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In this work we address the problems of sentence segmentation and 
tokenization. Informally the task of sentence segmentation involves splitting a 
given text into units that satisfy a certain defi nition (or a number of defi nitions) 
of a sentence. Similarly, tokenization has as its goal splitting a text into 
chunks that for a certain task constitute basic units of operation, e.g. words, 
digits, punctuation marks and other symbols for part of speech tagging. As 
seen from the defi nition, tokenization is an absolute prerequisite for virtually 
every natural language processing (NLP) task. Many of so called downstream 
NLP applications with higher level of sophistication, e.g. machine translation, 
additionally require sentence segmentation. Thus both of the problems that we 
address are the very basic steps in NLP and, as such, are widely regarded as 
solved problems. Indeed there is a large body of work devoted to these problems, 
and there is a number of popular, highly accurate off the shelf solutions for them. 
Nevertheless, the problems of sentence segmentation and tokenization persist, 
and in practice one often faces certain diffi culties whenever confronted with 
raw text that needs to be tokenized and/or split into sentences. This happens 
because existing approaches, if they are unsupervised, rely heavily on hand-
crafted rules and lexicons, or, if they are supervised, rely on extraction of hand-
engineered features. Such systems are not easy to maintain and adapt to new 
domains and languages because for those one may need to revise the rules and 
feature defi nitions.

In order to address the aforementioned challenges, we develop character-
based deep learning models which require neither rule nor feature engineering. 
The only resource required is a training set, where each character is labeled with 
an IOB (Inside Outside Beginning) tag. Such training sets are easily attainable 
from existing tokenized and sentence-segmented corpora, or, in absence of 
those, have to be created (but the same is true for rules, lexicons, and hand-
crafted features). The IOB-like annotation allows us to solve both tokenization 
and sentence segmentation problems simultaneously casting them as a single 
sequence-labeling task, where each character has to be tagged with one of four 
tags: beginning of a sentence (S), beginning of a token (T), inside of a token (I) 
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and outside of a token (O). To this end we design three models based on artifi cial 
neural networks: (i) a fully connected feed forward network; (ii) long short term 
memory (LSTM) network; (iii) bi-directional version of LSTM. The proposed 
models utilize character embeddings, i.e. represent characters as vectors in a 
multidimensional continuous space.

We evaluate our approach on three typologically distant languages, namely 
English, Italian, and Kazakh. In terms of evaluation metrics we use standard 
precision, recall, and F-measure scores, as well as combined error rate for 
sentence and token boundary detection. We use two state of the art supervised 
systems as baselines, and show that our models consistently outperform both of 
them in terms of error rate.

Keywords: Token and Sentence Segmentation; Neural Networks; Deep 
Learning.
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В настоящей работе мы рассматриваем задачу графематического анали-
за, а именно проблемы сегментации текста на предложения и токены. Сег-
ментация текста по предложениям рассматривается как задача нахождения 
отрывков текста, удовлетворяющих одному или нескольким определениям 
предложения. Сегментация на токены (токенизация) – задача разбиения 
текста на операционные единицы, т.е. слова, цифры, знаки препинания и 
пр. Токенизация является базовой задачей обработки естественного языка 
(ОЕЯ). Большинство прикладных задач ОЕЯ, отличающихся относитель-
ной сложностью, например машинный перевод, нуждаются в сегментации 
входного текста по предложениям. Таким образом, обе рассматриваемые 
нами задачи являются основополагающими для ОЕЯ, и, как следствие, счи-
таются в достаточной степени решенными. Действительно, опубликовано 
немало исследований по данной тематике, и существуют готовые решения 
широкого применения с хорошей точностью. Тем не менее, проблемы гра-
фематического анализа в большинстве случаев остаются открытыми, и на 
практике с ними приходится сталкиваться каждый раз, когда появляется 
необходимость в работе с необработанным текстом, т.е. не разбитым на 
предложения и токены. Это происходит потому, что существующие под-



101СЕМАНТИЧЕСКИЕ ТЕХНОЛОГИИ

ходы основаны либо на словарях и правилах (необучаемые), либо на извле-
чении вручную заданных признаков (обучаемые). Такие подходы тяжело 
адаптировать к новым языкам/жанрам, так как это требует переопределе-
ние словарей, правил и признаков.

Для снятия вышеупомянутых ограничений мы разработали символьные 
модели глубинного обучения, которые не нуждаются в определении правил 
или признаков. Единственное в чем есть необходимость – это обучающая 
выборка, в которой каждый символ помечен IOB меткой. Подобные обу-
чающие выборки легко получить из имеющихся сегментированных и токе-
низированных корпусов. В случае отсутствия последних обучающую вы-
борку придется создавать вручную, как в прочем, и словари и правила для 
других методов. Использование IOB разметки позволяет решать обе задачи 
одновременно, как одну задачу разметки последовательности, цель которой 
присвоить каждому символу одну из четырех меток: начало предложения 
(S), начало токена (T), тело токена (I), или пробел (O). Для решения данной 
задачи мы разработали три модели, основанные на искусственных нейрон-
ных сетях: (1) поступательная сеть; (2) LSTM сеть; (3) двунаправленная 
LSTM сеть. Разработанные модели используют символьные вложения, т.е. 
представления символов в виде векторов в многомерном пространстве.

Мы оцениваем наш подход на трех типологически отдаленных языках: 
английском, итальянском и казахском, используя стандартные метрики 
точности, покрытия, F-меры и процента ошибки. Для сравнения мы ис-
пользуем две широко распространённые системы графематического анали-
за, и показываем, что обе уступают нашим моделям по метрике процента 
ошибки.

Ключевые слова: Графематический анализ; нейронные сети; глубин-
ное обучение.

1. Introduction

Let us begin by a quick recap of defi nitions. Sentence segmenta-
tion, aka sentence boundary detection, is a problem of segmenting a 
text into sentences for further processing; and tokenization is a prob-
lem of segmenting a text into chunks that for a certain task constitute 
basic units of operation (e.g. words, digits, etc.). At a fi rst glance the 
problems seem trivial; after all, most written languages use special 
symbols to terminate sentences and whitespaces to delimit words. This 
is however not always the case.

First, although for many languages sentence fi nal punctuation con-
sists of a period (dot), a question and an exclamation mark, some lan-
guages use different sets of symbols (Brown, 2017). Second, regard-
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less of symbols used as delimiters in any given language, chances are 
that those symbols have other functions as well, e.g. periods (dots) 
may be used in abbreviations, initials or in numbers as decimal points. 
Third, sentence and token defi nitions depend on the task at hand. For 
instance, while sentence segmentation may not be needed and a simple 
whitespace tokenization may be enough for a bag of word-based docu-
ment classifi cation, for parsing one may need to consider multiple sen-
tence utterances in direct speech as a part of a host sentence (sentences 
in a sentence) and count clitics (syntactic words usually delimited with 
hyphens and apostrophes, but not whitespaces) as separate tokens. 
Thus, to solve sentence and token segmentation problems one cannot 
blindly segment texts at the occurrences of certain symbols, and has to 
resort to a more sophisticated approach.

Fig. 1. An Example of an IOB-labeled text in English, Italian, and Kazakh

In this work we cast the token and sentence segmentation (TSS) 
problems as a single sequence labeling task and propose artifi cial neu-
ral network-based solutions, namely three character-based deep learn-
ing models. Unlike much of the previous work, our approach requires 
neither rule nor feature engineering. The only resource required is a 
training set, where each character is labeled with an IOB (Inside Out-
side Beginning) tag. Performing TSS jointly and using IOB-like for-
mat is not, in itself, a novelty, Evang et al. (2013) have implemented 
this approach in their CRF-based system called Elephant. However, 
unlike Elephant, our models make use of character embeddings, i.e. 
map characters into continuous vector space, and make no use of pre-
defi ned features. Experiments show that our models achieve top per-
formance for Kazakh language, for which TSS evaluation has never 
been carried out before. In order to show that the proposed models can 
achieve competitive results we compare them to a popular TSS system 
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Punkt (Kiss and Strunk, 2006) and the aforementioned Elephant sys-
tem, which is considered the state-of-the-art. For this experiment we 
use publically available data sets for English and Italian languages.

2. Related Work

Existing systems for token and sentence boundary detection are 
based on hand written rules, unsupervised and supervised learning ap-
proaches. Rule-based systems (Grefenstette, 1999; Jurafsky and Mar-
tin, 2008; Dridan and Oepen, 2012) utilize hand-written rules, fi xed 
lists of abbreviations and other lexical items to detect sentence bound-
aries. As a result such approaches are hard to maintain and not easy to 
adapt to new languages (Silla Jr. and Kaestner, 2004) or domains.

Unsupervised learning systems do not require specifi c hand-cod-
ed regular expressions and annotated training data. Mikheev (2002) 
presented an unsupervised approach for sentence boundary detection, 
proper name identifi cation and abbreviation detection. The proposed 
system achieved respective error rates of 1.41% and 0.65% on WSJ 
and Brown corpora. The author concluded that the most crucial factor 
for sentence segmentation was detection of abbreviations and prop-
er names. A similar system called Punkt was proposed by Kiss and 
Strunk (2006). The approach here has two detection stages: abbrevia-
tion detection and token-based classifi cation. This system reached high 
accuracy, rivaling handcrafted rule-based and unsupervised systems. 
Compared with Mikheev’s system, Punkt’s error rates on WSJ and 
Brown corpora were 1.65% and 1.02%, respectively.

Supervised learning approaches utilize hand-engineered features, 
such as POS tags, tokens neighboring potential sentence boundaries, 
abbreviation lists, letter case (lowercase, uppercase), etc. These systems 
utilized maximum entropy models (Reynar and Ratnaparkhi, 1997) 
and conditional random fi elds (Fares et al., 2013). Many works have 
shown that conditional random fi eld (CRF) is the most popular model 
for sequence labeling tasks (Lafferty et al., 2003; Tolegen et al., 2016).

Evang et al. (2013) presented a CRF-based TSS system – Elephant 
that uses a single character as a basic unit of operation. The system 
uses several features, such as Unicode categories, Unicode charac-
ter codes, and combination of the two, as well as the 10 most active 
outputs of learned hidden states of a deep learning model as one fea-
ture category. Unlike our approach, Elephant uses the discrete features 
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rather than distributed embedding features. Numerous works on deep 
learning for NLP have shown the advantage of embeddings that tend 
to capture meaningful information and reduce task-specifi c features 
engineering.

3. Method

3.1 IOB labeling

In order to jointly learning one model for two tasks, we adopted 
IOB tagging scheme to identify the boundaries of the tokens and sen-
tences. An example is given in Fig. 1. The tags S and T denote the 
beginnings of sentence and token boundaries respectively. Inside of a 
token is labeled I, and outside as O. Passages included in “<” and ”>” 
denote segmented sentences. In the given example whenever tokens 
and sentence boundaries are not preceded by an outside character (O) 
they are underlined.

3.2 A general neural network

We introduce a general neural network model (Collobert et al., 
2011) for token and sentence boundaries detection. The model is usu-
ally characterized by three specialized layers: (i) a character look-up 
table layer that extracts a window of character’s embeddings from a 
character parameter matrix; (i) a general hidden layer; (iii) one output 
layer that is used to compute normalize scores for labels. The model 
architecture is shown on Fig. 2 and in what follows we refer to this 
model as NN.

Character look-up table. Let C be the list of characters derived 
from training data, d be the dimension of character embeddings,  

 be the matrix of character’s embeddings. Suppose that a 
string s is made up of a sequence of characters [c1,…,cl], where l is the 
length of string. Then the character-level representation of s of is given 
by the matrix Q, where the j-th column of matrix Q corresponds to the 
character embedding for Cj. We use a sliding window approach to get 
a fi xed sized w (a hyper-parameter) window of character embeddings 
around current character. Each character in the window is fi rst passed 
through the look-up operation which produces a matrix of character 
embeddings that can be viewed as a w×d-dimensional vector x by con-
catenating each column vector, which can be fed into the next layers.
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Hidden layer. The embedding of characters x∈Rw×d is extracted 
from the look-up table and is fed into a hidden layer which performs 
non-linear transformation followed by an element-wise activation 
function σ such as tanh, and the computation of this layer is:
                                          h = σ(W1x + b1)                                       (1)

where W1∈ RH1×wd is the parameter, b1∈ RH1×1 is a bias term, h∈ RH1  is 
hidden units, H1 is dimension of hidden layer.

The output layer is fi nally added on the top of the hidden layer for 
scoring boundary labels:
                            Score (x,T,θ) = softmax(W2 h + b2)                         (2)

where Score(x,y,θ)∈R|T|×1 is a score of labels that computed by neural 
network with parameters θ = {Q,W1,b1,W2,b2}, |T| is the number of 
tags. The parameters of models are initialized to small random num-
bers and automatically trained the by back-propagation algorithm.

3.3 Bi-directional LSTMs

Recently, LSTM neural networks have shown great promise in 
many NLP tasks (Greff et al., 2015; Ling et al., 2015; Toleu et al., 

Fig. 2. Model architecture



106 СЕКЦИЯ 1

2017) including language modelling, part-of-speech tagging etc. The 
architecture of LSTM consists of a set of recurrently connected states 
that can be viewed as memory blocks. Each block contains certain 
self-connected memory cells and three gates: input, output and forget 
gate. The gates provide continuous analogues of write, read and reset 
operation for the cells.

In order to examine the effectiveness of LSTM network for TSS, 
we use a model to predict each boundary label using LSTM. The ar-
chitecture of our LSTM-based network is a variant that was described 
by Graves and Schmidhuber (2005), and is frequently cited in the lit-
erature. 

Given a string made up of a sequence of characters , we encode 
each character into a vector representation then feed into our LSTM-
based models, computing the forward hidden state and the backward 
hidden state. Both hidden states are concatenated into a single vector 
and fed into the output layer. In what follows we refer to this model 
as bi-LSTM, the model only uses the forward hidden states as LSTM. 
The architecture of the model is shown on Fig. 3.

4. Experiments

4.1. Data sets

The experiments were conducted on three datasets: (i) Kazakh 
texts from Kazakh corpus (Makhambetov et al., 2013) and UD tree-
bank (Makazhanov et al., 2015); (ii) English newswire texts taken 
from the Groningen Meaning Bank, GMB (Basile et al., 2012); (iii) 
Italian texts from the PAIS`A corpus (Borghetti et al., 2011). Each 
dataset was split into three parts: a training set, a validation set, 
which is used for early stopping to select the best model and for 
optimizing the hyper-parameters, and a test set used for the fi nal 
evaluation. Kazakh data needed additional processing as it was not 
IOB-labeled. We have performed an automatic IOB labeling based 
on existing token and sentence segmentations. Table 1 provides sta-
tistics on the domains of the texts and data quantities in terms of 
numbers of sentences and tokens.
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Fig. 3. Architecture of bi-LSTM-based model

Table 1. Characteristics of the data sets

Language Domain # sentences # tokens

Kazakh web/various 4 360 96,760

English newswire 2 886 64,443

Italian web/various 42 674 869,095

4.2. Model setup
We implement all neural network models using Java programming 

language and use the same hyper-parameters in all of three models: 
35 for character level embeddings with random initialization, 9 for 
window size, 100 hidden states. We run 300 epochs on training and 
development sets, and select one model that is optimized on evalua-
tion over the development set. The selected model is applied to the test 
set for the fi nal evaluation. We used the CoNLL evaluation script to 
report, accuracy, precision, recall and F-measure over the token and 
sentence boundary labels.

4.3. Results
As it can be seen from Table 2, a general neural network model 

(NN) achieves a perfect 100 on all metrics, and clearly outperforms 
LSTM-based models in the task of sentence boundary detection for 
English language. One possible explanation is that the model NN has 
a window (the size is 9) to capture some corresponding characters and 
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predict a label to the centered one character, in this case, the prediction 
is made by conditioning on the left and right 4 characters. As our pre-
liminary experiments showed that taking a smaller or larger window 
size, it harms the model performance on the sentence boundary label, 
but for token boundary, it does not have a signifi cant effect.

Table 2. Evaluation results for English

Sentence segmentation Tokenization

Models Precision Recall F-measure Precision Recall F-measure

NN 100 100 100 99.92 99.82 99.87

LSTM 99.34 99.34 99.34 99.94 99.86 99.90

bi-LSTM 99.67 99.34 99.50 99.95 99.86 99.90

On the other hand, the LSTM-based models achieve marginal im-
provement of the NN model in tokenization. In general all of the three 
models achieve near perfect results on the English data set.

Table 3. Evaluation results for Italian

Sentence segmentation Tokenization

Models Precision Recall F-measure Precision Recall F-measure

NN 99.28 96.32 97.78 99.63 99.78 99.70

LSTM 99.00 96.27 97.62 99.52 99.71 99.61

bi-LSTM 99.25 96.76 97.99 99.74 99.86 99.80

As shown in Table 1, the size of the Italian data set is more than 
ten times larger than that of English and eight times larger than that 
of Kazakh. It is interesting to see the performance of neural network 
models for token and sentence boundary detections given larger train-
ing data. As evident from Table 3, the bi-LSTM model benefi ted the 
most from the abundance of data and was second to the NN model 
only in terms of precision of sentence segmentation. In general for the 
Italian language sentence segmentation turned out to be less accurate 
compared to English, but tokenization is still at the acceptable 99.8% 
in terms of F-measure.
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From Table 4 one can observe that for Kazakh language the NN 
model detects sentence boundaries more accurately even though the 
other models use the same context window size (from the preliminary 
experiments, we observed that all of the LSTM-based models gave 
lower results without using a context window). This model has the 
highest recall in the tokenization task. As we have learned from the 
experiment on Italian, LSTM-based models are more sensitive to the 
size of training data, and thus maybe performing lower on a relatively 
small data set. In general all of the models exhibit a signifi cantly lower 
performance on Kazakh data set. This can be explained by the fact that 
a large portion of this data set came from the Web (cf. Table 1), a noto-
riously noisy source. While the Italian data set contains certain amount 
of Web texts as well, this data set as a whole is much larger than the 
Kazakh one. Thus, we speculate that the fact that the data set was noisy 
and small may have hindered the performance of the models.

Table 4. Evaluation results for Kazakh

Sentence segmentation Tokenization

Models Precision Recall F-measure Precision Recall F-measure

NN 92.70 99.44 95.95 99.74 99.44 99.59

LSTM 92.43 97.95 95.11 99.58 99.43 99.50

bi-LSTM 92.20 99.25 95.60 99.82 99.40 99.61

Table 5. Comparison with other systems

English Italian

Models Sentence
(F-measure)

Sent. + Tok.
(error rate)

Sentence
(F-measure)

Sent. + Tok.
(error rate)

Punkt 98.51 – 98.34 –

Elephant 100 0.27 99.51 0.76

NN 100 0.05 97.78 0.12

LSTM 100 0.03 97.62 0.13

bi-LSTM 100 0.03 97.99 0.07
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In order to assess the performance of our models relative to exist-
ing systems we compare the performance of our models to the results 
reported by Evang et al. (2013) for their system Elephant and for an-
other popular TSS system, Punkt (Kiss and Strunk, 2006). That is to 
say, we do not actually run and evaluate those systems. Instead we 
run our systems on the data that were used in the original experiment 
(Evang et al., 2013) and compare the results to the ones reported in 
that original experiment. The comparison is carried out in terms of F-
measure of sentence boundary detection and combined (sentence and 
token segmentation) error rate. The results of the comparison are given 
Table 5.

As it can be seen, for English all of the models achieve a perfect F-
measure of 100% on the sentence segmentation task, except Punkt that 
performs at 98.51%. When it comes to the combined TSS error rate 
our LSTM-based models achieve the lowest score of 0.03, improving 
9 times over the state-of-the-art system, Elephant. When it comes to 
sentence boundary detection for Italian, however, our models are out-
performed by both of the baseline systems. Here Elephant achieves a 
very strong F-measure of 99.51%, Punkt yields 98.34%, and the best of 
our models, bi-LSTM, performs at a decent 97.99%. Nevertheless, as 
it was the case with English, in terms of error rates for both token and 
sentence segmentation, our models perform much better, yielding the 
scores of 0.12, 0.13, 0.07 for NN, LSTM and bi-LSTM (without using 
any external features) respectively. Here the best performing model, 
bi-LSTM, improves almost 11 times over Elephant, whose error rate 
was 0.76. These results indicate that character-based deep learning 
models are better at modeling token boundary detection and also give 
very competitive results for sentence segmentation.

5. Conclusion

We have presented character-based deep learning models for joint 
token and sentence boundary detection. The main advantage of our 
approach is that it does not require any manual rule and feature engi-
neering, and as such, is easy to maintain and adapt to new languages/
domains. We have carried out both an absolute and comparative evalu-
ation of our models on three languages (Kazakh, English and Italian). 
Our experiments showed that the proposed models achieve competi-
tive results when compared to the state-of-the-art systems.
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