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Abstract
Deterministic modeling lonely provides a unique boundary layout, depending on the geological interpretation or interpo-
lation from the hard available data. Changing the interpreter’s attitude or interpolation parameters leads to displacing the 
location of these borders. In contrary, probabilistic modeling of geological domains such as lithofacies is a critical aspect 
to providing information to take proper decision in the case of evaluation of oil reservoirs parameters, that is, applicable 
for quantification of uncertainty along the boundaries. These stochastic modeling manifests itself dramatically beyond this 
occasion. Conventional approaches of probabilistic modeling (object and pixel-based) mostly suffers from consideration 
of contact knowledge on the simulated domains. Plurigaussian simulation algorithm, in contrast, allows reproducing the 
complex transitions among the lithofacies domains and has found wide acceptance for modeling petroleum reservoirs. 
Stationary assumption for this framework has implications on the homogeneous characterization of the lithofacies. In this 
case, the proportion is assumed constant and the covariance function as a typical feature of spatial continuity depends only 
on the Euclidean distances between two points. But, whenever there exists a heterogeneity phenomenon in the region, this 
assumption does not urge model to generate the desired variability of the underlying proportion of facies over the domain. 
Geophysical attributes as a secondary variable in this place, plays an important role for generation of the realistic contact 
relationship between the simulated categories. In this paper, a hierarchical plurigaussian simulation approach is used to con-
struct multiple realizations of lithofacies by incorporating the acoustic impedance as soft data through an oil reservoir in Iran.

Keywords Plurigaussian simulation · Acoustic impedance · Hierarchical flag

Introduction

Geological modeling has been widely used in different disci-
plines of numerical reservoir modeling (Walker 1992; Shak-
iba et al. 2015; Nazeri et al. 2016). Different characteristics 
of petrophysical properties such as porosity, permeability, 
and saturation are significantly controlled by lithofacies fea-
tures (Pyrcz and Deutsch 2014). Following this concept, it 
justifies the need to model the layout of lithofacies prior to 

any modeling of those continuous variables (Journel and 
Huijbregts 1978).

Deterministic modeling of the lithofacies provides only 
one unique boundary between two adjacent geo-domains. 
This usually can be done based on expert judgment or inter-
polating form inadequate available surrounding data (Madani 
and Emery 2015). Stochastic algorithms, as an alternative, are 
extensively utilized for constructing multiple realizations that 
honoring the conditional data and lead to quantify the uncer-
tainty of the lithofacies at unsampled locations. These geosta-
tistical simulation methods are mostly classified to two main 
families: multi-point statistics and two-point statistics. The first 
family relies on the training image (Strebelle 2002). The most 
challenging issue for this method is constructing a representa-
tive training image, which is still experiencing with ongoing 
research (Emery and Lantuéjoul 2014). The later family cor-
responds to pixel-based methods, which offer more flexible 
framework to infer the statistical parameters (Deutsch 2006). 
For instance, sequential indicator simulation (Journel 1983; 
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Journel and Isaaks 1984; Alabert 1987; Journel and Alabert 
1988) and transition probability-based indicator simulation 
(Carle and Fogg 1996) are such an indicator-based algorithms, 
which present acceptable results under some circumstances. 
The realizations are often susceptible to not well reproduc-
ing the low proportion of the facies in the region (Deutsch 
2006; Emery 2004). Moreover, the contact relationship in this 
approach cannot be imposed into the process of modeling. 
Truncated Gaussian simulation (Matheron et al. 1987, 1988; 
Galli et al. 1994) as an alternative is suitable where an order-
ing sequence can be confirmed through the geological settings 
(e.g., strata in sedimentary deposits). Plurigaussian simulation 
as an extension of the truncated Gaussian simulation is more 
capable of handling the complex contacts relationship among 
the lithofacies. In this context, the allowed and forbidden con-
tacts can be injected into the modeling process. In a nutshell, 
it has found wide acceptance between the practitioners for 
modeling the petroleum reservoirs (Armstrong et al. 2011). 
However, conventional method of Plurigaussian simulation 
(Emery 2007) mostly is limited to a few number of facies (no 
more than five) and the Gaussian random fields (no more than 
three). Madani and Emery, (2015) presented an extension of 
the former Plurigaussian simulation, to increase the number 
of underlying Gaussian random fields, that is, applicable for 
the geological settings such that younger geo-domains cross-
cut the older ones and the contact knowledge can be organ-
ized respecting to their chronology. In this case, all the facies 
should be in touch altogether and such a forbidden contact is 
not allowed. Maleki et al. (2016) presented another application 
of this technique, in which the geo-domains are, in the same 
way, ordered hierarchically, but the forbidden contacts play an 
important role. All these approaches are based on stationary 
phenomena (i.e., homogenous variability). However, in the 
case of heterogonous variability, things get more complicated 
and one requires updating the stationary assumptions (Madani 
and Emery 2017) or applies secondary information for repro-
ducing the trend. This available information can be seismic 
data. In this paper, the proposed methodology (hierarchical 
simulation approach) is integrated with seismic information 
(acoustic impedance) to contribute the heterogeneity and 
homogeneity modeling of the lithofacies in an Iranian oil field.

Methodology

Plurigaussian simulation

Truncated Gaussian simulation was first coined by Matheron 
et al. (1987) to simulate the Geo-domains with sequential 
ordering in a domain. One application in reservoir modeling 
can be found in Liu et al. (2016) for stochastic modeling of 
eight lithofacies in an oilfield. Beucher and Renard (2016) also 
explained precisely how this methodology is incorporated for 

digital modeling of geological phenomena. The basic idea of 
this approach is to define one Gaussian random variable whose 
spatial continuity is defined by indicator variograms. This 
regionalized variable then will be divided into discrete classes 
corresponding to each lithofacies. Following this mechanism, 
the threshold values are inspired from proportion of each of 
these lithofacies (Armstrong et al. 2011). For instance, in a 
sedimentary geological setting, there may exist a usual order-
ing between lithofacies. Figure 1 as an example shows how one 
realization (a) can be generated according the sequential order-
ing through five different types of lithofacies in a siliciclastic 
platform after truncation of an underlying Gaussian random 
field (b & c). In this case, Sand touches the Shale sand and 
Shale sand is in direct contact with Shale, in which Shale has a 
unique border with Limestone. The Limestone manifests itself 
via an explicit border with Argillite limestone. The underly-
ing thresholds for separating the classes are arbitrary defined: 
− 1.987, − 0.487, 0.865, and 1.924.

In some sort of cases, truncated Gaussian is too restrictive 
to be applicable. For example, if there is no natural sequence 
or one can distinguish a forbidden contact between the litho-
facies. To come up with this problem, Plurigaussian simu-
lation (Galli et al. 1994) is an alternative method designed 
to adapt to a wider range of complicated types of geologi-
cal contacts. In particular it has been widely applied to the 
modeling of petroleum reservoirs (Zagayevskiy and Deutsch 
2016; Beucher and Renard 2016; Martinious et al 2017; 
Cahutru et al. 2015; Almeida 2010). The bottom line of the 
plurigaussian simulation is to extension of one Gaussian ran-
dom field into two or more ones and using a truncation rule 
to convert the Gaussian data into lithofacies acting. Gener-
ally speaking, the practical implementation of the model 
can be summarized as the follow (Armstrong et al. 2011):

Definition of model parameter

Truncation rule consists in splitting a space into sub-classes, 
which associates the values of the Gaussian random fields 
with the geological domains. (Armstrong et al. 2011; Lantu-
éjoul 2002; Le Loc’h et al. 1994). Figure 2 shows the same 
siliciclastic platform (as mentioned in Fig. 1) with more com-
plex contact relationship. In this case, the sequential order-
ing is not anymore represented between whole lithofacies and 
as can be seen from the truncation rule (Fig. 2c), the Shale 
is in contact with both Limestone and Argillite limestone 
simultaneously (Fig. 2a). So, the two Gaussian random fields 
(Fig. 2d, b) should be simulated and truncated considering 
the truncation thresholds. Let us suppose that N is underlying 
Gaussian random fields, grouped into a vector random field 
Z = {Z(x);x ∈ Rd} with N components, M lithofacies domains 
and g(.) is the joint probability density function of the Gauss-
ian random fields. To calculate the probability of occurrence 
of the ith lithofacies domain at a given location x , one needs 
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to solve the following equation analytically or numerically 
(Armstrong et al. 2011):

Covariances or variograms of the underlying Gaussian ran-
dom fields characterize the spatial continuity of these fields, 
and the geological domains can be obtained after applying the 
truncation rule. For any separation vector h, the indicator cross 
variogram between two geological domains (with indices i and 
j ) is derived from the corresponding non-centered covariance 
(Armstrong et al. 2011):

with

(1)Pi = ∫ g
(
Z1, Z2,… , ZN

)
dZ1 … .dZN .

(2)�ij (h) = Cij (0) −
1

2

[
Cij (h) + Cij (−h)

]

If Di and Dj are rectangular parallelepipeds of ℝN and 
the components of the vector random field Z are independ-
ent, the second member of Eq. (3) is a function of the direct 
covariances or variograms of the components of Z and can 
be calculated by numerical integration (Dowd et al. 2003) 
or using the expansions into Hermite polynomials (Emery 
2007). This establishes a link between the variograms of 
the underlying Gaussian random fields and the indicator 
variograms, which are accessible experimentally from the 
observed geological domains at sampling locations. The for-
mer can, therefore, be determined according to the fitting of 
the latter, quiet often, through a trial-and error procedure (Le 
Loc’h and Galli 1997; Emery 2007; Armstrong et al. 2011).

(3)Cij = prob
{
Z(x) ∈ Di, Z(x + h) ∈ Dj

}
.

Fig. 1  The procedure for producing one realization through truncated Gaussian simulation
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Conditional simulation

The simulation can be performed in three main steps after 
definition of model parameters (Lantuéjoul 2002; Emery 
2007; Dowd, 2003; Armstrong et al. 2011). The first step 
is converting the categorical data into Gaussian random 
fields that can be realized by an iterative algorithm known 
as the Gibbs Sampler (German and German 1984; Casella 
and George 1992). The second step consist in simulation 
of Gaussian random fields at target locations, condition-
ally to the values obtained from the Gibbs sampler. This 
step can be implemented by any algorithm for simulating 

stationary Gaussian random fields: Cholesky decomposition 
of the covariance matrix (Davis 1987), sequential Gaussian 
simulation (Ripley 1987; Deutsch and Journel 1992; Gomez-
Hernandez and; Journel 1993), discrete spectral simulation 
(Chiles and Delfiner 1997), continuous spectral simulation 
(Shinozuka 1971; Mejia and Rodrigues-Iturbe 1974; Lantu-
éjoul 2002), and turning bands simulation (Matheron 1973; 
Lantuejoul 1994; Emery and Lantuéjoul 2006), to name 
a few (see also Chiles and Delfiner 2012 and reference 
therein). The third step is truncating the Gaussian random 
variables according to the truncation rule and obtain the 
simulated domains.

Fig. 2  The procedure for producing one realization through Plurigaussian simulation
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Hierarchical simulation

Two-dimensional truncation rule allows intuitively interpret-
ing the contact relationship among lithofacies in the region. 
However, it restricts the process of modeling whenever 
there exists more than four or five lithofacies with complex 
contact relationship. To overcome this impediment, follow-
ing Xu et al. (2006) and Emery (2007); Madani and Emery 
(2015) increased the number of Gaussian random fields to 
permit whole geological domains to be in contact together for 
modeling seven rock units in the copper Rio-Blanco deposit 
located in Chile. In this study, the hierarchical approach is 
based on the geo-chronology of the rock units. Maleki et al. 
2016 also applied the hierarchical simulation for modeling 
ten rock types in an iron ore deposit with more complicated 
relationship including some forbidden contacts. This tech-
nique is more flexible and is a particular case of plurigaussian 
simulation based on iteratively truncation of several Gaussian 
random fields. The proposed approach splits the region into 
sublayers. For example, in the previous siliciclastic platform, 
based on this concept, the first layer is Sand, Shale sand, 
and Shale and its complement, while the second layer only 
conveys Limestone and Argillite limestone (Fig. 3). The trun-
cation threshold and variogram analysis remain unchanged 
and one can define the underlying lithofacies at location x for 
such a case, corresponding to two Gaussian random fields {
Z1, Z2

}
 and four truncation threshold 

{
t1, t2, t3, t4

}
 as below:

Heterogeneous hierarchical modeling

The domain is not always stationary and homogenous. For 
example, in some petroleum reservoirs, due to the sedimen-
tary sequences and cyclic changes during deposition, the 
lithofacies vary vertically and laterally which make the res-
ervoir heterogeneous. Figure 4 shows how the same silici-
clastic platform may show heterogeneous behavior through 
the region of interest. As can be seen, the Sand is depos-
ited in one part without any replications through other parts 
(model nos. 1 & 2). In model number three as another exam-
ple of heterogeneous phenomena, the Limestone is formed 
in north section of the region with no any combination with 
other lithofacies. Stochastic modeling of these kind of geo-
logical layout by conventional hierarchical approaches proves 
to be too restrictive. To account for these changes, some 

(4)Lithofacies at location x =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Shale if Z1(x) ≤ t1

Shale sand if Z1(x) > t1 and Z1(x) ≤ t2

Shale if Z1(x) > t2 and Z1(x) ≤ t3

Limestone if Z1(x) > t3 and Z2(x) ≤ t4

Argillite limestone if Z1(x) > t3 and Z2(x) > t4

.

approaches such as vertical proportion curves (Matheron 
et al. 1987; Ravenne et al. 2002) have been designed to esti-
mate the domain proportions as a function of depth. Beucher 
et al. (2006) constructed a 3D matrix of proportion curves 
to model the evolution in the proportions both vertically and 
laterally. The proportions were first calculated locally, in 
sampled areas, then interpolated (by kriging) over a regu-
lar grid covering the region of interest. Inferring regional-
ized proportions can also account for secondary data, such 
as geophysical information (Moulière et al. 1997; Moulière 
1998). Actually, static reservoir modeling of an oilfield most 
often suffers from lack of adequate information obtained 
from well data and the idea is how to model such a reser-
voir with those few data. In contrary, seismic information 
such as acoustic impedance (AI) plays a beneficial role for 
modeling the heterogeneous lithofacies as the secondary vari-
able. Abundant information of this kind of data contributes 
to the lithofacies variations characteristics. Therefore, to pro-
viding this information to modeling the lithofacies, the first 
step is to calibrate the seismic data to the lithofacies propor-
tions at well locations. The interested reader for considering 
the method of calibration is referred to Pyrcz and Deutsch 
(2014). The calibrated proportion then can be estimated by 
any linear interpolation methods such as kriging. Indeed, the 
produced maps for each lithofacies demonstrate the region of 
that lithofacies in high and low probability varying gradually 
between 0 and 1, respectively, in which they mimic valuable 

Fig. 3  Hierarchical chart process of contact relationship
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secondary information within each pixel. In this case, after 
inferring the local proportions, the truncation rule is as the 
same as presented previously, but the thresholds vary locally 
instead of global proportion assumption, honoring these gen-
erated maps of calibrated proportion.

Geophysical attribute

Acoustic impedance (AI) is a layer-based property of the 
earth that could be retrieved from seismic data using inver-
sion techniques. This technique is considered as the reverse 

process of forward modeling which involves creating a syn-
thetic seismic section based on an earth model. Based on 
the type of input seismic data for inversion techniques, there 
are two main seismic inversion approaches known as pre-
stack and post-stack inversions. The data set considered in 
this paper as secondary value of the modeling, is prepared 
based on post-stack inversion that provide acoustic Imped-
ance (AI) property volume. AI is a layer property and closely 
related to rock/reservoir and fluid property such as lithol-
ogy, porosity and pore fluid which then could be suitable for 
lithofacies and seismic stratigraphic studies. AI data consist 
more information compared to the seismic data, since it is 

Fig. 4  Probable heterogeneous models of a siliciclastic platform
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integrating several sources of data; typically seismic infor-
mation, well logs and seismic velocity information. Seismic 
inversion technique increases the resolution of seismic data 
by reducing the effects of wavelet tuning and attenuating the 
random noise.

Sonic and density well logs are essential to generate syn-
thetic seismogram required for AI inversion. There could 
be some problems in well logs data, such as wellbore wash-
out, casing point, and different loggings run. To compensate 
these errors, all suspicious values of logs are corrected or 
omitted and then the intervals with no logs data, are esti-
mated from other logs, based on artificial neural network 
approach. Investigation of the seismic data and interpreted 
horizons revealed the suitable quality of these data as input 
of AI inversion.

After quality control of the input data, the well to seismic 
correlation and wavelet extraction from post-stack seismic 
data can be performed. In this study, one wavelet extracted 
using five wells. Finally after generation of low-frequency 
model and determination of inversion parameters, con-
strained sparse spike inversion (CSSI) process was utilized 
on the seismic data. Figure 5 shows an example of AI inver-
sion section as an instance.

Geological setting

The study area is located at the junction of the Arabian 
Shield and Iranian continental block that belong to two 
different lithospheric plates (Arabian and Eurasian). Col-
lision of these plates at the Mesozoic/Cenozoic boundary 

produced the Zagros Fold Belt and the large Mesopotamian 
Foredeep, which is a member of the Persian Gulf Basin. The 
area is located in the northwest Persian Gulf (Fig. 6) and the 
geologic time of the studied rocks is Albian. Albian stage 
occupies one of the most important places in the Mesozoic 
stratigraphy of the Persian Gulf with high-frequency tec-
tonic changes. A rapid sea level drop in early Albian initiated 
deposition of Kazhdumi and Burgan over the Dariyan and 
Shuaiba carbonates. In the deeper part of the basin where 
break in sedimentation is documented between Dariyan 
carbonates, and the Kazhdumi, deposition may have com-
menced in the Late Aptian (Ghazban 2007). During this 
time, the Arabian Shield became the source for the clastic 
sediments in that area. From the Arabian Shield to the Ira-
nian coast, these clastics pass into the neritic argillaceous 
limestone and organic-rich shales (Fig. 6) of the Kazhdumi 
formation (Konyuhov and Maleki 2006). Thickness of the 
formation increases toward northwest and east of Persian 
Gulf and decreases on the middle part.

There is an interval of clastic sediments (claystone, silt-
stone, and sandstone) in the lower part of the Kazhdumi for-
mation. This unit was deposited during the transgression on 
post Aptian unconformity surface in a deltaic environment. 
The sandy part of this unit is hydrocarbon reservoir in some 
part of north of Persian Gulf. However, strong facies changes 
of the layer on one hand and poorly distributed data on other 
hand are the main challenge for modeling this reservoir.

The Kazhdumi formation is time equivalent of three 
stratigraphic units in the western Persian Gulf countries. 
These three formations are Nahr Umr, Dair, and Burgan, 
which are, respectively, equivalent to the Upper, Middle, 

Fig. 5  Example of Acoustic impedance inversion results in arbitrary section
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and Lower Kazhdumi Formation. This formation reaches a 
thickness of 230 m at the type section in northwest Zagros 
but thins to 40–50 m in southern Persian Gulf. But In this 
work, to handle Kazhdumi Facies estimation, it was divided 
into five zones, Kz-1 to Kz-5, based on well data. These five 
zones are equivalent to three previously known stratigraphic 
parts of the formation. Kz-1 and Kz-2 are equivalent to the 
upper and middle Kazhdumi, respectively, but Kz-3, Kz-4, 
and Kz-5 zones are all equivalent to the lower Kazhdumi 
(Burgan) formation. These three zones have different dis-
tributions in the study area. However, target of the study 
is stochastic lithofacies modeling for the Kz-4 in the area.

Presentation of the data set

The dataset is composed of 11 well data upscaled into two 
meters located in layer no. 261 of Kazhdomi-4 formation. 
This layer mainly consists of siltstone (50%), sandstone 
(30%) and marl (20%). Although, it consists of sandstone 
(70%) and shale (30%) in southern part, pure sandstone in the 
southwest, and moderately shale (50%) and sandstone (50%) 
in the middle part of the study area. The location map can be 
seen in Fig. 7 to intuitively considering well distribution in 
the region. As a typical act in oil reservoirs, we are dealing 
with a few conditioning information and the majority of wells 
are located far enough, in some case, it reaches to 5 km. For 
instance, some lithofacies are presented only one time in a 

well. To save the space through the paper, all the lithofacies 
are coded into the numbers as presented in Table 1.

Because of irregularity of the sampling mesh and prevent-
ing any bias in the calculation process, the proportion of 
each lithofacies is determined before and after declustering. 
As can be inspired form declustered proportion, the most 
covered lithofacies in the region is Sand, Sh (70, 30) and the 
least one is the sand located in western part of the region. 
According to the geological interpretation, the lithofacies 
116 and 113 should be at the left side of the region and the 
right side, the lithofacies 83 and 106 are more dominated. 
This consideration is a key to validate the results.

Fig. 6  Lithofacies distribution of the Lower Cretaceous (Aptian-Albian) in the Persian Gulf (after Konyuhov and Maleki 2006)

Fig. 7  Location map of the wells in Kazhdomi formation showing the 
distribution of lithofacies. (for confidentially reasons, the coordinates 
are shown in local scale)
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Model parameters

Truncation rule

The contact relationship according to the geological con-
sideration is defined as: alrgLst, Sh (70, 30) is in contact 
with Sh. ShSand, argLst (50, 30, 20) and this lithofacies 
itself then is in contact with other lithofacies [Sh, Sand, 
ShSand (50, 40, 10), SandSh, ShSand, MI (50, 30, 20), 
Sand and Sand, Sh (70, 30)]. Therefore, it is supposed that 
there should not be any geological relationship between 

the first lithofacies (code: 83) and (code: 107, 108, 113, 
and 116). As mentioned earlier, in the case of complex 
contact relationship, the hierarchical plurigaussian sim-
ulation provides such a flexibility to handle the process 
of modeling. So, one can see the conceptual hierarchical 
relationship of the underlying lithofacies in Fig. 8. So, four 
sublayers can, therefore, be concluded as follow:

1. First layer: lithofacies 83 is in direct relationship with 
lithofacies 106 and the former one is in contact with its 
complement.

2. Second layer: lithofacies 107 is in direct relationship 
with its lithofacies complements (106, 108, 113, and 
116) except lithofacies 83.

3. Third layer: lithofacies 108 is in direct relationship with 
its lithofacies complements (106, 107, 113, and 116) 
except lithofacies 83.

4. Fourth layer: lithofacies 113 is in direct relationship with 
its complement (106, 107, 108, and 116) except lithofa-
cies 83.

As four layers are considerable in this case, consequently, 
four Gaussian random fields are recognized and therefore, 
the hierarchical relationship of the lithofacies requires to 
be described through the following system representing a 
four-dimensional flag:

(5)Lithofacies at Location x =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

83, Y1 (x) ≤ t1

106, Y1 (x) > t1, Y1 (x) ≤ t2

107, Y1 (x) > t1, Y1 (x) > t2, Y2 (x) ≤ t3

108, Y1 (x) > t1, Y1 (x) > t2, Y2 (x) > t3, Y3 (x) ≤ t4

113, Y1 (x) > t1, Y1 (x) > t2, Y2 (x) > t3, Y3 (x) > t4, Y4 (x) ≤ t5

116, Y1 (x) > t1, Y1 (x) > t2, Y2 (x) > t3, Y3 (x) > t4, Y4 (x) > t5

.

Table 1  Codification of lithofacies with the relevant proportions

Facies Code Proportion 
(no-decluster) 
(%)

Proportion 
(declustered) 
(%)

argiLst, Sh (70, 30) 83 9.09 17.78
Sh, ShSand, argiLst (50, 

30, 20)
106 27.27 21.37

Sh, Sand, ShSand (50, 40, 
10)

107 9.09 3.76

SandSh, ShSand, Ml (50, 
30, 20)

108 9.09 14.66

Sand 113 9.09 2.45
Sand, Sh (70, 30) 116 36.36 29.35

Fig. 8  Hierarchical relationship between the lithofacies in Kazhdomi formation, layer no. 261
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Truncation thresholds

Such a hierarchical contact based on the explained truncation 
rule involves five truncation thresholds, which can be defined 
corresponding to the declustered proportion (Armstrong 
et al. 2011). To calculation of the proportions, it is required 
to transfer the categorical data (in this place, lithofacies) 
to indicator data defined by 0, 1 or unknown values, where 
the indicators can be defined thanks to the above system (5) 
(Table 2). Hence, Proportion of the first lithofacies threshold 
according to the Eq. (1) equals G−1

(
P83

)
= −2.063 , where G 

stands for the cumulative distribution function of a normal 
standard distribution N(0, 1) . As t1 and t2 are independent 
in one Gaussian random field, the second threshold can be 
defined as 

[
1 − G−1

(
P83

)]
× G−1

(
P106

)
= −1.095 , the same 

procedure can be applied for the remaining thresholds.

Variogram analysis

To derive variograms for the four Gaussian random fields {
Y1, Y2, Y3, Y4

}
 , experimental indicator variograms are cal-

culated over the indicator variables (Table 2) along the three 
specified main anisotropy direction: maximum continuity 

(150◦) , minimum continuity (60◦) , and vertical. Indeed, 
the approximate anisotropy directions are inferred from 
two source of information: the seismic map of geophysical 
attribute and the nearest neighborhood interpolation map of 
the well data. Although the deterministic techniques such 
as nearest neighborhood cannot quantify the uncertainty at 
unsampled locations and provides just one exact boundary 
among two adjacent lithofacies, but they produce some intui-
tively useful consideration about the approximate layout of 
the lithofacies.

The next step is to fit theoretical variograms to the experi-
mental variograms. However, the experimental indicator var-
iograms calculated from well data resulted in a very patchy 
sort of experimental points in the variogram graph and one 
cannot fit a proper model. This problem emerged due to the 
lack of adequate lithofacies data at well location. An idea 
is to use the seismic information instead, owing to the fact 
that it conveys abundant knowledge through the entire region 
(Pyrcz and Deutsch 2014). As mentioned earlier, calibrated 
proportions by seismic information could propose the maps 
showing the probability for each lithofacies. Based on the 
most probable plot obtained from these probability maps, 
one can generate a categorical map (Fig. 9). This map bears 

Table 2  Transformation of 
lithofacies data into indicator 
data

Facies Category Y
4
< t

5
Y
3
< t

4
Y
2
< t

3
Y
1
< t

2
Y
1
< t

1

argiLst, Sh (70, 30) 83 1 1 Unknown Unknown Unknown
Sh, ShSand, argiLst (50, 30, 20) 106 0 1 Unknown Unknown Unknown
Sh, Sand, ShSand (50, 40, 10) 107 0 0 1 Unknown Unknown
SandSh, ShSand, Ml (50, 30, 20) 108 0 0 0 1 Unknown
Sand 113 0 0 0 0 1
Sand, Sh (70, 30) 116 0 0 0 0 0

Fig. 9  Nearest neighbor map (left) and seismic map (right)
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a resemblance to the nearest neighborhood map and could 
also provide visual favorable information. The experimental 
indicator variograms are derived again, but this time from 
the most probable map so obtained. Figure 10 shows that 
the experimental variograms are reasonable to fit a model. 
The fitting process is a type of semi-automated algorithm 
presented by (Emery 2010). It is worth mentioning that the 
fitted model of variogram, which is cubic, getting an impact 
from the smoothness of the contact lines between the litho-
facies. This type of variogram leads to regular boundaries 
(Lantuejoul 2002).

Plurigaussian simulation

Provided with the inferencing the model parameters (trunca-
tion rule, truncation thresholds, and variogram analysis), to 
consideration whether the geophysical information has an 
impact on the probabilistic modeling of lithofacies domains, 
the geostatistical simulation of lithofacies has been imple-
mented over three following cases:

Case I

In this case, 100 realizations have been generated, using a 
procedure applied by (Maleki et al. 2016) conditionally to 

Fig. 10  Fitted Gaussian variogram inspired from indicator variograms
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the well data regardless of any geophysical considerations. 
In truncation rule, the declustered global proportions have 
been inserted to infer the truncation thresholds.

Case II

In this case, following Madani and Emery (2015), 100 reali-
zations have been generated conditionally to the well data, 
but the local calibrated proportions acquired from seismic 

information “Model parameters” section are used for trun-
cation threshold, instead of declustered global proportions. 
The truncation rule and variogram analysis remain also 
unchanged.

Case III

In this case, 100 realizations have been generated condi-
tionally to the well data, but for truncation thresholds, the 

Fig. 11  Realization no. 20; a comparison between three methodologies
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declustered global proportions have been used for lithofa-
cies 83, 106, 107, 108, and for lithofacies 113 and 116, the 
calibrated proportions have been used which acquired from 
seismic information. It should be noted that the proportions 
are then rescaled to sum to 1.

Figures 11 and 12 depict two different realizations in 
a same plan view obtained from three above methodolo-
gies. In case I, the truncation rule is favorably recognized 

(hierarchical relationship between lithofacies (Figs. 11, 
12a), but according to the the assumption of non-stationary 
for some lithofacies such as 113, the heterogeneity for this 
lithofacies is not honored. For instance, realization no. 20 
displays that an extension of this lithofacies can be found in 
north-east of the region. This phenomenon according to the 
geological consideration cannot be interpreted. In case II, 
both realizations could not meet the truncation rule (Figs. 11, 

Fig. 12  Realization no. 60; a comparison between three methodologies
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Fig. 13  Probability maps for whole lithofacies
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12b) and all the lithofacies are in contact altogether. This 
problem arises in the interest of equal weighting thresholds 
from calibrated proportions in truncation rule. The hetero-
geneity for lithofacies 113 somewhat is honored, but the 
realizations lack realism from the contact relationship point 
of view. But in case III, the results are more interesting, 
one can see from Figs. 11 and 12c that the heterogeneity 
for the lithofacies 113 is honored and the expected contact 
relationship is in complete agreement with truncation rule. 
Furthermore, the extension of lithofacies 83 and 106 as were 
expected agreed the geological understanding. Therefore, as 
mentioned earlier, the anticipation from geological consider-
ation which met in this case is that, firstly, the lithofacies 83 
should not have any relationship with others and, secondly, 
should demonstrate an extended region from north-east to 
south-east, sheltered by lithofacies 106. Attention must be 
taken in this place that all the realization are in complete 
compatibility with well data locations (Fig. 7).

Probabilistic modeling of facies domains

These realizations obtained from each case can then be post 
processed to calculate the uncertainty in the lithofacies at 
a local scale (within the blocks), by means of probability 
maps. These maps present a hint for the risk of finding a 
lithofacies at unsampled and sampled locations (Fig. 13). 
The frequency of occurrence of each lithofacies can be cal-
culated for each block in complement of geological inter-
pretation. The blue areas are those with high uncertainty 
and a low probability for a given lithofacies. In contrast, 
the red areas showing low uncertainty and high probability 
for finding that type of lithofacies. For saving the space, the 
probability maps of the third case are presented. As was 
attended, lithofacies 83 and 106 are in complete agreement 
with the geological interpretations.

Conclusion

Deterministic modeling of lithofacies is not able to provide 
the uncertainty through the layout of the boundaries. How-
ever, stochastic modeling has ability to manage the uncer-
tainty at unsampled locations. In this paper, one stochastic 
approach known as hierarchical plurigaussian simulation has 
been applied of considering proportion for the truncation 
rule. Conventional approach of plurigaussian simulation 
approach based on stationary assumption uses the global 
proportion (declustered) which is insecure to reproduce the 
geological heterogeneity behavior of the Geo-domain. The 
second method which acknowledges the local proportion 

acquired from calibrated proportion of lithofacies with seis-
mic information also fails to reproduce the desired contact 
relationship, although the special interpretation of some 
lithofacies is granted. The third case is more appealing. It 
represents more flexibility to work with calibrated local and 
declustered global proportions at the same time. The lithofa-
cies with non-stationary behavior can be quantified with this 
local proportion acquired from the geophysical information. 
According to the geological interpretation and sedimentary 
evolution, lithofacies 113 & 116 can just be found in the east 
part of the region. Hence, the third case is in complete agree-
ment with this interpretation and can be visually validated.
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