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The quantification and classification of mineral resources and ore reserves is often based 
on an assessment of the certainty (or uncertainty) of the estimates of tonnage and grade of 
elements of interest (metals and impurities) contained in a mineable deposit. However, 
these variables are not always sufficient to characterize the factors that impact mining and 
mineral processing performance and hence the estimated quantity and value of recovered 
product. Improved understanding of geometallurgical response variables, via spatial 
simulation, offers one approach to predicting concentration and recovery performance, 
identifying improved operating parameters, and optimizing criteria that impact on costs 
of recovery, such as energy and reagent consumption. In this context, the spatial modelling 
of these responses is challenging. Geostatistical co-simulation techniques can be used to 
construct high-resolution models of geometallurgical responses that reproduce both the 
spatial variability and the multivariate relationships between co-regionalized variables. 
Sequential Gaussian co-simulation is such a technique, in which the variables of interest 
are simulated hierarchically, using cokriging to determine the distributions of values to be 
randomly simulated. However, because full cokriging is generally out of reach when the 
model contains too many locations or blocks to simulate, simplifications based on strictly 
collocated or multi-collocated cokriging are often adopted. In this study, the quality of such 
simplifications is investigated, with an application to a porphyry copper deposit. Sampling 
data from two cross-correlated geometallurgical variables, the iron grade and the 
concentrate copper grade, have been selected and sequentially co-simulated using the 
abovementioned cokriging strategies. The results show that both collocated and multi-
collocated cokriging succeed in reproducing the spatial correlation structure of the 
variables to be simulated. 
 
 

INTRODUCTION 
 
The joint spatial simulation of cross-correlated variables is widely used to assess local uncertainty of 
geometallurgical response variables.  The quantification of their uncertainty using many realizations 
allows for significant improvement in further analysis of downstream activities of a mining project e.g., 
mining rates, fragmentation (Boisvert et al., 2013; Rossi and Deutsch, 2014; Emery 2012; Hosseini and 
Asghari, 2015; Deutsch, 2013). The method requires approximate algorithms to be employed based on 
the Gaussian assumption of the underlying random fields. For instance, sequential Gaussian co-
simulation (Verly 1993; Deutsch and Journel 1998) and turning bands co-simulation (Emery, 2008) have 
received wide acceptance among practitioners. Paravarzar, Emery, and Madani (2015) showed that the 
latter outperforms the former in terms of reproduction of the first- and second-order moments. These 
algorithms are based on cokriging to produce simulations conditioned to existing data, in which a 
search neighbourhood can be simplified depending on the availability of conditioning information.
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In this paper, the sequential Gaussian co-simulation paradigms through two corresponding simplified 
versions of cokriging are compared. Their validity is assessed through an application to the modelling 
of geometallurgical variables (concentrate copper and iron grades as the target and auxiliary variables, 
respectively) in a porphyry copper deposit. The two versions of cokriging correspond to collocated 
cokriging, only where the auxiliary data at the target grid node is considered, and multi-collocated 
cokriging that also incorporates the auxiliary data collocated with the target data (Chilès and Delfiner, 
2012). 
 
 
THEORY 
 
Sequential Gaussian Co-simulation 
Sequential Gaussian co-simulation (SGCOSIM) is a generalization of sequential Gaussian simulation 
under the multi-normality assumption aimed at reproducing the spatial cross-correlation of several 
variables (Gómez-Hernández and Journel, 1993; Verly, 1993; Almeida and Journel, 1994). This paradigm 
aims to directly simulate a vector random field  in lieu of a scalar random 
field  for sequential Gaussian simulation. The main difference between these two algorithms is that 
the simple kriging used in the latter is substituted by simple cokriging in the former. Depending on the 
availability of data and size of the vector random field (in the present case with two components: target 
and auxiliary attributes), one is able to choose an appropriate search strategy for the implementation of 
cokriging. Among others, Almeida and Journel (1994) proposed a hierarchical approach to reduce the 
simple cokriging system to a collocated cokriging approximation. In this case, the auxiliary data must 
be available at each target location and it is assumed that this data screens out the influence of the 
auxiliary data located farther away (Journel, 1999). Alternatively, another modification of simple 
cokriging is the so-called multi-collocated cokriging, where the auxiliary data collocated with the data 
of the target variable is retained as well (Chilès and Delfiner, 2012). In the following subsection, we give 
a brief review on these two cokriging paradigms.     
 
Collocated Cokriging 
Provided that the target and auxiliary variables are represented by second-order stationary random 
fields, the collocated cokriging predictor and the variance of the prediction error (known as cokriging 
variance) for the target variable (hereafter denoted with index 1) given one auxiliary variable (denoted 
with index 2) are defined as (Xu et al., 1992; Almeida and Journel, 1994): 
 

                                                               [1] 
                                                  [2] 

 
where  (i = 1, 2) is the weight assigned to the data  of the  variable  at the  data 
location  (  of this variable,  is the location targeted for prediction.  is the mean value 
of the  variable ,  is the direct  or cross  covariance between variables  , and  
(i, j = 1, 2). The previous equations can be generalized to the case with more than one auxiliary variable, 
which will not be considered in this work. The simple collocated cokriging system in order to calculate 
the weights  required in Equations [1] and [2] is: 
 

                                   [3] 

where index 0 is used to numerate the target location ( ) and the weight ( ) assigned to the 
collocated auxiliary data . 
 
Multi-collocated Cokriging 
In multi-collocated cokriging, the retained auxiliary data is that available at the target location  and at 
the locations of the data of the target variable . In the case of a single auxiliary variable, the 
cokriging predictor and the error variance are given by (Wackernagel, 2003; Chilès and Delfiner, 2012): 
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                                                  [4] 

                                     [5] 

with  for  and . The cokriging weights are obtained by solving the 
following equations: 
 

                       [6] 

 
Hierarchical Joint Simulation 
The simulation of the two variables (target and auxiliary) is carried out as follows (Almeida and Journel, 
1994; Goovaerts, 1997). 
 

1. Transform the data of the original variables  (i = 1, 2) into normal score values  with a zero 
mean and unit variance: this can be implemented by a Gaussian anamorphosis modelling 
(Rivoirard, 1994) or by a quantile-based approach (Deutsch and Journel, 1998): 
 

                                                                                   [7] 
where  is a sample location;  is the standard normal inverse cumulative distribution 
function,  is the cumulative distribution function of the original variable , and  is 
the normal score value.    

2. Define a random path visiting once each location (node) targeted for simulation. Multiple-grid 
sequences or midpoint sequences (Gómez-Hernández, 1991; Gómez-Hernández and Cassiraga, 
1994; Tran, 1994) are often used to improve the reproduction of the long-range structure of the 
predefined spatial continuity model without the need for cokriging neighbourhoods that 
convey excessive conditioning sample information. These techniques consist in visiting the 
nodes of a coarse grid using a relatively large neighbourhood in order to reproduce the 
underlying long-range correlation structure, and then proceeding successively to the nodes of 
finer grids using a small search neighbourhood with the focus on reproducing the short-range 
correlation structure. Within each grid, a random path is followed.  

3. Use simple cokriging to infer the parameters required for simulating the value of the auxiliary 
variable at a location  from its conditional cumulative distribution function (hereinafter, ccdf). 
To this end, for each node , we put: 
 

                                                                              [8] 
 
where  is the simple cokriging of  obtained by using the conditioning data and 
the previously simulated values of the auxiliary variable   is the 
number of realizations,  is the simple cokriging standard deviation, and  is a 
standard Gaussian random value (independent of ) (Journel and Huijbregts, 1978; 
Goovaerts, 1997; Wackernagel, 2003; Chilès and Delfiner, 2012). It is worth mentioning that 
ordinary cokriging is not recommended as it results in a deterioration of the reproduction of 
the second-order moments (Deutsch and Journel, 1999; Emery, 2004).   

4. Once the auxiliary variable has been simulated at all the grid nodes, the target variable is now 
simulated, starting from location  repeating steps 3 and 4. But at this stage, simple cokriging 
is replaced by collocated or multi-collocated cokriging in Equation [8]: 
 

                                                                   [9] 

 
with the same notations as in step 4. The definition of the cokriging neighbourhood in either 
case is different in terms of selection of conditioning information. In simply collocated 
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cokriging, the data participating in the process of cokriging consists of the values of the target 
variable (at both the original data locations and previously simulated nodes) and the auxiliary 
value at the target node . Through multi-collocated cokriging, the neighbourhood is the 
same, except that the auxiliary values at the same locations as that of the target variable are 
incorporated in the cokriging for drawing the conditional cumulative distribution function. 
This process is looped until all the nodes are simulated.  

5. Back-transform the realizations  and  to the scale of the original variables  
and , respectively.  

 
Coregionalization Modelling 
Constructing the variance-covariance matrix to solve the cokriging systems (Equations [3] and [6]) 
requires the inference of the direct and cross-covariances or cross-variograms between the variables. 
The linear model of coregionalization (LMC) assumes that these covariances or variograms are linear 
combinations of elementary covariances or variograms (basic nested structures). In this model, the set 
of  direct and cross-variograms  is defined as: 
 

                                                                                                                                [10] 
 
where, for each s = 1… S,  is a  real-valued, symmetric, positive semi-definite matrix 
(coregionalization matrix) and  is a stationary variogram model. The positive definiteness of the 
coregionalization matrices ensures the mathematical consistency of the LMC (Journel and Huijbregts, 
1978; Goovaerts, 1997; Wackernagel, 2003; Marcotte, 2012). In the case of two variables, namely target 
and auxiliary variables, the coregionalization matrix  is positive semi-definite if the following 
inequalities are verified: 
 

                                                                                                                                           [11] 
                                                                                                 [12] 

 
In practice, a LMC can be fitted to a set of experimental direct and cross-variograms with the recourse 
to semi-automated algorithms (Goulard and Voltz, 1992; Emery, 2010) that aim to minimize a weighted 
sum of the squared differences between experimental and modelled variograms. Note that there are 
other models for inferring the spatial correlation structure of co-regionalized variables, e.g., Markov 
models (Almeida and Journel, 1994; Journel, 1999), which are more restrictive than the linear model of 
coregionalization used in this work. 
 
 
CASE STUDY 
 
Presentation and Geostatistical Modelling of the Data-set 
The data-set is composed of 710 samples obtained from blast-holes at a Chilean copper mine. Two 
geometallurgical variables, iron (Fe) and copper concentration (CuCo) grades, have been assayed at all 
the sample locations. In order to preserve the confidentiality of the data-set, the original variables have 
been multiplied by a constant scale factor.  
 
For co-simulation, the following steps are necessary. 

• The first step is to infer representative distributions of the underlying variables, in order to 
avoid any impact of a possible preferential sampling. Cell declustering (Deutsch and Journel, 
1998) is such a technique that assigns weights to each data point based on a division of the 
region into sub-cells, so that isolated data locations receive more importance than clustered data 
locations (Goovaerts, 1997). Table I shows the statistical parameters of the data after 
declustering, which are suitable for comparing the conditional simulations characteristics and 
original input data (Rondon, 2012).       
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Table I. Declustered statistics of geometallurgical variables (Chilean copper deposit). 
  

Geometallurgical variable  Mean Standard deviation Minimum Maximum 

Fe (%)  1.468 1.687 0.016 10.784 

CuCo (%)  25.113 10.351 17.483 32.805 

 
• The second step is to transform the data into standard normal scores, i.e., data with a Gaussian 

distribution with mean 0 and variance 1. In this study, we follow the Gaussian anamorphosis 
methodology presented by Rivoirard (1994). Table II presents the correlation coefficients after 
(upper diagonal) and before (lower diagonal) the transformation into normal scores, 
respectively. The correlation coefficient increases approximately 14% after transformation. 

 
Table II. Correlation coefficients between Fe and CuCo before (lower diagonal) and after (upper diagonal) normal 

score transformation. 

 

 
• The separate transformation of each variable into normal scores does not guarantee that the 

transformed variables are jointly Gaussian. Accordingly, the third step is to examine such a 
hypothesis through the scatter plot between the transformed variables; this plot (Figure 1) has 
an elliptical shape, in agreement with the bivariate Gaussian assumption (Rivoirard, 1994). The 
check can be extended to the pairs of data of the same variable at different lags, which in practice 
can be tedious. Instead, a convenient check is to compare the experimental variograms against 
the experimental variograms of lower orders, namely madogram and rodogram. As for the 
scatter plot, this check is satisfactory, as the variograms follow the theoretical relationships that 
can be established under a bivariate Gaussian assumption (Emery, 2005) (Figure 2). In case that 
the bivariate normality hypothesis does not hold, a multivariate transformation (instead of a 
separate transformation of each variable) can be used in the previous step to convert the original 
data into normal scores, such as the projection pursuit multivariate transform (PPMT) (Barnett, 
Manchuk, and Deutsch, 2013) or the flow anamorphosis (van den Boogaart, Mueller, and 
Tolosana-Delgado, 2017).   

 

  Fe (%) CuCo (%) 

Fe (%)  1 –0.807 

CuCo (%)  –0.713 1 
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Figure 1. Checking the bivariate Gaussian distribution between Fe and CuCo. 

 

Figure 2. Checking the bivariate Gaussian assumption for Fe (left) and CuCo (right). In log-log scale, the 
points showing the madogram (variogram of order 1) or the rodogram (variogram of order 0.5) as a function 

of the variogram should be aligned along a straight line (blue line for madogram, red line for rodogram). 

 

• The fourth step is to perform the variogram analysis of the normal score variables in order to 
model their spatial joint correlation structure. Omnidirectional experimental direct and cross-
variograms are calculated, insofar as no clear anisotropy is detected in the data, then a linear 
model of coregionalization with two nested spherical structures is used to fit these variograms 
(Figure 3). The main diagonals of the coregionalization matrices give the fitted sills of the direct 
variograms and the off-diagonal terms give the fitted sill of the cross-variogram.  
 

             [13]   

 The fitted coregionalization matrices are symmetric and positive semi-definite.  
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Sequential Gaussian Co-simulation of CuCo and Fe 
Once the theoretical direct and cross-variograms are derived, one is able to sequentially simulate the 
two variables. The first step is the simulation of the auxiliary variable (Fe) on a two-dimensional grid 
(representing a bench to be mined) with  nodes with a mesh size of  that covers 
the lateral extents of the region. The second step is then to simulate the target variable (CuCo), 
considering the information available on the grid nodes so obtained from the simulation of Fe. At this 
step, the two modified versions of cokriging discussed previously, collocated and multi-collocated 
cokriging, are applied, with a moving neighbourhood of horizontal radius 1000 m considering up to a 
maximum of 200 data points. Sequential co-simulation also requires the previously simulated nodes to 
be introduced in the neighbourhood of interest, which is set to 200 as well. Fifty realizations are 
generated. In both cases, a multiple-grid strategy with three nested grids is used, together with a 
random sequence to visit the nodes of each grid. The maps of the first realization for Fe and CuCo are 
illustrated in Figure 4 for both cases of co-simulation based on collocated and multi-collocated 
cokriging. The E-type map (average of the 50 realizations) is also calculated (Figure 5). The realizations 
reproduce the variability of Fe and CuCo at all spatial scales for a quasi-point support corresponding to 
the support of a blast-hole. They can be averaged to larger supports in order to emulate the blending of 
material to be sent to the processing plant, which allows studying the joint behaviour of Fe and CuCo 
at the processing plant scale, and not only at the laboratory (blast-hole data) scale. 
 

(a) Direct variogram of Fe (b) Direct variogram of CuCo 

 

(c) Cross-variogram of Fe/CuCo 

Figure 3. Direct and cross-variograms of the transformed (normal score) variables; crosses: experimental 
variograms; solid lines: theoretical fitted variograms. 
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(a) Fe 

(b) CuCo 

Figure 4. The map of first realization for both geometallurgical variables.  
Left: collocated cokriging; right: multi-collocated cokriging.  

 

 

(a) Fe 

 

(b) CuCo 

Figure 4. E-type maps for both geometallurgical variables. 
 Left: collocated cokriging; right: multi-collocated cokriging.  

 
Algorithm Validation 
Checking of the realizations is necessary before decision-making (Leuanghthong, Mclennan, and 
Deutsch, 2004). The first check is to assess the reproduction of the marginal distributions (histograms) 
of the simulated variables, either in the original (back-transformed) or in the Gaussian scale. Figure 5 
shows the normal probability plots of CuCo in the first realization in the cases of co-simulation based 
on collocated and multi-collocated cokriging. In general, except for the extreme lower tail 
(corresponding to the first centile of the distribution), the reproduction of the normal distribution is 
satisfactory.   
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(a) Collocated cokriging (b) Multi-collocated cokriging 

Figure 5. Normal probability plots for simulated CuCo (first realization) prior to back-transformation. 

 
A second check consists of comparing the theoretical correlation coefficient between Fe and CuCo, 
which can be obtained from the linear model of coregionalization, against the average experimental 
correlation coefficient derived from the realizations obtained with the collocated and multi-collocated 
cokriging approaches, respectively. Overall, the reproduction of correlation is acceptable for both cases, 
although the multi-collocated-based one is closer to the target correlation coefficient (Table III). 

 
Table III. Correlation coefficients from 50 realizations obtained in both cases. 

 
Theoretical Multi-collocated cokriging Collocated cokriging 

–0.8294 –0.7366 –0.7239 

 
Another check is to examine the reproduction of the spatial auto- and cross-correlation of the simulated 
variables before back-transformation. In this context, the madogram and rodogram (variograms of 
order 1 and 0.5, respectively) are computed over the realizations and compared with the corresponding 
theoretical model for measuring the spatial continuity of each variable. Concerning the joint spatial 
continuity, the cross-variograms are calculated and compared with the theoretical model (Figure 6). 
With both collocated and multi-collocated cokriging, the reproduction of the spatial continuity is good: 
on average over the realizations, the madogram, rodogram and cross-variograms are well reproduced.  
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Figure 6. Spatial continuity reproduction in terms of rodogram, madogram, and cross-variogram; for brevity, 
only the graphs of CuCo are displayed. Left: collocated cokriging; right: multi-collocated cokriging. Green: 
individual curves obtained from each realization; red: average curves over 50 realizations; blue: theoretical 
model.   

 
 
 
 
 



 

57 

CONCLUSIONS 
 
The aim of this paper is to compare two implementations of sequential co-simulation for constructing 
block models that mimic the spatial distribution of geometallurgical variables. The case study shows 
that co-simulation built on either collocated or multi-collocated cokriging successfully reproduces the 
spatial correlation structure of the variables of interest, with a slight improvement for the multi-
collocated implementation. This success can be explained by the large cokriging neighbourhood used 
to determine the successive conditional distributions (200 conditioning data points plus 200 previously 
simulated nodes) and by the particular coregionalization model of the geometallurgical variables, and 
may not be observed with other data or other neighbourhood sizes. The methodology proposed in this 
work is therefore of interest to validate the quality of the simulation. 
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