [31].

In [30], purely analog implementation of memristive LSTM in 0.18 µm

CMOS technology is proposed. However, this work does not provide full circuit

simulation of the whole system solving a particular machine learning problem. They

propose only the separate analog building blocks of the whole system. Particularly,

analog circuits for activation function and element-wise (hadamard) multiplication

operation are proposed. In addition, an existing crossbar configuration is presented.

22

As opposed to the work in [30], authors of [31] solve a real-world problem

(language modeling problem) and accomplish a system level simulation. Their

simulations are done in their own built software tool (written in C++) rather than on

circuit simulator such as SPICE. They use so-called non-linear function units

(NLFs), which are digital blocks, to implement all the mathematical operations

required to implement LSTM except for vector-matrix multiplication (since it is

implemented using memristive crossbars). They set some constraints in the software

to incorporate the non-idealities associated with the analog VMM operation. Their

main finding is that memristors need to have symmetric change in conductance

values when given positive and negative voltages across for good performance

results. The slightest variation as low as 2% in the asymmetry can severely affect

the performance results in large LSTM networks with the sizes of up to 512 hidden

units compared to fully connected networks with smaller size and smaller training

dataset.

Finally, the work by [32] presents a fabricated chip consisting of one-

transistor one-memristor (1T1R) type crossbar array that implements the VMM

operation part of the LSTM algorithm. However, the rest of the operations were

implemented in software in their work. They were able to train their weight matrix

of memristors in-situ and solve successfully time-series prediction and classification

problems. The used memristors were from Ta/HfO2.

23

Chapter 3 – Methodology

In this thesis, the problems that are solved using LSTM algorithm are framed

as following: predict sample point at current time step 𝑡 using previous sample points

at time steps 𝑡 − 1, … , 𝑡 − 𝑑. Selection parameter 𝑑 is a look-back number or a

prediction delay. Then, output of a single LSTM cell (neuron) can be expressed as

following:

𝑦(𝑡) = 𝑓𝐿𝑆𝑇𝑀(𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑑)). 3.1

3.1 Selected Machine Learning Problems

3.1.1 Time-series prediction problem 1

As a first step in implementing LSTM neural network algorithm in analog

hardware (in circuit simulator) using memristive crossbar arrays, a simple machine

learning problem - prediction of international airline passenger count - was selected.

In fact, a web-tutorial by Brownlee [33] was already solving the problem using

LSTM in Keras library (which became the main tool for software simulations of

different LSTM architectures in this thesis). This simple problem does not require

large LSTM neural network to achieve satisfactory prediction results. Having

smaller LSTM network means smaller weight matrices are used in the network

resulting in smaller memristive crossbar arrays being used in the analog

24

implementation of the algorithm. In addition, the dataset [34] of the problem is also

small enough to run all the testing data in a circuit simulator. It contains 144 sample

points which are monthly number of international airline passengers in thousands

from 1949 to 1960. The plot of the dataset is shown in Figure 3.1 below. This dataset

is used both in system-level and circuit level simulations involving LSTM algorithm.

Figure 3.1: Plot of data samples of time-series prediction problem 1. Monthly data of

international airline passenger count from 1949 to 1960 [34].

3.1.2 Time-series prediction problem 2

 Another time-series prediction problem that was picked is the prediction of

CO2 emission volumes at volcano Mauna Loa. The dataset [35] of the problem

contains 192 sample points which are monthly CO2 emission levels starting from

1965 to 1980. The plot of the dataset is shown in Figure 3.2 above. However, the

dataset of this problem was only used in system-level simulations for analysis of

25

different LSTM architectures. It was chosen, because its plot has a little different

shape and pattern than that of the problem 1 dataset.

Figure 3.2: Plot of data samples of time-series prediction problem 2. Monthly data of CO2

emission volumes at volcano Mauna Loa from 1965 to 1980 [35].

3.1.3 Time-series prediction (classification) problem 3

 The last problem is a wafer quality classification problem. It is a binary

classification problem which is modeled as a time-series prediction problem where

the predicted value represents a class rather than a more meaningful quantity as in

the previous two problems. A wafer in this problem can be classified as either normal

or abnormal. Therefore, here we are not highly concerned about the exact value of

the prediction. As long as the predicted value is in one range for one class and in the

other range for the other class, we can successfully classify a wafer. This problem

contains large database consisting of 7164 datasets [36] each of them having 152

26

data samples and a single associated class label. These datasets are used both in

system-level and circuit level simulations involving LSTM algorithm. Figure 3.3

shows plot of four different testing datasets from the wafer classification database.

Figure 3.3: Plot of data samples of time-series classification problem for test wafers 23, 7, 47,

and 3. A single inline sensor measures 152 times to obtain the samples [36].

3.1.4 Selected Models

Since the tutorial in [33] was already solving the problem, the model selection

process was minimal for the first problem. To solve the problem a two layer neural

network consisting of LSTM and Dense (fully-connected) layers was used as in the

tutorial. The LSTM layer in the network contains four (a not too small and not too

large value) hidden units and the dense layer contains a single unit which squashes

27

the four outputs of the LSTM layer into a single output – prediction value. Another

parameter is a look-back number or the number of recurrent operations before

obtaining the last time step output and it was chosen to be equal to two, unlike the

values in the tutorial. It was chosen empirically: for the same number of hidden units,

it gave a better result for a look-back value of two than for values of one and three.

One might question that if LSTM is good at learning long patterns of data through

time then why it did not do well for a look-back value of three. It may be due to the

lack of extra features or there is a bad pattern in the data. As for the training of the

network, it was trained using mean square error loss function and adam optimizer

[37] with default parameters [38]. However, instead of 100 epochs as in the tutorial,

an epoch size of 500 was chosen while keeping a batch size of one. It was done to

obtain approximately same performance results as in the former case while having

weight constraints between ±1 to keep input voltages into a memristive crossbar

array small enough for a given range of memristances, [Ron, Roff]. Then trained

weights are extracted for setting memristance values in the memristive crossbar

arrays. The training to testing data ratio used is 2/1.

The same model was used for solving problem 2 since it is similar to the first

problem. However, in system-level simulations for analysis of different LSTM

architectures, the epoch size of 300 was used for both problems. This is a middle-

ground value which gives enough learning opportunity to detect the performance of

28

each LSTM architecture. It helps to accelerate system-level Monte Carlo

simulations. The third problem, time-series classification problem, also used the

same model as the first two except that a look-back value of 152, an epoch size of

40 with batch size of 1, training to testing ratio of roughly 1/7, and no weight

constraints were used. Here a look-back value of 152 is a fixed value unlike in the

first two problems. Epoch size was reduced, because this problem has large training

data (6164 datasets). For the system-level analysis, however, the epoch size was

reduced to 25 and a batch size of 15 was used for speeding up the Monte Carlo

simulations. Weight constraints were lifted, otherwise classification accuracy

reduces significantly. Interestingly, without the constraints only a few weights went

up beyond the weight range of [-1, 1] and by small amounts. These weights were

represented by two parallel memristors in the circuit implementation of the problem

to keep memristances in the allowed range of [Ron, Roff].

The summary of selected models for each problem is shown in Table 3.1

below. 144 total sample points were converted to 142 datasets with each having 2

samples and a single target value. Similarly, 192 total sample points were converted

to 190 datasets with each having 2 samples and a single target value. Data samples

were scaled down linearly to be in the ranges of [0, 1] for the first two problems and

[-0.5, 0.5] for the last problem. These are the ranges where LSTM performs well for

the selected problems.

29

Table 3.1: Summary of the selected models for each problem.

 Problem 1 Problem 2 Problem 3

Network Config.

[L1(units)+L2(units)]

LSTM(4)+

Dense(1)

LSTM(4)+

Dense(1)

LSTM(4)+

Dense(1)

Train/Test data ratio 2/1 2/1 1/7

Look-back number 2 2 152

Dataset size

(features, samples)

(1, 3) (1, 3) (1, 153)

Total # of Datasets 142 190 7164

Epoch size (weight

extraction/analysis)

500/300 NA/300 40/25

Batch size (weight

extraction/analysis)

1/1 NA/1 1/15

Weight Constraints [-1, 1] [-1, 1] None

Input range [0, 1] [0, 1] [-0.5, 0.5]

Loss function MSE MSE MSE

Optimizer adam adam adam

3.2 Current-based LSTM

In this thesis, the first attempt to implement LSTM algorithm in analog

hardware using memristive crossbar array resulted in a LSTM circuit design based

on current-based activation function circuits [39]. These circuits implement sigmoid

and hyperbolic tangent functions using currents as inputs. It forces to use other types

of circuits in the overall design such as current-mirror [39] and voltage-to-current

converter; and therefore the overall design can be called current-based LSTM.

30

Figure 3.4: Circuit diagram of memristive current-based LSTM. Activation function, current

mirror, and multiplier circuits were taken from [39]. Memristor Ron/Roff values are based on

[40]. Circuit implementation was done using TSMC 0.18 um CMOS technology.

Figure 3.4 shows memristive crossbar implementation of a single LSTM layer

with N inputs and M LSTM blocks (neurons). The features x1 to xN are input samples

at time step t; and hidden unit values h1 to hM are the LSTM layer outputs of previous

time step t-1. The biases for input, forget, and output gates are bi, bf, and bo,

respectively. The bias bc is for the intermediary cell state ct (also known as candidate

cell state). The real cell state is Ct. In the figure, the four structures delimited by

31

dashed blue lines compute the outputs of the gates: it, ft, and ot; and the intermediary

cell state ct. The transistors in those structures serve as switches that allow the

execution of weighted summation once at a time per block. The resulting currents

going to current mirrors are the summed values. The mirrored currents are then fed

to corresponding activation function circuits: sigmoid and hyperbolic tangent

circuits. The activation function circuits then output voltage values for it, ft, ct, and

ot. At this point, we have computed everything to obtain the cell state Ct except for

Ct-1, cell state from previous time step. Ct-1 is fetched from a memory unit and the

computed Ct is stored in the same memory unit. Then voltage of Ct is converted to

current before filtering it through hyperbolic tangent function. Finally, the current

time-step output ht of a current LSTM block is obtained as a voltage after multiplying

the filtered Ct voltage and the voltage of ot. However, M cycles of execution are

required to obtain all hidden unit outputs ht. This sequential operation of the circuit

can save on-chip area in the expense of execution speed.

3.3 Voltage-based LSTM

In this section, voltage-based LSTM circuit design is proposed. Unlike

current-based activation function circuits and current mirrors, voltage-based

activation function circuits and voltage buffers provide us with higher accuracy and

more predictable outputs. Current-based implementation could be used in solving a

32

classification problem. This is because we are not interested in the analog output

voltage – as long as it is high enough or low enough, we know that it is either digital

1 or digital 0. Whereas, in the case of time series prediction problem, we are

interested in the analog output voltage to be much accurate rather than it being higher

or lower of some threshold value. Therefore, high-accuracy sigmoid and hyperbolic

tangent function circuits, which are voltage-based, were implemented. In addition,

high accuracy four-quadrant multiplier circuit was adapted from [41]. They help to

obtain accurate values at each stage to finally arrive to an accurate output value.

Additionally, control circuit has been implemented to carry out the multiple time

step feature of the LSTM RNN.

It is a fact that time series prediction will yield some error, for instance mean

square error (MSE) or root mean square error (RMSE). If the RMSE of the circuit

and the software implementations are close enough, then we can conclude that we

successfully implemented the LSTM neural network in analog hardware.

The voltage-based memristive LSTM circuit diagram for solving the first

time-series prediction problem is shown in Figure 3.5 below. In the figure, the

ultimate sign of ht1 is consistent with its real sign in the LSTM algorithm equations.

It is achieved by using activation function circuits that output inverted values.

33

Figure 3.5: Full neural network circuit design consisting of LSTM and Dense layers which

solves the time-series prediction problem 1. The network uses two previous time-steps (𝒙𝒕𝟏, 𝒙𝒕𝟐)

to predict 𝒙𝒕𝟑 which corresponds to 𝑽𝒑𝒓𝒆𝒅. It means that there are two full cycles of operations

inside the LSTM layer before its output is captured at memory unit ht2 for subsequent VMM

operation in the dense layer. LSTM layer has 4 hidden units and dense layer has a single unit

(no activation function). The design corresponds to the latest optimized version with RNIC-1

three-stage op-amps [42] and the multipliers based on symmetric complementary structure

squarer circuits [43]. Ratios of
𝑹𝟐

𝑹𝟏
 and

𝑹𝟒

𝑹𝟑
 are equal to 10. The input voltage range of the network

is [-0.1, 0.1]. The values in the yellow boxes are obtained in the same way as 𝒊𝒕𝟏.

34

 Similar circuit design is also used to solve the time-series classification

problem. Their differences are only in memory unit circuits and control voltages.

Memory unit circuits and control voltages for the first design are shown in Figure

3.6 and Figure 3.7, respectively. The memory units are used to store the previous

time-step cell state values and the previous time-step outputs of LSTM hidden units.

Since four hidden units are used in the network configuration, there are four sample

and hold circuits in each memory unit. As for the control voltages, they ensure that

each LSTM cell output is obtained in sequential manner, the same way as in current-

based LSTM design. It takes 40 us to obtain all four LSTM hidden unit outputs at a

current time step and total of 88 us to predict the target value of a single dataset.

Figure 3.6: Memory units used in voltage-based LSTM (problem 1) consisting of sample and

hold; and pass-transistor logic circuits. For the final design W/L ratio of 45um/0.18um is used

for both NMOS and PMOS transistors in the pass logic switches.

35

Figure 3.7: Control Voltage signals for voltage-based LSTM solving problem 1. Obtaining a

single prediction value 𝒙𝒕𝟑 takes 88us. Amplitude of the pulses is 1.8V. The complements of the

control voltages have the same pattern, but amplitude of -1.8V. Voltages 𝑉11 to 𝑉14; and 𝑉21to

𝑉24 are not shown in this figure, but they are first and second halves of signals 𝑉121to 𝑉124,

respectively.

 Corresponding memory units and control voltage signals are shown in Figure

3.8 and 3.9, respectively for the voltage-based LSTM design solving the time-series

prediction problem 3. In Figure 3.9, control voltages 𝑉1 to 𝑉4 correspond to voltages

V121 to V124 from the voltage-based LSTM solving problem 1 and they are periodic

until 6.384 ms. Voltages 𝑉ℎ and 𝑉ℎ1234 are periodic starting from 40us and ending

at 6.384 ms. Unlike the memory units of the first design, the memory units of the

second design use more sample and hold circuits and more capacitance values. These

36

Figure 3.8: Memory units used in voltage-based LSTM (problem 3). Pass-transistor logics have

W/L ratio of 18um/0.18um. . The input voltage range of the network is [-0.5, 0.5].

Figure 3.9: Control Voltage signals for voltage-based LSTM solving problem 3. Performing a

single classification takes 6.387 ms. Voltages 𝑽𝟏𝒅 to 𝑽𝟒𝒅 are not shown in the figure, but they

are the delayed versions of 𝑽𝟏 to 𝑽𝟒 with a delay of 40 us.

changes are due to the usage of a look-back number greater than two and the usage

of two-stage op-amps [39], respectively. Initially, the first design also used two-stage

37

op-amps, but later they were replaced with three-stage op-amps for greater

prediction accuracy. Since we are classifying in the second design, we are not greatly

concerned in the accuracy of the predicted analog values. Therefore, the second

design used the older circuit parts: the two-stage op-amps and multiplier circuits

based on Flipped Voltage Follower cells [41]. The input voltage range of the second

design is [-1, 1].

3.4 Circuit Parts

3.4.1 Vector-Matrix-Multiplication (VMM) Circuit

The power of memristive crossbar circuits is the implementation of VMM

operation in an efficient way. Op-amps are handy as always and provide virtual

grounds for accumulating the currents in a crossbar column. In addition, they convert

the accumulated current to voltage at its output. However, using single op-amp per

column and single memristor per synapse restricts the range of implementable

weights. In fact, that way we can only implement positive weights. The problem can

be solved using two memristors per synapse and two op-amps per column in

memristive crossbar [44]. The configuration of two op-amps in a crossbar is shown

in Figure 3.10. The first column op-amp acts as inverting amplifier and the second

column amplifier acts as summing amplifier. This configuration enables to subtract

the current in the second column from the first one. The subtracted current is then

38

multiplied to Rf and results in an accurate voltage at the output of the second op-

amp. The voltage-based designs 1 and 2 use only single pair of op-amps per single

sub-crossbar (total four of them). This is due to the use of sequential mode operation

in the design.

Figure 3.10: Memristive crossbar circuit with two memristors representing single synapse.

Switches represent pass-transistor logic units. They are used for implementing VMM operation

in sequential manner. The whole circuit of the voltage-based LSTM designs would have four of

these crossbars. Output voltage is read at node 𝒚𝒋. R=1.25kΩ and Rf = 1kΩ/1.24kΩ for

continuous/discrete memristance states.

 The inference of problem 1 in the voltage-based LSTM circuit was simulated

using both continuous and discrete memristance values. In the former case Ron and

39

Roff of memristors were chosen to be 10kΩ and 10MΩ, respectively based on the

memristor device from [45]. In the latter case discrete memristance values between

1.1kΩ and 10kΩ were used [46]. The reason of using discrete weights is that in real

memristive crossbar arrays, we cannot obtain an exact memristance states, rather we

get some noisy states with Gaussian distribution [46]. According to the empirical

data from [46], 68 memristance states were obtained between 1.1kΩ and 10kΩ

range. The inference of problem 3 using the discrete weights is the part of future

work.

 In the previous section, it was mentioned that in the circuit designs of LSTM

there were used two types of op-amps. The two-stage op-amp used in the designs is

shown in Figure 3.11 and the three-stage op-amp is shown in Figure 3.12.

Figure 3.11: 2-stage op-amp used in the current-based and voltage-based LSTM designs [39].

40

Figure 3.12: Three-stage op-amp – RNIC-1 op-amp based on [42].

3.4.2 Activation Function Circuit

Sigmoid and hyperbolic tangent functions can be obtained using circuit in

Figure 3.13. It basically employs the property of differential amplifier – gradual and

smooth increase of the output voltage when the differential input is swept between

a desired range. The desired output range and form can be obtained by varying

supply voltage 𝑉𝑑𝑑, current 𝐼1, and the sizes of NMOS transistors (𝑁1 and 𝑁2).

Voltage source values of 𝑉1, 𝑉2, and 𝑉3 are used to shift the output values to match

the graphs of the sigmoid and hyperbolic tangent functions. Since these two

functions are different, the above mentioned parameters also change for each

function. DC transfer characteristics for sigmoid and hyperbolic tangent function

circuits are shown in Figure 3.14 and Figure 3.15, respectively. The graphs’ input

41

and output ranges are scaled down by -10 (negative part is canceled at later stages)

to meet the operation range of the other circuit elements.

Figure 3.13: Proposed activation function circuit.

Figure 3.14: Comparison of sigmoid function implementations: red – circuit implementation,

blue – software implementation. Inputs and outputs are scaled down by 10.

42

Figure 3.15: Comparison of hyperbolic tangent function implementations: red – circuit

implementation, blue – software implementation. Inputs and outputs are scaled down by 10.

3.4.3 Analog Multiplier Circuits

Four-quadrant analog multiplier based on flipped voltage followers (FVFs)

[41] was used in the implementation of hadamard multiplication operation. The

circuit schematic and DC transfer characteristics of the FVF-based multiplier is

shown in Figures 3.16 and 3.17, respectively. The core of the multiplier consists of

NMOS transistors 𝑀1–𝑀4. Current source 𝐼𝑏 and transistors 𝑀𝑎 and 𝑀𝑏 form a FVF

cell. The difference between currents 𝐼𝐸 and 𝐼𝐹 results in output current 𝐼𝑜𝑢𝑡 = 𝐼𝐸 −

𝐼𝐹 = µ𝑛𝐶𝑜𝑥𝑊/𝐿. This expression holds true only if 𝑉𝐸 = 𝑉𝐹 , all the transistors

are in triode mode, and if the sources driving nodes A and B have significantly low

43

impedance. These conditions can be met using FVFs in feed-forward structure as

current sensing elements and voltage buffers. The bottom FVFs create low

impedance nodes E and F; and enable sensing the currents that pass through these

nodes. Additionally, they are used to replicate these currents. The top FVFs

implement very low impedance sources that drive nodes A and B. The resulting

multiplier produces good linearity, operates at high frequencies, and has low supply

(sub-volt) requirements in comparison with op-amp based multipliers.

Figure 3.16: Four-quadrant analog Multiplier 1. All the transistors operate in linear region.

Vcm =Vcm1 = Vcm2 = 1.4V; Ib = 600uA; R = 2kΩ; Input range is between ±0.4V [41].

44

Figure 3.17: DC transfer characteristics of Multiplier 1 based on Flipped Voltage Follower

cells. The multiplier circuit implements a scaled down (by -4) version of real multiplication.

In spite of its good linearity, the FVF-based multiplier was replaced in the

final version of the voltage-based LSTM design by a more linear and more

symmetric multiplier. This multiplier is based on symmetric complementary

structure squarer circuits [43]. The circuit schematic and DC transfer characteristics

of the latter multiplier is shown in Figures 3.18 and 3.19, respectively. In the former

figure, the left-hand side transistors 𝑀1 to 𝑀6 constitute an analog voltage squarer

with a “symmetric complementary push-pull source follower structure” [43].

Transistors 𝑀5 and 𝑀6 operate in triode region. The drain currents of 𝑀5 and 𝑀6

are expressed as following:

𝐼𝐷5 = 𝛽[(𝑉𝐺𝑆5 − 𝑉𝑇𝑛)𝑉𝐷𝑆5 −
1

2
𝑉𝐷𝑆5
2], (3.2)

45

𝐼𝐷6 = 𝛽[(𝑉𝐺𝑆6 − 𝑉𝑇𝑛)𝑉𝐷𝑆6 −
1

2
𝑉𝐷𝑆6
2], (3.3)

where 𝛽 = 𝜇𝑛𝐶𝑜𝑥 (
𝑊

𝐿
)
𝑛

. Then due to symmetry output currents in the circuit will be:

 𝐼𝑜+ = 𝐼𝐷5 + 𝐼𝐷6 = −𝛽(𝐴 + 𝐵)2, (3.4)

𝐼𝑜− = 𝐼𝐷11 + 𝐼𝐷12 = −𝛽(𝐴 − 𝐵)2. (3.5)

The difference of the above two currents will be:

𝐼𝑜 = 𝐼𝑜+ − 𝐼𝑜− = −4𝛽𝐴𝐵. (3.6)

Figure 3.18: Four-quadrant analog Multiplier 2. Vg = 1.5V; R = 1kΩ. Input range is between

±0.5V, but ±0.1V is enough for implementation of LSTM [43].

46

Figure 3.19: DC transfer characteristics of Multiplier 2 based on Symmetric Complementary

Structure squarer circuits. The multiplier circuit implements a same-scale version of real

multiplication.

3.5 LSTM Architectures

3.5.1 Vanilla LSTM

Hochreiter and Schmidhuber [15] invented the very first LSTM. Later the

original LSTM evolved into the most common architecture [47] known as vanilla

LSTM [48]. Figure 3.20 shows the detailed diagram of the vanilla LSTM layer.

Vanilla LSTM differs from the standard LSTM used in Keras library [18] by

additional weighted connections known as peepholes. Peephole weight vectors; and

half-transparent dashed lines and math elements (multiplication and addition) are

extra additions that separate the standard LSTM from the vanilla LSTM.

47

Figure 3.20: Detailed Vanilla LSTM layer diagram. Letters subscripted with t or t - 1 represent

vectors of size M, except 𝒙𝒕 which has size N. Bias is a scalar which is equal to unity.

All the lines in the diagram represent vectors. Blue line is the concatenation

of following inputs along column axis: input vector (or feature vector) 𝑥𝑡 of size 1-

by-N, output vector from previous cell ℎ𝑡−1 of size 1-by-M, and a scalar bias value.

Then the size of blue line is N+M+1 = S (denoted as S for short). The matrices inside

Vector Matrix Multiplication (VMM) units represent weight matrices. They

48

combine input, recurrent, and bias weights. The outputs of VMM units are row

vectors of length M. In fact, all the black lines have size 1-by-M, where M is the

number of LSTM hidden units or blocks. Therefore, ideally we should get M parallel

operations and M outputs at each stage in the diagram. However, in hardware parallel

operations may be implemented sequentially to save up chip area as in the proposed

designs in this chapter. Then, as expected, multiplication elements perform element-

wise (hadamard) multiplications; and addition elements perform vector additions.

3.5.2 Other Architectures

There are total of nine existing architectures of LSTM [48]. They can be

classified into six categories: 1) Vanilla; 2) Standard (No Peepholes); 3) Full Gate

Recurrence (FGR); 4) Coupled Input and Forget Gate (CIFG); 5) with a Linear

Activation Function; and 6) with a Constant Gate of Unity.

The vanilla LSTM shown in Figure 3.20 can be described in concise

mathematical forms below [48], where 𝑸 having size of S-by-M is the concatenation

of input weight matrix 𝑾, recurrent weight matrix 𝑹, and bias weight vector 𝒃 along

row axis; and 𝒒 is the input vector of size 1-by-S:

𝒇𝒕 = 𝜎(𝒒𝒕𝑸𝒇 + 𝑪𝒕−𝟏 ∗ 𝒑𝒇), (3.6)

𝒊𝒕 = 𝜎(𝒒𝒕𝑸𝒊 + 𝑪𝒕−𝟏 ∗ 𝒑𝒊), (3.7)

49

𝑪′𝒕 = 𝑡𝑎𝑛ℎ(𝒒𝒕𝑸𝑪′), (3.8)

𝑪𝒕 = 𝒊𝒕 ∗ 𝑪𝒕
′ + 𝒇𝒕 ∗ 𝑪𝒕−𝟏, (3.9)

𝒐𝒕 = 𝜎(𝒒𝒕𝑸𝒐 + 𝑪𝒕 ∗ 𝒑𝒐), (3.10)

𝒉𝒕 = 𝒐𝒕 ∗ tanh(𝑪𝒕), (3.11)

where 𝒑𝒇, 𝒑𝒊, and 𝒑𝒐 represent peephole weight vectors.

No peepholes version is self-explanatory. It has the same architecture as that

of the vanilla LSTM except no peephole connections in its topology.

FGR is the most complex architecture of LSTM. As its name suggests, Full

Gate Recurrence LSTM is featured by recurrent connections between its all gates.

FGR is basically vanilla LSTM (except peephole weights of output gate are element-

wise multiplied to previous cell state vector) plus the new recurrent connections

among the gates. It adds to the weight matrix 𝑸 of each gate additional 3M-by-M

recurrent weight matrix. Mathematically in detail, it can be described as following

[48]:

𝒇𝒕 = 𝜎(𝒒𝒕𝑸𝒇 + 𝒊𝒕−𝟏𝑹𝒊𝒇 + 𝒇𝒕−𝟏𝑹𝒇𝒇 + 𝒐𝒕−𝟏𝑹𝒐𝒇 + 𝑪𝒕−𝟏 ∗ 𝒑𝒇), (3.12)

𝒊𝒕 = 𝜎(𝒒𝒕𝑸𝒊 + 𝒊𝒕−𝟏𝑹𝒊𝒊 + 𝒇𝒕−𝟏𝑹𝒇𝒊 + 𝒐𝒕−𝟏𝑹𝒐𝒊 + 𝑪𝒕−𝟏 ∗ 𝒑𝒊), (3.13)

𝒐𝒕 = 𝜎(𝒒𝒕𝑸𝒐 + 𝒊𝒕−𝟏𝑹𝒊𝒐 + 𝒇𝒕−𝟏𝑹𝒇𝒐 + 𝒐𝒕−𝟏𝑹𝒐𝒐 + 𝑪𝒕−𝟏 ∗ 𝒑𝒐). (3.14)

50

CIFG architecture of LSTM is more known as GRU [49]. Again, its name

(Coupled Input and Forget Gate) explains itself: 𝒇𝒕 = 𝟏–𝒊𝒕 . However, other than

that, 1) there are also no peephole connections and no output activation function; 2)

candidate cell state’s recurrent inputs are filtered through output gate before being

multiplied with recurrent weight matrix; and 3) cell state and cell output are

combined together. The differences can be easier to see in mathematical equations:

𝑪′𝒕 = 𝑡𝑎𝑛ℎ(𝒙𝒕𝑾𝑪′ + (𝒉𝒕−𝟏 ∗ 𝒐𝒕)𝑹𝑪′ + 𝒃𝑪′), (3.15)

𝒉𝒕 = (𝟏 − 𝒇𝒕) ∗ 𝑪𝒕
′ + 𝒇𝒕 ∗ 𝒉𝒕−𝟏. (3.16)

The next category falls into LSTM architectures with a linear activation

function either in a) candidate cell state generation stage or b) in output gate stage.

From the vanilla LSTM equations only equations 3.8 and 3.11 change. In

architecture a), known as No Input Activation Function (NIAF), equation 3.8

becomes 𝑪𝒕
′ = (𝒒𝒕𝑸𝑪′). In architecture b), known as No Output Activation Function

(NOAF), equation 3.11 becomes 𝒉𝒕 = 𝒐𝒕 ∗ 𝑪𝒕.

The last category includes LSTM architectures which have a constant gate of

unity in one of its gates and everything else is the same as in the vanilla LSTM. Then

there are three different such architectures: a) No Input Gate (NIG): 𝒊𝒕 = 𝟏; b) No

Forget Gate (NFG): 𝒇𝒕 = 𝟏; and c) No Output Gate (NOG): 𝒐𝒕 = 𝟏.

51

Chapter 4 – Results and Discussions

4.1 Current-based LSTM

Area of the proposed LSTM circuit is 83,493.5 µm2 (without memory unit).

The total power consumption of the single cell LSTM circuit is 105.9mW for input

voltages between 0 and 1 Volts. Since this part does not provide a full circuit-level

simulation solving the prediction problem, there are no results comparing circuit-

level and system-level implementations of LSTM. The full circuit-level simulation

was left out, because it was clear enough that voltage-based LSTM implementation

would give higher accuracy of prediction. However, as a thorough comparison

between the two implementations, the full circuit-level simulation of current-based

LSTM used inside a neural network configuration can be considered as an open

problem.

4.2 Voltage-based LSTM for time-series prediction problem

 Figure 4.1 below shows the comparison of the results for the case with

continuous weight values. The plots in this figure obtained while using 2-stage op-

amps [39] and Flipped Voltage Follower [41] based multipliers. The numerical

comparison of the plots is shown in Table 4.1.

52

Figure 4.1: Visual Comparison of LSTM Software and Memristive (continuous weights) Analog

implementation results against the Target values.

Table 4.1. Numerical Comparison Results for Figure 4.1 above.

Note that, in Table 4.1, performance results when estimating target values

using software implementation of the algorithm are not good enough. An R2 score

of only 0.41 means a not so good estimation. Probably, choosing more hidden units

and more LSTM layers would result in higher scores. However, this was not the first

priority in this work. The main goal was to demonstrate a successful implementation

53

of the algorithm in analog hardware using memristive crossbar arrays. So far, this

goal is achieved for some extent with an estimation score R2 of 0.932.

Figure 4.2 below shows the comparison of the results for both cases: with

continuous and discrete weight values. In addition, the plots in this figure were

obtained while using 3-stage RNIC-1 [42] op-amps and multiplier based on a

symmetric complementary structure [43] for obtaining more accurate results. Again,

the numerical comparison of plots is provided and shown in Table 4.2. From the

table, it can be seen that new circuit units have helped to attain almost ideal circuit-

level implementation of the whole neural network consisting of an LSTM layer and

a Dense layer. R2 score jumps from 0.932 up to 0.995 when using the more accurate

circuit components – op-amps and multipliers. With these new components even the

implementation with discrete weights gives high enough R2 score – 0.975. This is a

good score and promises that real memristors can give decent implementation

scores. However, the last score was obtained when considering no noise in the

memristors used in the circuit crossbar. Whereas, adding Gaussian noise to

memristances of the memristors with the noise standard deviation equal to 5%, 10%,

and 20% and running 30 Monte Carlo simulations give an expected degrading

performance results as shown in Table 4.3. In addition, there is a need to simulate

the real effect of wire resistances in the crossbar arrays similar to the case with

54

memristor noises. Finally, combined effect of both non-idealities should be also

tested in circuit simulations. This can be part of future work.

Figure 4.2: Visual Comparison of LSTM Software and Memristive (continuous and discrete

states) Analog implementation results against the Target values using more accurate circuit

parts. Total circuit simulation time take 3.96 ms to predict all 45 sample points.

Table 4.2: Numerical Comparison Results for Figure 4.2 above.

55

Table 4.3: Average Performance results of 30 Monte Carlo simulations with Discrete Weights

by adding to them Gaussian Noise with std. deviation equal to 5%, 10%, and 20% of Ron/Roff.

Performance

Metrics

AvgAnalogDiscr2Soft

(5% weight noise)

AvgAnalogDiscr2Soft

(10% weight noise)

AvgAnalogDiscr2Soft

(20% weight noise)

'MSE' 0.001163364 0.004764 0.014253

'RSE' 0.065070512 0.188028 0.332639

'MAE' 0.025969842 0.052764 0.092112

'MAPE' 0.047967865 0.097868 0.17319

'RMSE' 0.029740075 0.056086 0.095285

'RRSE' 0.231074325 0.385007 0.529074

'R2' 0.934929488 0.811972 0.667361

4.3 Voltage-based LSTM for time-series classification

The wafer quality classification can be solved in two ways: using sequential

and parallel (window) methods. In the former case, a neural network consisting of

an LSTM layer (with four hidden units) plus a dense layer (with a single unit) is used

to predict the 153rd element (wafer quality) using 152 single sensor measurement

values as a single feature spread in time. In the latter case a single LSTM layer with

a single hidden unit and 152 features is used. That is those 152 single sensor

measurement values are now fed in single time-step and therefore no time

dimensionality exists among the sensor measurement values anymore. The output of

the LSTM layer is a predicted wafer class in this latter method.

Each of them has different advantages and shortcomings. The case with

sequential LSTM learns significantly slower than the one with parallel or single-time

step predicting LSTM. This is due to the complexity of the former configuration

56

However, it steadily improves in performance as the number of epoch size is

increased. It gives accuracies of 97.26%, 98.51%, and 98.86% for epoch sizes of 25,

40, and 55 respectively. The circuit of the sequential network consumes 255.8mW

when the maximum input voltage values set to 0.5V. The on-chip area of the circuit

is 257,503.20 um2 which accounts the sizes for memory unit circuits and switches.

On the other hand, the parallel LSTM has smaller on-chip area – 115,967.4 um2.

However, as expected, it consumes more power – 312.4 mW. The single-unit single-

time step LSTM gives accuracy of 96.09% when using epoch size of 40 for training.

Interestingly, the accuracy reaches up to 99.29% when epoch size is increased to

100. These kinds of high accuracy values are impressive considering the large

imbalance in the data of wafer classification task: 10.7% of the training data and

12.1% of the testing data have abnormal labels. It may suggest that even the simple

LSTM structure in fact complex enough to give such high accuracy percentages.

The circuit implementation of the sequential network configuration was

proposed in the previous chapter. The results of the circuit simulations of the

network are presented in figures below. In addition to the sequential operation of

LSTM in the network, each hidden unit outputs and cell state values were obtained

in sequential manner in the circuit. That is, four hidden units were not executed in

parallel. It helps to save on chip-area, but sacrifices the overall execution speed. In

Figure 4.3, we can see that total simulation time to obtain all 152*4 hidden unit

57

values or to predict the last element/classify is 6.387ms. Whereas, parallel circuit

implementation of the same network would take approximately 1.6ms. Extraction of

outputs from the plot in Figure 4.3 results in separate plots that are illustrated in

Figure 4.4 which also compares them with their corresponding software results.

From the figure, it can be seen that in general the analog circuit results for the hidden

units follow the plots obtained from the software implementation of the LSTM layer

in the network. The spikes in the plot are results of the saturated outputs of the

multiplier used in the circuit. The value of cell state Ct when accumulated through

152 time-steps, it exceeds the input range of the multiplier. However, we are more

interested in the predicted value’s sign: positive – normal wafer, negative – abnormal

wafer. In fact, Table 4.4 shows that analog hardware testing results of 10 wafers,

taken randomly from 1000 wafer datasets, match software testing results using

LSTM algorithm.

Figure 4.3: Plot of V(ht) voltage values from sequential operation of the LSTM circuit

predicting the wafer quality class of test wafer 23. Total circuit simulation time is 6.387ms.

58

Figure 4.4: LSTM cell outputs for analog and software implementations for test wafer 23. The

analog outputs were extracted from the plot in Figure 4.3.

Table 4.4: Comparison of Software and Hardware Implementation Results of LSTM.

59

4.4 Power consumption and chip size

In Table 4.5, the first three implementations of the LSTM correspond to the

network configuration designed for solving the time-series prediction problem 1

(prediction of international airline passenger count). The last two implementations

correspond to the configuration solving the problem 3 (classification of wafer

quality). The first and last implementations do not offer simulation results solving

the problems 1 and 3, respectively. They can be a part of future works.

From the table, implementations 1 and 2 use two-stage operational amplifiers

and the rest of the implementations use three-stage operational amplifiers. The

difference between the two operational amplifiers is shown in Table 4.6. In addition,

the third implementation, voltage-based 1b, uses different type of analog multiplier

than the one used in the other voltage-based implementations. The difference of the

two multiplier types in terms of power and area is shown in Table 4.7.

Table 4.5: Area and Power statistics from different LSTM circuit implementations.

LSTM circuit

implementation
Area

(µm2)

Power

(mW)
Mem. Units/

Dense layer?

Input

Range (V)

Roff(Ω)/

Ron(Ω)

1 Current-based 83,494 105.9 No/No [0, 1] 2M/200k

2 Voltage-based 1a 117,075 225.67 Yes/Yes [-1, 1] 10M/10k

3 Voltage-based 1b 126,062 228.11 Yes/Yes [-0.1, 0.1] 10k/1.1k

4 Voltage-based 2 seq. 257,503 237.03 Yes/Yes [-1, 1] 10M/10k

5 Voltage-based 2 par. 115,967 312.4 NA/NA [-0.1, 0.1] 10M/10k

60

Table 4.6: Area and Power statistics for the two types of op-amps in buffer configuration.

 Area (µm2) Power (mW)

at -0.1 V input
Power (mW)

at 0.1 V input
Power (mW)

at -1 V input
Power (mW)

at 1 V input

two-stage

op-amp
847.56 3.10 3.00 3.51 2.58

three-stage

op-amp

1977.8 3.59 5.54 0.75 10.23

In Table 4.6, the area difference is mainly due to the more usage of

capacitance values in the three-stage op-amp for stability purposes than in the two-

stage op-amp. In addition, the two-stage op-amp uses ideal current source for

biasing, while the three-stage op-amp uses two MOSFETs and a resistor. The supply

voltage rails used are (-1.8V, 1.8V) for the two-stage op-amp and (-1V, 1.8V) for

the three-stage op-amp.

Three-stage amplifier has larger on-chip area and generally higher power

consumption than that of the two-stage op-amp. However, accuracy-wise three-stage

amplifier delivers good performance and works well with small-signal voltage

values. This accuracy helps to obtain accurate intermediate voltage values in the

circuits for LSTM and results in accurate final voltage values. Particularly, inverting,

scaling up or down, summation, and multiplication of voltage signals decides the

overall accuracy of a circuit-level LSTM compared to system-level LSTM.

In Table 4.7, the first multiplier is Flipped Voltage Follower cell based four-

quadrant analog multiplier. The second multiplier is based on symmetric

61

complementary structure squarer circuits. The first one uses the two-stage op-amps

for its interface circuitry and for the extension of its outputs to make a single-ended

output. Whereas, the second one uses the three-stage op-amps for the same purposes.

In the table, for the comparison sake, the input voltages were set to the same values

– (0.4, 0.4) Volts. However, multiplier 2 is used in the LSTM circuit implementation

with input voltage range of [-0.1, 0.1] Volts (can work between [-0.5, 0.5] Volts,

though). For maximum inputs of (0.1, 0.1) Volts, multiplier two consumes 29.05

mW power. Overall, multiplier 2 is smaller in size, consumes less power, and

contributes to higher R2 score when used inside the complete circuit of the neural

network consisting LSTM and dense layers. Therefore, it is a good candidate for

future circuit designs, not only the circuit implementation of LSTM. Circuit designs

Voltage-based 2 sequential and Voltage-based 2 parallel can be decreased in size by

at least 45,000 um2
 each.

Table 4.7: Area, Power, and contributed accuracy statistics for the two types of multipliers.

 Area (µm2) Power (mW) for max

inputs of (0.4,0.4) Volts
R2 of LSTM +

Dense circuit

Multiplier 1 24,430 35.36 0.932

Multiplier 2 9,139 30.12 0.995

4.5 LSTM architectures

Average test and train performance metrics from 10 Monte Carlo simulations

were obtained for the Simple RNN and the LSTM architectures from the previous

62

chapter. In addition, for exploration purposes two more sets of simulations with

peephole weight matrices having sizes of M-by-M and 0-by-0 (i.e. ne peephole

connections) were performed. M is the number of hidden units. These are contrary

to the usual peephole weight matrix size of 1-by-M. The simulations were trained

and tested on three different datasets from the selected problems.

It is important to note from tables 4.9-4.14 that the least average test RMSE

(highlighted in yellow) does not necessarily correspond to the least average train

RMSE (highlighted in yellow, as well). Even though, there is a general trend of

correspondence, one should not solely rely on train scores when comparing the

different architecture performances of RNN. In the tables 4.15-4.17 the

correspondence exists between testing and training performance metrics. It may be

due to the large training data available in the wafer classification case which leaves

no chance for mixed results. Tables 4.9-4.17 can be summarized in Table 4.8 below:

Table 4.8: Winner types of RNN for different problems and peephole weight matrix sizes. Left

half columns correspond to the best performers on the testing data and the right half columns

on the training data. The color intensity corresponds to the ranking of a performer inside a

column. For example, NOAF LSTM 2 is the best in the first column.

Peephole weight

matrix size

Airflight passenger

count prediction

CO2 emission

prediction

Time Ser. Classification

of wafer quality

M-by-M NFG LSTM FGR LSTM NOG LSTM FGR LSTM FGR LSTM FGR LSTM

1-by-M NOAF LSTM NOG LSTM NOG LSTM FGR LSTM NOG LSTM NOG LSTM

0-by-0 NOAF LSTM 2 GRU GRU FGR LSTM 2 NOG LSTM 2 NOG LSTM 2

63

As it was already tested in other study [48], there are mixed performance

results from different LSTM architectures for each task. The study was carried out

on classification tasks, while in this work it is done on time-series prediction and

time-series classification tasks. From Table 4.8, it can be concluded that there are

mixed results with time-series prediction tasks as well. Note that wafer classification

task is modeled as time-series prediction task where the last predicted point

determines the class of the wafer under study. Positively predicted number indicates

non-defective wafer and vice-versa.

However, some patterns can be observed from Table 4.8. The peephole

connections do not improve the performance of LSTM architectures for the first two

cases. That is, as the size of the peephole weight matrices grows, the peephole

connections only degrade the performances of RNN types for the cases with small

training data. The performances of the two cases for the training data give mixed

results, but their difference is very small. However, both of the performances

improve for the third case as the peephole weight matrix size grows. This is probably

caused by the large training data and the large number of time-steps used for

prediction in the third case. Also, note that the most complex architecture, FGR

LSTM, beats the others in the third case. Therefore, it may be sound to conclude that

in general as the training data becomes large, the more complex LSTM architectures

64

outperform the rest of the architectures. Using the same logic, for small training data

less complex LSTM architectures outperform the less complex ones.

Table 4.9: Performance comparison of LSTM architectures and Simple RNN for prediction of

number of international air-flight passengers (a peephole weight matrix has M-by-M size).

Type of RNN Avg. Test RMSE Avg. Train RMSE

1 Vanilla LSTM 0.107112 0.040618

2 No-output-gate LSTM 0.111376 0.040731

3 No-input-gate LSTM 0.113707 0.041158

4 No-forget-gate LSTM 0.102329 0.044298

5 No-input-activation-function LSTM 0.121440 0.040357

6 No-output-activation-function LSTM 0.105856 0.040538

7 Full-Gate-Recurrence LSTM 0.116826 0.040008

Table 4.10: Performance comparison of LSTM architectures and Simple RNN for prediction

of number of international air-flight passengers (a peephole weight matrix has 1-by-M size).

Type of RNN Avg. Test RMSE Avg. Train RMSE

1 Vanilla LSTM 0.100513 0.042934

2 No-output-gate LSTM 0.105852 0.040247

3 No-input-gate LSTM 0.104337 0.040982

4 No-forget-gate LSTM 0.107426 0.046170

5 No-input-activation-function LSTM 0.105890 0.042321

6 No-output-activation-function LSTM 0.097092 0.042351

7 Full-Gate-Recurrence LSTM 0.109990 0.041353

Table 4.11: Performance comparison of LSTM architectures for prediction of the number of

international air-flight passengers (a peephole weight matrix has 0-by-0 size).

Type of LSTM with no peepholes Avg. Test RMSE Avg. Train RMSE

1 Vanilla LSTM 2 (simple LSTM) 0.102161 0.043653

2 No-output-gate LSTM 2 0.105260 0.040340

3 No-input-gate LSTM 2 0.103408 0.041291

4 No-forget-gate LSTM 2 0.108595 0.046391

5 No-input-activation-function LSTM 2 0.106734 0.042972

6 No-output-activation-function LSTM 2 0.095907 0.043334

7 Full-Gate-Recurrence LSTM 2 0.109751 0.041412

8 Gated-Recurrent-Units 0.110889 0.040264

9 Simple RNN 0.113199 0.041263

65

Table 4.12: Performance comparison of LSTM architectures and Simple RNN for prediction

of CO2 emission volumes at volcano Mauna Loa (a peephole weight matrix has M-by-M size).

Type of RNN Avg. Test RMSE Avg. Train RMSE

1 Vanilla LSTM 0.048001 0.036825

2 No-output-gate LSTM 0.046437 0.033924

3 No-input-gate LSTM 0.048494 0.034320

4 No-forget-gate LSTM 0.049900 0.041443

5 No-input-activation-function LSTM 0.062435 0.036595

6 No-output-activation-function LSTM 0.046583 0.036172

7 Full-Gate-Recurrence LSTM 0.051111 0.033119

Table 4.13: Performance comparison of LSTM architectures and Simple RNN for prediction

of CO2 emission volumes at volcano Mauna Loa (a peephole weight matrix has 1-by-M size).

Type of RNN Avg. Test RMSE Avg. Train RMSE

1 Vanilla LSTM 0.045750 0.041151

2 No-output-gate LSTM 0.044268 0.034532

3 No-input-gate LSTM 0.044485 0.034321

4 No-forget-gate LSTM 0.055494 0.047465

5 No-input-activation-function LSTM 0.056436 0.041155

6 No-output-activation-function LSTM 0.045708 0.039960

7 Full-Gate-Recurrence LSTM 0.045578 0.033110

Table 4.14. Performance comparison of LSTM architectures for prediction of CO2 emission

volumes at volcano Mauna Loa (a peephole weight matrix has 0-by-0 size).

Type of LSTM with no peepholes Avg. Test RMSE Avg. Train RMSE

1 Vanilla LSTM 2 (simple LSTM) 0.046509 0.042726

2 No-output-gate LSTM 2 0.044248 0.034823

3 No-input-gate LSTM 2 0.044519 0.034716

4 No-forget-gate LSTM 2 0.057674 0.049057

5 No-input-activation-function LSTM 2 0.051584 0.042861

6 No-output-activation-function LSTM 2 0.044520 0.041993

7 Full-Gate-Recurrence LSTM 2 0.045378 0.033151

8 Gated-Recurrent-Units 0.043872 0.034458

9 Simple RNN 0.055096 0.033425

66

Table 4.15: Performance comparison of LSTM architectures and Simple RNN for

classification of wafer quality (a peephole weight matrix has M-by-M size).

Type of RNN Avg. Test Accuracy Avg. Train Accuracy

1 Vanilla LSTM 0.938546 0.948100

2 No-output-gate LSTM 0.954932 0.961500

3 No-input-gate LSTM 0.897599 0.911800

4 No-forget-gate LSTM 0.896966 0.912300

5 No-input-activation-function LSTM 0.939195 0.948000

6 No-output-activation-function LSTM 0.934523 0.944200

7 Full-Gate-Recurrence LSTM 0.965688 0.967300

Table 4.16: Performance comparison of LSTM architectures and Simple RNN for

classification of wafer quality (a peephole weight matrix has 1-by-M size).

Type of RNN Avg. Test Accuracy Avg. Train Accuracy

1 Vanilla LSTM 0.934523 0.942600

2 No-output-gate LSTM 0.950584 0.957900

3 No-input-gate LSTM 0.891467 0.907000

4 No-forget-gate LSTM 0.891467 0.907000

5 No-input-activation-function LSTM 0.936016 0.944600

6 No-output-activation-function LSTM 0.919825 0.932100

7 Full-Gate-Recurrence LSTM 0.935886 0.944600

Table 4.17: Performance comparison of LSTM architectures with no peephole connections for

classification of wafer quality (a peephole weight matrix has 0-by-0 size).

Type of LSTM with no peepholes Avg. Test Accuracy Avg. Train Accuracy

1 Vanilla LSTM 2 (simple LSTM) 0.925146 0.935600

2 No-output-gate LSTM 2 0.942213 0.949100

3 No-input-gate LSTM 2 0.891467 0.907000

4 No-forget-gate LSTM 2 0.891467 0.907000

5 No-input-activation-function LSTM 2 0.930565 0.940500

6 No-output-activation-function LSTM 2 0.930419 0.940100

7 Full-Gate-Recurrence LSTM 2 0.933274 0.942900

8 Gated-Recurrent-Units 0.897972 0.912900

9 Simple RNN 0.891467 0.907100

67

Chapter 5 – Conclusions

In this thesis, a functional circuit-level implementation of a neural network

consisting of LSTM layer has been performed. The neural network was used to solve

several time-series prediction problems. Therefore, custom circuits for each problem

was built and tested in SPICE circuit simulator using TSMC 0.18 um process

technology. In addition, extensive study of LSTM architectures was performed using

Keras library, which was extended in this work.

5.1 Time-Series Prediction

Circuit simulation of problem 1 with discrete weight/conductance levels and

discrete input voltages gives less accurate results as expected: R2 of 97.5 against

99.52; and RRSE of 0.158 against 0.0693. It is important to remember that training

was performed in software and the extracted weights were discretized to 68 levels

then used as stable conductance levels of memristors in the circuit. However, those

68 states themselves, in fact, are not clear-cut states. Each state will have some noise

and we have seen that as the noise increases, the prediction accuracy in analog

hardware degrades. If, however, training was performed on the circuit, it would be

able keep running epochs until reaching some point where the states including their

noises are contributing for the performance of the algorithm used in the circuit. In

68

addition, time-series predictions are not 100% accurate and gives some room to

tolerate the errors coming from the real circuits.

5.2 Wafer Classification

In the classification problem 3, using high accuracy circuit parts eliminates at

the final stage additional circuitry such as circuit implementing softmax function

required for classifying. Reading of the analog outputting voltage would already tell

the predicted class. In addition, having less complex neural network due to omitting

softmax function would make the network train faster both in hardware and

software.

In addition, one can further simplify the neural network circuit by eliminating

activation functions and use VMM outputs as approximate activated values [44].

This can be a close approximation if VMM outputs fall into linear part of sigmoid

and hyperbolic tangent functions. This can be achieved by scaling feature input

values going into the network. For example, scaling the feature values between -0.5

and 0.5 gives better results than scaling them between -1 and 1 in the wafer

classification problem.

69

5.3 Flexibility of the Design

Since there is a trade-off between computation time, chip-area, and power

consumption and depending on an application, the final design of the circuit will be

different. In that sense, it would be convenient if the base circuit can be easily

transformed to suit the requirements of a particular application. Voltage-based

LSTM architecture comes to be handy on this occasion. In addition, adding M-by-

M peephole weight matrices becomes effortless in hardware implementation,

because VMM operation is very efficient in the hardware. However, sneak path

problem will become more serious as the size of a crossbar becomes larger. It can

be solved by transistors in series with each memristor as in [46].

5.4 Performance of LSTM architectures

 Different LSTM architecture were used in a two-layer network for solving

three different time-series prediction problems. It was found that complexity of an

LSTM architecture becomes an advantage when using large training datasets.

Whereas, less complex LSTM architectures such as NOAF and GRU outperform

more complex FGR LSTM for problems with small training datasets. In addition,

using more peephole connections increases the performance of FGR LSTM for large

available training data.

70

REFERENCES

[1] Vora PH and Lad R. A Review Paper on CMOS, SOI and FinFET Technology.

https://www.design-reuse.com/articles/41330/cmos-soi-finfet-technology-review-

paper.html Accessed: 07-December-2018

[1] Watkins T. “The history of the Transistor.” Internet: San Jose State University.

http://www.sjsu.edu/faculty/watkins/transist.htm Accessed: 07-December-2018

[2] Kvatinsky S. “Memristor-Based Circuits and Architectures,” Ph.D dissertation, Israel

Institute of Technology, Haifa, 2014. [Online]. Available:

http://www.hajim.rochester.edu/ece/users/friedman/Shahar_Kvatinsky_PhD.pdf

[3] Kim H-K, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N and Lu W. "A

Functional Hybrid Memristor Crossbar-Array/CMOS Systems for Data Storage and

Neuromorphic Applications," Nano Letters, Vol. 12, No. 1, pp. 389-395, 2011.

[4] Soudry D, Di Castro D, Gal A, Kolodny A and Kvatinsky S. "Memristor-Based

Multilayer Neural Networks With Online Gradient Descent Training," in IEEE

Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2408-2421,

2015. doi: 10.1109/TNNLS.2014.2383395

[5] Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri T and Linares-Barranco

T. "STDP and STDP Variations with Memristors for Spiking Neuromorphic Learning

Systems," Frontiers in Neuroscience, Vol. 7, No. 2, pp. 1-15, 2013.

[6] Afifi A, Ayatollahi A and Raissi F. "Implementation of Biologically Plausible Spiking

Neural Network Models on the Memristor Crossbar-Based CMOS/Nano Circuits,"

Proceedings of the European Conference on Circuit Theory and Design, pp. 563-566,

2009.

[7] Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P and Lu W. "Nanoscale Memristor

Device as Synapse in Neuromorphic Systems," Nano Letters, Vol. 10, No. 4, pp. 1297-

1301, 2010.

https://www.design-reuse.com/articles/41330/cmos-soi-finfet-technology-review-paper.html
https://www.design-reuse.com/articles/41330/cmos-soi-finfet-technology-review-paper.html
http://www.sjsu.edu/faculty/watkins/transist.htm
http://www.hajim.rochester.edu/ece/users/friedman/Shahar_Kvatinsky_PhD.pdf

71

[8] Pershin YV and Di Ventra M. "Practical Approach to Programmable Analog Circuits

with Memristors," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol.

57, No. 8, pp.1857-1864, 2010.

[9] Chua L. “Memristor-the missing circuit element,” IEEE Transactions on Circuit Theory,

vol. 18, no. 5, pp. 507–519, Sep 1971.

[10] Chua LO. and Kang SM. “Memristive Devices and Systems,” Proceedings of the IEEE,

Vol. 64, No. 2, pp. 209- 223, February 1976.

[11] Joglekar YN and Wolf SJ. "The elusive memristor: properties of basic electrical circuits",

European Journal of Physics, vol. 30, pp. 661-675, 2009.

[12] Strukov DB, Snider GS, Stewart DR, and Williams RS. "The Missing Memristor Found,”

Nature, Vol. 453, pp. 80-83, May 2008.

[13] Steinbuch, K. Die lernmatrix. Kybernetik 1, 36–45. 1961.

[14] Li C, Belkin D, Li Y, et al. Efficient and self-adaptive in-situ learning in multilayer

memristor neural networks. Nature Communications. 9(1). doi:10.1038/s41467-018-

04484-2.

[15] Hochreiter S and Schmidhuber J. Long short-term memory. Neural Computation,

9(8):1735-1780, 1997.

[16] Lipton ZC, Berkowitz J, Elkan C. A Critical Review of Recurrent Neural Networks for

Sequence Learning. arXiv preprint arXiv:1506.00019, 2015.

[17] Zaremba W, Sutskever I, and Vinyals O. "Recurrent neural network regularization."

arXiv preprint arXiv:1409.2329, 2014.

[18] Recurrent Layers - Keras Documentation. https://keras.io/layers/recurrent/#lstm.

Accessed 09-December-2018

[19] Sutskever I, Vinyals O and Le QV. Sequence to sequence learning with neural networks.

In Advances in Neural Information Processing Systems, pages 3104-3112, 2014.

https://keras.io/layers/recurrent/#lstm

72

[20] Vinyals O, Toshev A, Bengio S, and Erhan D. Show and tell: A neural image caption

generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3156-3164, 2015.

[21] Karpathy A and Fei-Fei L. Deep visual-semantic alignments for generating image

descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;

(4):664.

[22] Mao J, Xu W, Yang Y, Wang J, and Yuille A. Deep captioning with multimodal

recurrent neural networks (m-RNN). arXiv preprint arXiv:1412.6632, 2014.

[23] Venugopalan S, Rohrbach M, Donahue J, et al. Sequence to sequence-video to text. 2015

IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. 4534-

4542. doi: 10.1109/ICCV.2015.515

[24] Xiong W, Wu L, Alleva F, Droppo J, Huang X, Stolcke A. The Microsoft 2017

Conversational Speech Recognition System. ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings. 2018-April: 5934-5938.

doi:10.1109/ICASSP.2018.8461870.

[25] Chang AXM, Martini B, Culurciello E. Recurrent Neural Networks Hardware

Implementation on FPGA. arXiv preprint arXiv:1511.05552v1, 2015.

[26] Ferreira JC and Fonseca J. "An FPGA implementation of a long short-term memory

neural network," 2016 International Conference on ReConFigurable Computing and

FPGAs (ReConFig), Cancun, 2016, pp. 1-8. doi: 10.1109/ReConFig.2016.7857151

[27] Zhang Y, Wang C, Gong L, et al. "Implementation and Optimization of the Accelerator

Based on FPGA Hardware for LSTM Network," 2017 IEEE International Symposium on

Parallel and Distributed Processing with Applications and 2017 IEEE International

Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou,

2017, pp. 614-621. doi: 10.1109/ISPA/IUCC.2017.00098

[28] Chen K, Huang L, Li M, Zeng X and Fan Y. "A Compact and Configurable Long Short-

Term Memory Neural Network Hardware Architecture," 2018 25th IEEE International

73

Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 4168-4172.

doi: 10.1109/ICIP.2018.8451053

[29] Rizakis M, Venieris SI, Kouris A, and Bouganis C-S. Approximate FPGA-based LSTMs

under Computation Time Constraints. arXiv preprint arXiv:1801.02190, 2018

[30] Smagulova K, Krestinskaya O, and James AP. A memristor-based long short term

memory circuit. Analog Integr Circ Sig Process. 2018. https://doi.org/10.1007/s10470-

018-1180-y

[31] Gokmen T, Rasch MJ and Haensch W. Training LSTM Networks With Resistive Cross-

Point Devices Front Neurosci. 2018; 12: 745. doi: 10.3389/fnins.2018.00745

[32] Li C, Wang Z, Rao M, et al. Long short-term memory networks in memristor crossbars.

2018. doi:10.1038/s42256-018-0001-4.

[33] Brownlee J. “Time series prediction with lstm recurrent neural networks in python with

keras,” Available at: machinelearningmastery.com, 2016.

[34] Box and Jenkins. International airline passengers: monthly totals in thousands.

https://datamarket.com/data/set/22u3/international-airline- passengers-monthly-totals-in-

thousandsjan-49-dec-60. Accessed 01-December-2018, 1976.

[35] Hipel and McLeod. CO2 (ppm) mauna loa, 1965-1980.

https://datamarket.com/data/set/22v1/co2-ppm-mauna-loa-1965-

1980#!ds=22v1&display=line, 1994.

[36] Olszewski RT, “Generalized feature extraction for structural pattern recognition in time-

series data,” CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF

COMPUTER SCIENCE, Tech. Rep., 2001.

[37] Kingma DP and Ba J. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980. 2014

[38] Optimizers - Keras Documentation. https://keras.io/optimizers/ Accessed 09-December-

2018

https://doi.org/10.1007/s10470-018-1180-y
https://doi.org/10.1007/s10470-018-1180-y
https://datamarket.com/data/set/22u3/international-airline-%20passengers-monthly-totals-in-thousandsjan-49-dec-60
https://datamarket.com/data/set/22u3/international-airline-%20passengers-monthly-totals-in-thousandsjan-49-dec-60
https://datamarket.com/data/set/22v1/co2-ppm-mauna-loa-1965-1980#!ds=22v1&display=line
https://datamarket.com/data/set/22v1/co2-ppm-mauna-loa-1965-1980#!ds=22v1&display=line
https://keras.io/optimizers/

74

[39] Krestinskaya O, Salama K, James AP. Learning in Memristive Neural Network

Architectures using Analog Backpropagation Circuits. IEEE Transactions on Circuits and

Systems I: Regular Papers. 2018. doi: 10.1109/TCSI.2018.2866510

[40] Xiao S, Xie X, Wen S, Zeng Z, et al. “Gstmemristor-based online learning neural

networks,” Neurocomputing, 2017.

[41] Ramirez-Angulo J, Thoutam S, Lopez-Martin A, et. al. Low-voltage CMOS analog four

quadrant multiplier based on flipped voltage followers. 2004 IEEE International

Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), Vancouver, BC, pp. I-

681. 2014. doi:10.1109/ISCAS.2004.1328286.

[42] Saxena V, Baker RJ. Indirect compensation techniques for three-stage fully-differential

op-amps. 53rd IEEE International Midwest Symposium on Circuits and Systems,

Seattle,WA, pp. 588–591. 2010. doi: 10.1109/MWSCAS.2010.5548896.

[43] Li SC. "A symmetric complementary structure for RF CMOS analog squarer and four-

quadrant analog multiplier." Analog Integrated Circuits and Signal Processing 23.2: 103-

115. 2000

[44] Hasan R, Taha TM, Yakopcic C. On-chip training of memristor based deep neural

networks. International Joint Conference on Neural Networks (IJCNN), Anchorage, AK,

pp. 3527-3534. 2017. doi:10.1109/IJCNN.2017.7966300

[45] Yu S, Wu Y, and Wong HSP. “Investigating the switching dynamics and multilevel

capability of bipolar metal oxide resistive switching memory,” Applied Physics Letters,

vol. 98, no. 103514, 2011.

[46] Li C, Hu M, Li Y, et al. Analogue signal and image processing with large memristor

crossbars. Nature Electronics, 1(1), 52. 2018.

[47] Graves A and Schmidhuber J. Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. Neural Networks, 18(5–6): 602–610, July

2005. ISSN 0893-6080. doi: 10.1016/j.neunet.2005.06.042.

75

[48] Greff K, Srivastava RK, Koutník J, Steunebrink BR and Schmidhuber J, "LSTM: A

Search Space Odyssey," in IEEE Transactions on Neural Networks and Learning

Systems, vol. 28, no. 10, pp. 2222-2232, Oct. 2017. doi: 10.1109/TNNLS.2016.2582924

[49] Cho K, van Merrienboer B, Gulcehre C, et al (2014) Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation. arXiv preprint

arXiv:1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

