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Abstract 

  

 

In this work, a two-dimensional Oseen’s approximation for Navier-Stokes equations is 

to be studied. As the theory applies only to low Reynolds numbers, the results are 

focused in this region of the flow regime, which is of interest in flows appearing in 

bioengineering applications. The investigation is performed using a boundary element 

formulation of the Oseen’s equation implemented in Matlab software package. The 

results are compared with simulations performed in COMSOL software package using a 

finite element approach for the full Navier-Stokes equations under the assumption of 

laminar and steady flow. Furthermore, experimental and numerical data from pertinent 

literature for the flow over a cylinder are used to verify the obtained results. The second 

part of the project employs the boundary element code in an optimization procedure that 

aims at drag minimization via body-shape modification with specific area constraints. 

The optimization results are validated with the aid of finite element simulations in 

COMSOL. 
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1. Introduction 

 

 

A common problem studied in fluid dynamics is the steady flow around a solid object, 

where the flow’s behavior is governed by the Navier-Stokes equations. In the general 

case, mathematical formulations arising from the full Navier-Stokes description are 

very complicated and difficult to treat. Therefore, depending on the exact flow 

conditions, various simplifying approximations are applied, which results in sufficient 

accuracy. 

 

 

Essential parameters of dynamic fluid-flow past an immersed body, such as drag and lift 

coefficients, are of significant importance in many studies. Fluid-flow characteristics 

are highly dependent on Reynolds number and pertinent applications and research can 

be split into different areas accordingly: high and medium Reynolds numbers are 

usually investigated for aerospace or automotive applications, whereas low Reynolds 

numbers occur mostly in flows investigated for biomedical purposes. The latter field of 

application has been lately attracting much of researchers’ attention as noted in Brody 

[Brody et. al., 1996]. For instance, flow around blood cells, swimming of 

microorganisms and targeted drug delivery challenges are all direct applications of low 

Reynolds number flows. These examples are common demonstrations of highly viscous 

flows, i.e., flows exhibiting resistance to shape deformation. So, spinning vortices or 

turbulence is not expected at all, but rather the flow creeps around the obstacle.  

 

 

In 1911, Carl Wilhelm Oseen criticized Stokes’s equation for not being able to solve the 

2D creeping flow problem, i.e., the so-called Stoke’s paradox [Weisenborn and Mazur, 

1984]. Oseen proposed his own extension of the Stoke’s flow known as Oseen’s 

equations of motion. Thereby, Oseen’s proposal had become a very useful tool to 

calculate approximately the forces acting on solid objects at low Reynolds numbers, i.e., 

Re<<1. However, it is important to keep in mind that Oseen’s equations of motion are 

not accurate in regions adjacent to body surface. At the same time, there is no standard 



 

 

 2 

MECHANICAL ENGINEERING DEPARTMENT                                      NAZARBAYEV UNIVERSITY  

range of Reynolds numbers, which can be treated using Oseen’s approximation. It is 

generally recommended to use Oseen’s approach at Reynolds numbers much less than 

one, but there are plenty of works showing successful application of Oseen’s equations 

at Reynolds numbers greater than one. In our research, low Reynolds number flow 

around a 2D cylinder will be analyzed and the drag coefficient values from different 

tools will be compared so that the full capability of Oseen’s approximation can be 

established. The main efforts are ultimately focused on: 

1. Providing some solid boundaries for the validity of Oseen’s approximation and  

2. Generating optimum 2D body-shapes that minimize drag in this flow regime. 

 

 

To demonstrate the importance of low Reynolds number flows and their 

approximations, some real-life applications are provided: Rosenstein and Leshansky 

recently studied particles sedimentation in a viscous liquid under the effect of gravity, 

which is one of the fundamental problems in fluid mechanics [Rosenstein and 

Leshansky, 2012]. The authors criticize that many works nowadays neglect non-linear 

effects associated with inertia. In their own research, they analyze the very common 

phenomenon of multi-particle sedimentation in a fluid using Oseen equations of motion. 

Furthermore, direct bio-engineering applications of the Oseen’s approach drew great 

attention. Specifically, Brody et. al. emphasized long-term perspectives in the sphere of 

microfluidic systems [Brody et. al., 1996]. The authors claimed that there is a demand 

to design a “lab-on-a-chip” concept, which features miniaturized chemical processes in 

a tiny silicon chip. Within the scope of their work, Brody et. al. focused on analysis of 

physics behind low Reynolds number flow, which affects the design of micro fabricated 

devices used in biological processing. Likewise, Resnick and Hopfer addressed bio-

engineering application of Oseen’s approximation [Resnick and Hopfer, 2007]. By the 

law of nature, an epithelial cell in an organism comes with a single nonmotile cilium, 

which appears to perform mechanosensory function in the cell. This feature of the 

cilium had been profoundly studied and the analysis involved application of Oseen’s 

equations of motion to calculate drag experienced by the cilia. 
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 Considering the aforementioned pertinent results, the main components in this work 

have as follows: 

 

 

1) Validation of a Boundary Element Method (BEM) code implemented in 

MATLAB. The specific code is based on Oseen’s equations of motion. The goal 

is to identify the limits of Oseen’s approximation validity, i.e., the Reynolds 

number range in which the Oseen solution closely follows experimental data. 

[Work carried out by Ilya Lutsenko] 

 

 

2) Application of Finite Element Method (FEM) using COMSOL Multiphysics 

[COMSOL Multiphysics user's guide, 2012]. The purpose of FEM’s application 

is to verify the results from BEM. The challenge here will be to create 

conditions of unbounded fluid flow considering time/resources required for the 

simulation. [Work carried out by Manarbek Serikbay] 

 

 

3) Comparison of experimental [Tritton, 1959], FEM, and BEM results and 

establishment of Oseen’s capabilities and limitations. [Work carried out by 

both Students] 

 

 

4) Application of optimization tools, so that optimum 2D geometry that minimize 

the drag coefficient under specific constraints can be identified. This part 

requires the parametric definition of the body shape using a small number of 

parameters:  it expresses both the objective function (drag) and constraints as 

functions of the same set of parameters. Finally, gradient-based and evolutionary 

algorithms will be employed for getting the optimum. [Work carried out by 

both Students] 
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Methods used to solve Oseen’s equations of motion vary from one paper to another. 

While some proposed solutions at low Reynolds numbers are not quite accurate due to 

low order approximations, others are notably precise beyond Reynolds number 

Re=1[Weisenborn and Mazur, 1983]. Nonetheless, the most compelling argument is 

that Oseen’s equations of motion are efficient at low Reynolds numbers Re<<1. All 

these considered, our capstone project work tries to determine the full capabilities of 

Oseen approximation and present a solid range of Reynolds numbers over which 

Oseen’s theory is credible. With respect to possible applications of the theory, the 

second part of our project focuses on shape optimization targeting 2D body boundaries 

with minimum drag. The obtained results may find applications in flow problems 

appearing in biomedical research and generally, when low Reynolds number flows need 

to be investigated. 

 

 

2. Background material and Literature review    

 

 

As it will be presented later in this part of the report, different numerical approaches 

may yield different ranges for Reynolds number where Oseen approximation is valid. 

However, all numerical approaches are based on a common principle. 

 

 

Low Reynolds number flows are defined as the streams within the following region: 

𝑅𝑒 =
𝑈0𝐿

𝜈
≪ 1. They are also called Stoke’s flows or creeping flows. Their main 

characteristic is that inertial forces are much smaller compared to viscous forces. In our 

formulation, a non-dimensionalization is performed using the typical Length of the 

body (L) and the fluid flow velocity U0: 𝑥̅ =
𝑥

𝐿
, 𝑦̅ =

𝑦

𝐿
, 𝑢̅ =

𝑢

𝑈0
, 𝑣̅ =

𝑣

𝑈0
, 𝑝 =  𝑝0 + 𝑝̅𝑃0, 

where (x, y), (u, v) are the position and velocity components, respectively and P0 is the 

reference pressure, which is equal to P0 = (𝜌U0
2
)/Re = 𝜇U0/L for small Reynolds flows 

[Lagree, 2013]. Boundary conditions in this case are no slip, expressed by u=0 and v=0 

on the body, and u=1 and v=0 far away from the body, so:  
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𝜕𝑢

𝜕𝑥̅
+

𝜕𝑣̅

𝜕𝑦̅
= 0                       (2.1) 

𝑅𝑒 (𝑢̅
𝜕𝑢

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢

𝜕𝑦̅
 ) = −

𝜕𝑝̅

𝜕𝑥̅
+ (

𝜕2𝑢̅

𝜕𝑥̅2 +
𝜕2𝑢̅

𝜕𝑦̅2)          (2.2) 

                      𝑅𝑒 (𝑢̅
𝜕𝑣̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦̅
 ) = −

𝜕𝑝̅

𝜕𝑦̅
+ (

𝜕2𝑣̅

𝜕𝑥̅2
+

𝜕2𝑣̅

𝜕𝑦̅2
)       (2.3) 

 

Stoke’s flows are considered in the region near the cylinder where left hand side of the 

Eq.2.2 and Eq.2.3 is infinitesimal compared to right hand side.  

 

 

Having said that, in two dimensions there is a place for Stoke’s paradox, when the flow 

does not have a solution. This can be shown neglecting left hand side of equations 

above and introducing stream function: 𝜓 = 𝐿𝑈0𝜓̅, 𝑢̅ =
𝜕𝜓̅

𝜕𝑦̅
 , and 𝑣̅ = −

𝜕𝜓̅

𝜕𝑥̅
. Eventually, 

the solution will be in the form of Eq.2.4, but it does not have a satisfactory solution for 

a moving flow around an object. 

 

𝛻2𝜓̅ = 0     (2.4) 

 

Thereby, Oseen’s approximation is used in this case as a remedy for the paradox. 

Integral formulation of Oseen’s equations will be presented later. 

 

 

In addition to isolated analysis of flow regions, there is a solution for the whole region 

of the flow. It is usually approached by a matched asymptotic expansion method, where 

separate regions with the corresponding formulas are scrutinized and further combined 

into one universal equation. The method of matched asymptotic expansions advocates 

the principle of inner and outer regions. Proudman and Pearson, as pioneers of this 

method, suggested to divide the region around the cylinder into two separate, but 

overlapping regions; see Figure 2.1 [Proudman and Pearson, 1957]. The idea is very 

reasonable: for the inner region, the authors consider Stoke’s flow whereas, in the outer 

region, they assume Oseen’s flow.  
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Figure 2.1 Map of matched asymptotic method   

 

 

Many important research findings and fundamental laws in low Reynolds number flow, 

discussed above, were deduced before 1980. Therefore, almost all research works 

performed nowadays rely on some basic principles derived long time ago. In turn, the 

area of low Reynolds number flow has not been investigated properly yet, e.g. lack of 

experimental measurements below Reynolds number Re=0.1. Nevertheless, there are 

research papers that propose a variety of methods to solve Oseen’s equations of motion. 

Each of them differs by complexity, resources required and accuracy of results. 

 

 

One of the frequently cited experimental results on the flow past a circular cylinder at 

low Reynolds numbers is coming from D. J. Tritton [Tritton, 1959]. In his experiments, 

the author measured low air speeds of free convective flow past properly calibrated 

quartz-fiber anemometers. Such a tool was developed couple of decades before, but had 

never been used in low Reynolds number experiments. The anemometers attracted 

Tritton by the fact that they enabled drag measurements at speeds lower than those 

available for calibration. One end of the quartz-fiber was fixed while the air flow past 

the free end was viewed through tele-microscope. Applying simple bending moment 

theory and some assumptions, Tritton ultimately presented the table of drag versus 

Reynolds number. At low Reynolds numbers, there was a good agreement with 

experiments performed by other researchers. At the same time, the data agreed 

satisfactorily with results obtained from different numerical techniques such as Lamb, 

Kaplun, and others [Tritton, 1959]. A plot of logarithmic values of drag coefficient 

versus Reynolds number is shown in Figure 2.2. 
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Figure 2.2 Plot of logCD against logR showing all observations listed in Tritton’s experiments. The line is an 

estimated mean of readings from different fibers. 

 

 

Contemporary research papers on Oseen’s flow propose numerical solutions of different 

complexity and accuracy. Bush presented a boundary element formulation of Oseen’s 

equations with quite good accuracy compared to full Navier-Stokes equations [Bush, 

1983]. However, the method was limited to very low Reynolds number problems 

Re<<1. Another numerical method worth mentioning is the work by Yano and Kieda. 

The authors developed a discrete singularity method with the least squares criterion for 

the 2D potential flow problem [Yano and Kieda, 1980]. Simply speaking, the interior of 

the obstacle is discretized into so-called Oseenlets and then a least squares criterion is 

applied. The method demonstrated that in the case of a circular cylinder, Oseen’s 

equations of motion are valid even at Reynolds numbers greater than one. Yano and 

Kieda compared their results with empirical data presented by Tritton and found out 

that values are relatively close for Reynolds number Re < 4 [Yano and Kieda, 1980]. In 

turn, Weisenborn and Mazur too compared their method with Tritton’s experimental 

data. Their approach does not require explicit knowledge of the velocity and pressure 

fields as Yano and Kieda’s model does, but rather the model uses a method of induced 

forces. The authors assert that the approach is effective up to Reynolds number Re=10 

[Weisenborn and Mazur, 1984]. 
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3. Methods and tools description 

 

 

3.1. Integral formulation of the Oseen problem in 2D 

 

 

Derivation of integral equations for Oseen problem has been studied very extensively in 

many research papers, e.g. Olmstead and Gautesen work [Olmstead and Gautesen, 

1976]. Consider Oseen’s equations below: 

 

𝜕𝑣𝑘

𝜕𝑥𝑘
= 0, 𝑅𝑒 ∗ 𝛼𝑘

𝜕𝑣𝑖

𝜕𝑥𝑘
= −

𝜕𝑝

𝜕𝑥𝑖
+ ∆𝑣𝑖                                        (3.1.1) 

  

with the following boundary conditions: 𝑣𝑖 = 0 on the body surface, 𝑣𝑖 → 𝛼𝑖  and 

𝑝 → 0 at infinity. Re from now on is denoted by R for simplicity.  

 

 

There is a direct way to solve coupled partial differential equations, Eq. (3.1.1). 

However, Olmstead and Gautesen proposed a fundamental solution of the Oseen’s 

equations, which involves the velocity tensor and pressure vector. The principle behind 

this fundamental approach is underpinned by a theory of point forces. A unit point force 

produces coupled velocity and pressure, which corresponds to vector-scalar pair 

(𝐸1𝑖, 𝑒1), (𝐸2𝑖, 𝑒2) [Olmstead and Gautesen, 1976]. Fundamental equations are 

demonstrated in Eq. (3.1.2), where Kronecker delta 𝛿𝑖𝑗 and delta function 𝛿(𝑥 − 𝜉) are 

involved: 

 

                             
𝜕𝐸𝑖𝑘

𝜕𝑥𝑘
= 0, 𝑅𝛼𝑘

𝜕𝐸𝑖𝑗

𝜕𝑥𝑘
= −

𝜕𝑒𝑖

𝜕𝑥𝑗
+ ∆𝐸𝑖𝑗 + 𝛿𝑖𝑗𝛿(𝑥 − 𝜉)                  (3.1.2) 

 

Then, the solutions for velocity and pressure become: 

 

                                               𝒗(𝒙) = 𝜶 + ∫𝑬(𝒙 − 𝝃;𝑹) ∗ 𝒕(𝝃)𝑑𝑆               (3.1.3) 
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                                             𝑝(𝑥) = ∫𝒆(𝒙 − 𝝃;𝑹) ∗ 𝒕(𝝃)𝑑𝑆,     (3.1.4) 

 

where 𝒙 = {𝑥; 𝑦} is a point in the flow, 𝝃 = {𝜉; 𝜂} is a point on the surface of the 

immersed body, E is a velocity tensor, e is a pressure vector, and 𝜶 = {1,0} is a free 

flow velocity vector. 

 

 

In turn, the integration is applied over the surface area of the obstacle and local stress 

vector t= {𝑡𝑖} on the surface is expressed by 𝒕𝒊(𝒙) = −𝑝𝒏𝒊 + (
𝜕𝑣𝑖

𝜕𝑥𝑘
+

𝜕𝑣𝑘

𝜕𝑥𝑖
)𝒏𝒌. In simple 

words, the local stress vector is an intensity of distribution of the point forces over the 

surface of a body, i.e., points with 𝑣 = 0.  

 

 

By introducing new notations such as 𝐸𝑖𝑗(𝑥 − 𝜉; 𝑅) = 𝑉𝑖𝑗(𝑥 − 𝜉, 𝑦 − 𝜂; 𝑅), 𝑒𝑖(𝑥 −

𝜉; 𝑅) = 𝑃𝑖(𝑥 − 𝜉, 𝑦 − 𝜂) and 𝑡𝑖(𝜉) = 𝜏1(𝑠), the general expressions for 2D velocity and 

pressure becomes: 

 

𝑣𝑖(𝑥, 𝑦) = 𝛼𝑖 + ∫𝑉𝑖1(𝑥 − 𝜉, 𝑦 − 𝜂; 𝑅)𝜏1(𝑠) 𝑑𝑠 + ∫𝑉𝑖2(𝑥 − 𝜉, 𝑦 − 𝜂; 𝑅)𝜏2(𝑠) 𝑑𝑠 (3.1.5) 

 

             𝑝(𝑥, 𝑦) = ∫𝑃1(𝑥 − 𝜉, 𝑦 − 𝜂)𝜏1𝑑𝑠 + ∫𝑃2(𝑥 − 𝜉, 𝑦 − 𝜂)𝜏2𝑑𝑠             (3.1.6) 

 

 

Then, solving for the unknowns in Eq. (3.1.5) and Eq. (3.1.6), Olmstead and Gautesen 

used the velocity tensor and pressure vector definitions shown below [Olmstead and 

Gautesen, 1976]: 

 

𝐸𝑖𝑗(𝑥 − 𝜉; 𝑅) = (𝛿𝑖𝑗Δ −
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
) ∗ (−

1

2𝜋𝑅
∫ [log 𝑟′ + 𝑒−

𝑅𝜇
2 𝐾0 (

1

2
|𝑅|𝑟′)] 𝑑𝜇 +

𝜉1−𝑥1

0

 

                                            +
1

4𝜋
∫ (𝜉2 − 𝑥2 − 𝜇

𝜉2−𝑥2

0
)𝐾0 (

1

2
|𝑅||𝜇|) 𝑑𝜇)            (3.1.7) 
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𝑒𝑖(𝑥 − 𝜉; 𝑅) = −
𝜕

𝜕𝑥𝑖
(∆ − 𝑅

𝜕

𝜕𝑥1
) ∗ (−

1

2𝜋𝑅
∫ [log 𝑟′ + 𝑒−

𝑅𝜇
2 𝐾0 (

1

2
|𝑅|𝑟′)] 𝑑𝜇 +

𝜉1−𝑥1

0

 

                                         +
1

4𝜋
∫ (𝜉2 − 𝑥2 − 𝜇

𝜉2−𝑥2

0
)𝐾0 (

1

2
|𝑅||𝜇|) 𝑑𝜇)                    (3.1.8) 

 

where 𝑟 = |𝑥 − 𝜉|, 𝑟′ = [𝜇2 + (𝜉2 − 𝑥2)
2]

1

2 , and K0 is a modified Bessel function. 

 

 

Thereby, the authors derived the following five equations: 

 

4𝜋𝑉11(𝑥 − 𝜉, 𝑦 − 𝜂; 𝑅) = 𝑒𝑅(𝑥−𝜉)/2[𝐾0 (
1

2
|𝑅|𝑟) +

𝑅(𝑥−𝜉)

|𝑅|𝑟
𝐾1 (

1

2
|𝑅|𝑟)] −

𝑥−𝜉
1

2
𝑅𝑟2

 (3.1.9)  

 

4𝜋𝑉12(𝑥 − 𝜉, 𝑦 − 𝜂; 𝑅) = 4𝜋𝑉21(𝑥 − 𝜉, 𝑦 − 𝜂; 𝑅) 

                                                = 𝑒𝑅(𝑥−𝜉)/2 𝑅(𝑦−𝜂)

|𝑅|𝑟
𝐾1 (

1

2
|𝑅|𝑟) −

𝑦−𝜂
1

2
𝑅𝑟2

           (3.1.10) 

 

4𝜋𝑉22(𝑥 − 𝜉, 𝑦 − 𝜂; 𝑅) = 𝑒𝑅(𝑥−𝜉)/2[𝐾0 (
1

2
|𝑅|𝑟) +

𝑅(𝑥−𝜉)

|𝑅|𝑟
𝐾1 (

1

2
|𝑅|𝑟)] −

𝑥−𝜉
1

2
𝑅𝑟2

    (3.1.11) 

 

                                          2𝜋𝑃1(𝑥 − 𝜉, 𝑦 − 𝜂) = −
𝑥−𝜉

𝑟2              (3.1.12) 

                                          2𝜋𝑃2(𝑥 − 𝜉, 𝑦 − 𝜂) = −
𝑦−𝜂

𝑟2              (3.1.13) 

 

where = [(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]
1

2 . 

 

 

Finally, for determining the stress vector components, we consider an arbitrary point 

𝝃′ = {𝜉′, 𝜂′} on the plain curve Г and get: 

 

−∫𝑉11(𝜉
′ − 𝜉, 𝜂′ − 𝜂; 𝑅)𝜏1(𝑠)𝑑𝑠 − ∫𝑉12(𝜉

′ − 𝜉, 𝜂′ − 𝜂; 𝑅)𝜏2(𝑠)𝑑𝑠 = 1          (3.1.14) 

 

−∫𝑉12(𝜉
′ − 𝜉, 𝜂′ − 𝜂; 𝑅)𝜏1(𝑠)𝑑𝑠 − ∫𝑉22(𝜉

′ − 𝜉, 𝜂′ − 𝜂; 𝑅)𝜏2(𝑠)𝑑𝑠 = 0          (3.1.15) 
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Solving the provided equations assists in obtaining drag and lift values, whereas 

derivation of corresponding coefficients is a straight-forward procedure. 

 

 

3.2. Matlab 

 

 

One of the software packages used in our project is MATLAB. The code developed is 

divided into several parts. First of all, a part is devoted for the construction of body 

shapes using the NURBS toolbox (Non-Uniform Rational Basis Spline). This 

mathematical representation is usually employed for generating curves, surfaces and 

solid models in modern CAD systems. NURBS parametric representations can be used 

to exactly represent conic sections and, at the same time, both B-Spline and Bézier 

geometrical entities may be modelled with NURBS. Shape definition and control is 

mainly carried out with the notion of control points.  

 

 

In the special case of a simple Bézier curve, i.e., a Bézier curve composed by a single 

polynomial segment, we will have n+1 control points, from P0 to Pn, where n is the 

degree of the curve, while P0 and Pn coincide with curve’s end points. Intermediate 

control points do not usually lie on the curve. A point on the curve is computed as a 

convex combination of the curve’s control points. As an example, a simple quadratic 

Bezier curve can be defined as follows: 

 

𝐵(𝑡) = (1 − 𝑡)[(1 − 𝑡)𝑃0 + 𝑡𝑃1] + 𝑡[(1 − 𝑡)𝑃1 + 𝑡𝑃2]   (3.2.1)        

where  0 ≤ 𝑡 ≤ 1 

 

 

The construction of the curve (red curve) as parameter t moves in [0,1] is depicted in 

Figure 3.2.1.  
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Figure 3.2.1. Quadratic Bézier curve 

Simple cubic Bézier curves are used in our modelling as greater shape flexibility is 

allowed by a cubic polynomial. A cubic Bézier curve uses 4 control points and can be 

defined as in Eq.3.2.2 with respect to its parameter t. 

 

𝐵(𝑡) =  (1 − 𝑡)3𝑃0 + 3(1 − 𝑡)2𝑡𝑃1 + 3(1 − 𝑡)𝑡2𝑃2 + 𝑡3𝑃3        (3.2.2) 

where  0 ≤ 𝑡 ≤ 1 

 

 

The generation of a simple cubic Bézier curve is depicted in Figure 3.2.2, where P0, P1, 

P2 and P3 are its control points.  

 

 

Figure 3.2.2. Cubic Bézier curve 

As our project studies were concentrated on a cylinder drag investigation with non-

dimensional diameter D=1, this shape will be our input geometry for devising a 

parametric spline model, which will be further used in shape optimization. The cylinder, 

i.e., circle in our 2D case, can be divided into four equal 90
o
 arcs and each arc will be 
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approximated by a separate simple cubic Bèzier Curve. The characteristic length, i.e., 

the circle’s diameter or generally the shape’s max length, will be fixed to 1 unit 

allowing a fixed Reynold’s number and direct comparisons of Drag Coefficients. The 

general shape is parameterized using the following parameters: B, Xb, a and a2. All of 

them are depicted on Figure 3.2.3 and will be used in shape optimization.  

 

 

Figure 3.2.3. NURBS generated shape example with the main optimization parameters a, a2, Xb, B and initial input 

cylinder with diameter D 

 

 

For performing this shape optimization, several important decisions need to be made. 

First of all, it was decided to make the final shape symmetric only about the horizontal 

axis, so only half of the shape needs to be defined, since the remaining part will be its 

symmetric with respect to the horizontal axis. Secondly, it was assumed that sharp 

edges are undesired features for the investigation with the available coding precision, as 

usually similar geometries result in calculation errors. Therefore, a and a2 values are set 

to be always greater or equal to 10% of B, making sure that leading and trailing edges 

are locally flat. Based on the following assumptions and using non-dimensionalized 

values of B, Xb, a and a2 we can define the four control points for each of the two spline 

segments corresponding to the upper part of our shape.  

 

 

a

a a2

a 2

B

Xb

a

B

Xb

a a2

a 2
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After shape generation an area calculation function was introduced for estimating the 

shape’s interior area. The calculation is performed using an adaptive quadrature method 

that can always satisfy the required precision. In successive optimization steps this 

function is used for the definition of the area constraint. Specifically, the generated 

shape’s area is required to be equal to that of circular disc of diameter D=1.  

 

 

Lately, the forces acting on the generated shape are studied. For this purpose 

DragCoefKK.m file is created. It builds a shape to be studied with NURBS toolbox and 

calculates drag and lift coefficients for that shape. In turn, the methodology for 

calculating drag and lift forces is implemented in BEF.m file. It initially estimates the 

required number of elements and assigns the unknown physical quantity at the midpoint 

of element. Afterwards influence matrices are determined employing Gauss-Kronrod 

quadrature integration method from quadgkmmf.m file. With the obtained influence 

matrices tensor vectors are figured out. The mentioned tensor vectors are then 

immediately transferred for Drag and Lift forces computation multiplying their values 

by the length of impacted object surface. From Drag and Lift forces corresponding 

resistance coefficients can be directly calculated, which are the required findings of this 

part.  

 

 

Finally, with the aid of the previously mentioned components, the optimization can be 

executed. The main aim of the optimization is to achieve the least drag with a minimum 

deviation between the optimized shape area and the initial circular disc area. The 

process is performed using two different optimization algorithms, Fmincon and GA; 

both provided by MATLAB software package. Fmincon employs by a default a SQP 

(Sequential Quadratic Programming) based method for finding the minimum of a 

constrained nonlinear multivariable function. It’s a fast deterministic method, which 

however, might return wrong results in case of objective functions with several local 

minima. Hence, in such cases the result will be highly dependent on the method’s 

starting point. GA method is a Genetic Algorithm implementation, which is more 

preferable in terms of final results robustness, but requires significantly more 
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calculation time and will only provide an approximation of the final minimizer. Both 

methods were executed multiple times to ensure proper execution and validate the 

results. Furthermore, a detailed log was created for each run recording all method 

iterations, the shapes that have been generated and all intermediate results. These logs 

can be checked manually to track errors or spot problems.  

 

 

3.3. COMSOL 

 

 

In our project we have used COMSOL Multiphysics 4.4 as the finite element method 

solver. COMSOL Multiphysics is a powerful software platform that is designed for 

modelling and solving different kinds of scientific and engineering problems. 

According to the software user’s guide (2012), a user-friendly desktop environment is 

provided with a Model Builder component that exploits the full functionality potential 

of the tool. The software also allows the setup and computation of problems that 

involve multiple physical phenomena, which is extremely helpful in solving complex 

engineering problems. Like most FEM tools, COMSOL does not require in-depth 

knowledge of the underlying math or numerical implementations and has been used 

extensively in many areas such as acoustics, fluid dynamics, heat transfer, 

microfluidics, electromagnetics and others.  

 

 

Within the scope of this capstone project, only 2D Laminar flow analysis is used. The 

simulation in COMSOL obeys the full Navier-Stokes equations for steady and 

incompressible Newtonian fluid: 

 

𝜌𝛻. 𝑢 = 0           (3.3.1) 

𝜌(𝑢. 𝛻)𝑢 = 𝛻. [−𝑝𝐼 + 𝜇(𝛻𝑢 + (𝛻𝑢)𝑇)] + 𝐹       (3.3.2) 

 

In designing a valid simulation, it was very important to create conditions of an 
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unbounded fluid flow. Therefore, the general domain size is much larger than the 

characteristic length of a cylinder, i.e., while radius of the cylinder is R=0.5, the length 

and width of an air tunnel is L=900R and W=300R respectively. All the parameters are 

non-dimensionalized to simplify the analysis. Also, for reducing the computational time 

and resources required for such a large domain, it was decided to apply user-controlled 

meshing. Using specific Boolean operator, i.e., partitioning, the domain was divided 

into three smaller parts. Normal mesh size was imposed onto the domain far from the 

cylinder, while the domain around the cylinder was meshed with extra and extremely 

fine mesh. Refer to Tables 3.3.1 and 3.3.2 for parameters and boundary conditions of 

the simulation. 

 

Table 3.3.1 Simulation parameters 

Global parameter Value 

Cylinder radius 𝑅 = 0.5 

Length of the domain 𝐿 = 900𝑅 

Width of the domain 𝑊 = 300𝑅 

Fluid material-air Density, 𝑟ℎ𝑜 − 1;  

dynamic viscosity, 𝜇 = 1/𝑅𝑒𝑦 

Flow velocity 𝑈𝑖𝑛 = 1 

 

Table 3.3.2 Simulation boundary conditions 

Boundary condition Value 

Inlet(laminar inflow) 𝑈𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑈𝑖𝑛, 𝐿𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = 1𝑚. 

Outlet(pressure condition) 𝑝0 = 0 𝑃𝑎 (suppress backflow) 

Symmetry Top and bottom domain (rectangle) 

boundaries 

  

 

It is worth to note that Drag is computed using a predefined variable in COMSOL. The 

software proposes the variable spf.K_stressx and line integration technique in 

calculating for the Drag force. 
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Simple 2D laminar airflow simulation was run on COMSOL. As mentioned in previous 

section, the main challenge was to select a domain of suitable size, such that the fluid is 

not bounded. Simply speaking, it was desired to have gradual variation of velocity 

contour until there is a color uniformity (corresponding to the velocity) everywhere in 

the domain. Then the domain was partitioned into three parts. Mesh size increases 

outwards from the cylinder as shown below in Table 3.3.3, Figure 3.3.1 and Figure 

3.3.2: 

 

Table 3.3.3 Domains and corresponding mesh sizes 

Domain Minimum element size Growth rate Maximum element size 

1 0,004 1,1 0,5 

2 0,06 1,3 0,7 

3 0.06 1,3 3 

 

 

Figure 3.3.1 Mapped computational domain 

 

Figure 3.3.2 Enlarged view of Domain 1. 
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Validation of Oseen’s approximation in the present study is performed using Tritton’s 

empirical data [Tritton, 1959]. Thereby, COMSOL simulations are launched starting 

from Reynolds number Re=0.387. A typical plot of velocity and pressure at Re=0.387 is 

shown below; other velocity/pressure contour plots can be found in appendix. It should 

also be mentioned that all simulations were carried out on a PC with an Intel® Core™ 

i5-4690 CPU @ 3.50GHz with 8.00GB RAM and a 64-bit Windows Operating System. 

 

 

 

Figure 3.3.3 Velocity and pressure contours around the cylinder at Reynolds number Re=0.387 
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4. Results and discussions 

 

 

4.1 Validation of Oseen’s approximation 

 

 

In this part of the report, drag coefficient values from several tools and sources are 

compared.  Whereas main components of the report are demonstrated in Figure 4.1.1, 

all the results are summarized in Table 4.1.1 

 

Figure 4.1.1 Visualization of drag coefficient values from COMSOL, Matlab, and experimental data 

It can be easily noticed that Cd versus Re plots from experimental data, boundary 

element method and finite element modelling tools are identical. Even though there is 

certain offset between the points, the trends are alike. 
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Table 4.1.1 Drag coefficient comparison 

Re 
Cd 

[Tritton] 
Cd 

(COMSOL) 

Cd 
(Matched 

asymptotic 
expansion) 

Cd 
(Matlab) 

Cd 
(Analytical 
solution of 

Oseen) 

Matlab vs 
Tritton [%] 

0,387 19,2 19,47634 19,80546 21,7049 21,7393 13,05 

0,416 18,6 18,44772 18,78070 20,6658 20,7001 11,11 

0,518 16,2 15,68629 15,99736 17,8559 17,8913 10,22 

0,532 15,7 15,38395 15,68922 17,5464 17,5822 11,76 

0,576 15,0 14,52198 14,80615 16,6621 16,6990 11,08 

0,634 14,0 13,55436 13,80548 15,6658 15,7048 11,90 

0,661 13,7 13,15708 13,39122 15,2557 15,2958 11,36 

0,741 12,6 12,13596 12,31498 14,1985 14,2427 12,69 

0,783 12,1 11,67625 11,82386 13,7213 13,7680 13,40 

0,820 11,9 11,30679 11,42545 13,3371 13,3863 12,08 

0,845 11,6 11,07378 11,17224 13,0945 13,1455 12,88 

0,968 10,5 10,08708 10,07875 12,0648 12,1263 14,90 

1,160 9,5 8,92887 8,72864 10,8515 10,9342 14,35 

1,290 8,9 8,32212 7,97257 10,2139 10,3147 15,41 

1,720 7,4 6,90949 5,92330 8,7251 8,9084 17,75 

2,860 5,8 5,05519 0,35888 6,7660 7,3572 17,26 

3,510 5,2 4,48355 -5,37779 6,1630 7,0953 18,52 

3,820 4,9 4,27079 -9,79314 5,9390 7,0357 20,96 

4,810 4,5 3,75197 -44,46146 5,3944 6,5023 21,22 

 

 

Now, to validate COMSOL model, results from simulations are compared with 

Tritton’s experimental data and matched asymptotic expansion. Comparing drag 

coefficient values from columns two and three in Table 4.1.1 it can be easily seen that 

values are close to each other with an average absolute difference equal to 0.5. It is 

interesting to observe this difference in Figure 4.1.1: COMSOL model is slightly offset 

from experimental values, but with equal slope all over the testing range. Moreover, 

COMSOL results are in good agreement with matched asymptotic expansion method up 

to around Reynolds number Re=1, but then for Re>2,860 the Kaplun’s equation yields 

physically irrelevant values [Yano and Kieda, 1980]. Overall, numbers discussed above 

are consistent and it can be said that COMSOL is validated. Simultaneously, full 

Navier-Stokes COMSOL model adds credibility to the Tritton’s experiments and used 

further on.  
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Thereafter, Oseen integrated Matlab results are going to be validated. Bush presented an 

analytical solution for the drag coefficient in Oseen’s flow and these values are in 

column six of Table 4.1.1. Comparison of Matlab and analytical solution yields strong 

evidence that Matlab code works as expected. Then, refer to column seven in Table 4.1 

that shows relative difference between Matlab and Tritton’s drag coefficient values. 

There is a fluctuation up to Reynolds number Re=1.16 with highest value being equal to 

14.9% difference. After that, a constant divergence over the remaining experimental 

range of Reynolds number can be observed: at Re=3.82 the difference is already more 

than 20%. Recall analytical solution of Oseen’s equations of motion, where relative 

difference between Oseen’s approximation and Tritton’s experiments at low Re is also 

around 14% [Bush, 1983]. So, the deviation between Matlab and experimental results 

up to Reynolds number Re=1.16 in Table 4.1 is considered as acceptable.  

 

 

It was expected that Matlab would start to constantly deviate from empirical data at 

some point in high Reynolds numbers. In fact, this begins at Re=1.290 with 15.9% 

relative difference and eventually jumps over 20% benchmark at Re=3.820. Thereby, 

Matlab code in this study can be reliably used below Reynolds number 1.290.  

 

 

Summing up this part of the study, it can be said that there is a certain degree of 

inaccuracy in Oseen integrated Matlab code and further work on its improvement 

should be done. However, a clear correlation at low Reynolds numbers between 

COMSOL and matched asymptotic expansion method, Matlab and analytical solution 

of Oseen, and Tritton experiments leads to the validation of Oseen’s approximation in 

this range. It has been shown that there is a good agreement in drag coefficient values 

up to Reynolds number Re=1,290. Thus, the underlying theory was developed 

specifically for low Reynold numbers, and hence, only the corresponding range should 

be examined.  
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4.2 Shape optimization 

 

 

Following the instructions provided for the project, optimization was run with two 

approaches. Fmincon and GA MATLAB algorithms were launched at particular 

Reynolds number Re = 0.65 with corresponding initial drag coefficient for the cylinder 

equal to 15.3776. 

As Fmincon requires less time, it was set as initial software and was launched with two 

different initial points. Those were v = [0.5 0.9 1 1] and v = [0 0 0 0], where v = [B Xb a 

a2]. To reach convergence, the simulations took 401 and 258 iterations respectively. 

Figures 4.2.1 and 4.2.2 show all shapes checked by the program and Figure 4.2.3 shows 

the finally derived shape.  

 

Figure 4.2.1 Fmincon1 generated shapes 

 

Figure 4.2.2 Fmincon2 generated shapes 

 

Figure 4.2.3 Final shape from Fmincon1, Fmincon2, Fmincon3 and Fmincon4 
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Although we started from different initial points, we have achieved, for both cases, 

almost identical design vectors (final shape parameters). They, taking into account the 

accuracy of the computation process, provide with some evidence that we have reached 

the actual minimum drag design. To show some extra verification for the method, 

relaxed area constraints were launched using previously obtained final shape parameters 

as initial point, i.e., v = [0.4265    0.4970    0.7779    0.7864]. The two relaxed 

optimizations (Fmincon3 and Fmincon4) returned equal parameters, which are similar 

to the previous finding. This provided strong evidence on achieving the necessary 

results.  

 

 

Contrary to Fmincon, which takes the source point as the beginning and proceed with 

further optimization from that point, GA algorithm explores the whole feasible range. It 

is generally considered as a more robust tool and does not require any initial good 

guess. In current project it employed the same function constraints as Fmincon and 

required 7245 iterations to achieve converged results. Its search history is depicted in 

Figure 4.2.4. As can be seen from Figure 4.2.5, the final resulting shape is different 

from what was obtained in Fmincon simulation. The resulting parameters satisfy the 

problem constraints, but the drag result is slightly worse in comparison with Fmincon 

findings. All simulations were double-checked using COMSOL software and the 

resulting drag coefficients were verified with a maximum deviation 6.8%. Running GA 

once more could lead us to a better approximation of the global minimum, but based on 

the experiments carried out so far, there’s strong evidence that the global minimizer has 

been found by Fmincon. Subsequently, for the current project Fmincon achieved results 

are selected as the final output and to be accessed to build the modified shape.  



 

 

 24 

MECHANICAL ENGINEERING DEPARTMENT                                      NAZARBAYEV UNIVERSITY  

 

Figure 4.2.4 GA generated shapes 

 

 

 

Figure 4.2.5 Final shape from GA 
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Table 4.2.1 Optimization results 

Optimization 

ID 

V source 

value 

[B Xb a a2] 

V output 

value 

[B Xb a a2] 

Drag 

coefficient 

from 

Matlab 

Drag 

coefficient 

from 

COMSOL 

Area 
Area 

constraint 

Fmincon1 [0.5 0.9 1 1] 

[0.4265 

0.4970   

0.7779   

0.7864] 

12.1128 12.8437 0.3827 0.01 

Fmincon2 [0 0 0 0] 

[0.4265 

0.4997   

0.7811   

0.7825] 

12.1128 12.7217 0.3827 0.01 

Fmincon3 

[0.4265 

0.4970   

0.7779   

0.7864] 

[0.4267   

0.4987   

0.7814   

0.7799] 

12.1126 12.7234 0.3827 0.05 

Fmincon4 

[0.4265 

0.4970   

0.7779   

0.7864] 

[0.4267 

0.4987   

0.7814   

0.7799] 

12.1126 12.7234 0.3827 0.1 

GA - 

[0.4965    

0.4998   

0.4399   

0.4407] 

12.1972 13.0275 0.3816 - 
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5. Conclusion 

 

 

In this report a boundary element formulation of Oseen’s equations of motion has been 

used and integrated into MATLAB environment. Two dimensional low Reynolds 

number flow around a cylinder was examined using the above implementation. 

Comparison of these drag coefficient values with experimental results from Tritton 

[Tritton, 1959] and full Navier-Stokes COMSOL simulations showed good agreement 

up to a Reynolds number of Re=1,290. Even though there was a deviation between the 

results, relative difference was within the acceptable range and equal to the offset value 

of analytical technique [Bush, 1983]. Thus, Oseen’s equations were validated in 

aforementioned range of Reynolds numbers and may be used as a sufficient 

approximation of a true drag. In other cases, i.e., at high Reynolds numbers, full Navier-

Stokes equations should be preferred.  

 

 

Optimization part of the study considered Fmincon and GA algorithms in Matlab to 

come up with two dimensional shapes that possess minimum drag while retaining the 

area of the initial shape (circle). The optimized shape exhibits a drag coefficient 

reduction of 20% while its interior area deviates less than 1% from the initial circular 

disc. 
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Appendix 

 

A. Stream function calculation for Oseen’s approximation by Lagree 

 

Introducing stream function and its expansion, author gets solution of 2D at zero order: 

 

𝜓 = 𝐿𝑈0𝜓̅               (A.1) 

𝜓 = 𝜓0 + 𝑅𝑒𝜓1+. ..         (A.2) 

∇̅2⃗⃗⃗⃗ ∇̅2⃗⃗⃗⃗ 𝜓0
̅̅̅̅ = 0                (A.3) 

 

The challenge here is that no solution of 2D Stoke problem was thought to exist. The 

good idea would be to try approach from “sphere” model, leading to  

 

𝜓0
̅̅̅̅ = 𝐷𝑠𝑖𝑛𝜃(2𝑟̅𝐿𝑜𝑔(𝑟̅) − 𝑟̅ +

1

𝑟̅
)         (A.4) 

 

The thing is that it is impossible to converge the last equation to zero, which represents 

the condition at infinity out of the circle. It was lately resolved by starting the problem 

from the very beginning and takes LU0 to scale ψ. 

 

𝜓0

𝜈
((

𝜕𝜓̅

𝜕𝑦̅

𝜕

𝜕𝑥̅
−

𝜕𝜓̅

𝜕𝑥̅

𝜕

𝜕𝑦̅
) ∇̅2⃗⃗⃗⃗ 𝜓̅) = ∇̅2⃗⃗⃗⃗ ∇̅2⃗⃗⃗⃗ 𝜓̅          (A.5) 

 

The Oseen’s problem was defined as far from the body, where viscosity and inertia are 

playing a role.  

 

𝜓 =
𝑈0𝐿

𝑅𝑒
𝜓̆,     (𝑥, 𝑦) =

𝐿

𝑅𝑒
(𝑥̆, 𝑦̆)             (A.6) 

((
𝜕𝜓̆

𝜕𝑦̆

𝜕

𝜕𝑥̆
−

𝜕𝜓̆

𝜕𝑥̆

𝜕

𝜕𝑦̆
) ∇̆2⃗⃗⃗⃗ 𝜓̆) = ∇̆2⃗⃗⃗⃗ ∇̆2⃗⃗⃗⃗ 𝜓̆       (A.7) 

 

Then the stream function is expanded to 𝜓̆ = 𝑦̆ + 𝛿𝜓̆1+. .. with δ unknown yet and the 

assumption that the flow is nearly not perturbed by the point. Navier-Stokes at order δ 
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is: 

 

𝜕

𝜕𝑥̆
∇̆2⃗⃗⃗⃗ 𝜓̆1 = ∇⃗⃗̆ (∇̆2⃗⃗⃗⃗ 𝜓̆1)     (A.8) 

 

After algebraic manipulations with Goldstein transform, Fourier transform and Euler 

constant formulation the final solution by Lagree becomes: 𝜓̆ =
1

𝑅𝑒
(𝑟̅𝑠𝑖𝑛𝜃 +

1

𝐿𝑜𝑔𝑅𝑒
𝑟̆(𝐿𝑜𝑔(𝑟̆) − 𝐿𝑜𝑔4 + 𝛾 − 1)  
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B. Simulation results 

 

 

 

Figure B.1 Velocity and pressure contours at Reynolds number Re=0.532 
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Figure B.2 Velocity and pressure contours at Reynolds number Re=0.968 

 

 

 

 


