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Abstract

Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO2@C/MWNT composite) were
synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron
microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO2 nanoparticles onto a flexible
MWNT conductive network, which facilitated fast electron and lithium-ion transport and improved structural stability of
the composite. As prepared, ternary composite anode showed superior cyclability and rate capability compared to a
carbon-coated silica counterpart without MWNT (SiO2@C). The SiO2@C/MWNT composite exhibited a high reversible
discharge capacity of 744 mAh g−1 at the second discharge cycle conducted at a current density of 100 mA g−1 as well
as an excellent rate capability, delivering a capacity of 475 mAh g−1 even at 1000 mA g−1. This enhanced electrochemical
performance of SiO2@C/MWNT ternary composite anode was associated with its unique core-shell and networking
structure and a strong mutual synergistic effect among the individual components.
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Background
Due to its low lithium intercalation potential as well as
excellent cycling performance, graphite has been widely
adopted as a commercial anode for lithium-ion batteries
(LIBs) [1]. Nevertheless, the theoretical capacity of
graphite is only 372 mAh g−1, which cannot fulfill the
ever-growing demands for high-performance batteries.
Therefore, the development of next-generation anode
materials with a larger specific capacity is necessary [2, 3].
Due to a large theoretical capacity of 1965 mAh g−1 and

a low electrochemical potential, SiO2 is considered as a
potential alternative to traditional carbonaceous anode ma-
terials. Furthermore, environmental friendliness, low cost,
and natural abundance make SiO2 a commercial viable
electrode material for LIBs. However, its practical applica-
tion in LIB is commonly hampered by its poor electronic
conductivity as well as a drastic volume variation upon

charge-discharge process, resulting in particle pulverization
and electrode deterioration with cycling [4–6].
One of the effective approaches to overcome these is-

sues is to design SiO2-based composites by confining SiO2

particles inside conductive and flexible matrixes [7, 8]. In
our previous study, Cu/carbon was introduced into the
SiO2 composite as a dispersive matrix due to its good con-
ductivity and effective buffering of the volume change of
SiO2 [9]. It was shown by Yu et al. [10] that coating the
SiO2 surface with carbon could be an efficient method to
enhance its electrochemical performance, because such
coating not only improves conductivity of the system but
also accommodates the volume changes of the active
material upon cycling.
Considering that the contact between SiO2@C parti-

cles is not good enough and the SiO2@C particles tend
to agglomerate during charge/discharge [11] in this
work, we report an effective and easy method to
synthesize a core-shell SiO2@C anchored on MWNT via
a sol-gel and pyrolysis route. In this composite, a carbon
layer is homogeneously coated on the SiO2 particles, sig-
nificantly improving the electronic conductivity of the
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system. Furthermore, formation of the 3D electron
transportation pathways by a uniform dispersion of
MWNT in the composite leads to outstanding electro-
chemical performance of the composite as an anode
material for LIBs.

Methods
Nine cubic centimeter of tetraethyl orthosilicate (TEOS)
((C2H5O)4Si ≥ 99.5%) and 9 cm3 HCl (0.1 mol dm−3) were
dispersed in ethanol (16 cm3) and stirred for 30 min.
Meanwhile, 4 g citric acid (C6H8O7 · H2O ≥ 99.5%) and
2.2 cm3 ethylene glycol (C2H6O2 ≥ 99%) were dissolved in
deionized water (10 cm3), and then 1.9 g MWNT disper-
sion (9 wt%, MWNT aqueous dispersion, Timesnano,
Chengdu) (mass ratio of Si and MWNT= 6.6:1) was
added into this solution with gentle stirring for 30 min.
The two resulting solutions were thoroughly mixed and
transferred into an evaporating dish and dried at 55 °C for
10 h. The resulting product was heated under Ar atmos-
phere for 1 h at 1100 °C to obtain SiO2@C/MWNT com-
posite. A reference SiO2@C composite without MWNT
was obtained following the same preparation route.
The crystal structure of the samples was characterized by

X-ray diffraction (XRD D8 Discover, Bruker) employing Cu
Kα radiation. Raman spectra were conducted with Ar-ion
laser of 532 nm using the Via Reflex Raman imaging
microscope system. The structure and morphology of the
SiO2@C/MWNT composites were studied using scanning
electron microscopy (SEM, Hitachi S-4800) and transmis-
sion electron microscopy (TEM, JEOL 2100), respectively.
Surface elemental analysis was conducted by an energy-
dispersive X-ray spectroscopy (EDX) attached to the TEM
apparatus. The content of amorphous SiO2 in SiO2@C/
MWNT composite was estimated by using a thermogravi-
metric analyzer (STD Q-600) under N2 flow (30 ml min−1).
The working electrodes were prepared by coating a

homogeneous slurry containing 80 wt% active material,
10 wt% acetylene black (MTI, 99.5%), and 10 wt% polyviny-
lidene fluoride (PVDF) (Kynar, HSV900) binder dissolved
in 1-methyl-2-pyrrolidinone (NMP, Sigma-Aldrich, 99.5%)
onto a copper current collector by a doctor blade, and fur-
ther drying at 65 °C for 12 h in a vacuum oven. The result-
ing SiO2@C/MWNTand SiO2@C composite electrode was
punched into circular disks with a diameter of 10 mm and
a mass loading of ~4 mg cm−2. The coin-type cells with
high-purity lithium metal as the counter electrode were
assembled in a glove box (MBraun) filled with argon
(99.9995%). Galvanostatic charge and discharge tests were
conducted on a multichannel battery tester (Neware, BTS-
5 V5 mA) with the potential range of 0.01–2.5 V vs. Li/Li+

at various cycling rates. The Versa STAT electrochemical
workstation was used to conduct cyclic voltammetry (CV)
tests between 0.01 and 3 V vs. Li/Li+ at a scanning rate of
0.1 mV s−1 and electrochemical impedance spectroscopy

(EIS) measurements in a frequency range from 100 kHz
to 1 mHz.

Results and Discussion
The phase purity of the SiO2@C/MWNT ternary com-
posites was confirmed by XRD. It can be seen from Fig. 1
that in contrast with SiO2@C, the SiO2@C/MWNT com-
posite shows a typical peak of graphitic carbon at 26.1°, in-
dicating the presence of MWNT with the structure planes
(200) [12]. A weak peak around 43° corresponds to a diffu-
sion scattering of amorphous carbon coating, while a
broad diffraction peak around 21° is associated with
amorphous SiO2 [13, 14]. All the above results demon-
strate that as designed, SiO2@C/MWNT ternary compo-
site was successfully obtained.
Raman spectroscopy was further performed to investi-

gate the phase compositions in the SiO2@C/MWNT
composite and the SiO2@C counterpart as shown in
Fig. 2. Both samples possess double distinct peaks at
1340 and 1595 cm−1, related to the D and G bands of
carbon, respectively [15]. These two vibration peaks
demonstrate the low crystallinity of carbon [16]. The D
band describes the defect-mediated zone-edge phonons
and indicates the disordered carbon, edges, and defects,
whereas the G band is a characteristic of the graphitic
sheets, which according with the scattering of the E2g
mode apperceived for sp2 domains [17–19]. It is worth
to note that the ID/IG ratio for SiO2@C and SiO2@C/
MWNT composites are 0.94 and 0.99, respectively. The
ID/IG of SiO2@C/MWNT composites increased com-
pared with that of SiO2@C as a result of a strong bin-
ding interaction and the increased structural defects
between Si and O [20, 21].
As displayed in Fig. 3a, SEM confirms the micro/nano

structure of SiO2@C/MWNTcomposite. The sample shows
a disordered configuration with a wide size distribution.

Fig. 1 XRD patterns of SiO2@C and SiO2@C/MWNT composites
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This could be considered as a verification of the amorphous
structure of the material. From the TEM image (Fig. 3b), it
can be seen that the MWNT-like bridges are directly con-
nected to the SiO2@C particles, and this feature could sup-
port the structural integrity retention of the composite and
favor the fast electron transfer. Meanwhile, MWNT of
about 20–50 nm diameter intersperses among SiO2@C,
which has an amorphous structure. The EDX element

mapping (Fig. 3 (c1–c4)) indicates that the SiO2@C/
MWNT composite contains homogeneously distributed O,
Si, and C. One can see from Fig. 3d that an amorphous car-
bon layer with a thickness of about 2–7 nm is formed on
the surface of SiO2. A turbostratic structure without crystal-
line lattice is discovered, indicating that the SiO2@C/
MWNT composite has an amorphous structure. It is worth
noting that MWNT is evenly distributed in the disordered
matrix. A small amount of a microcrystalline structure
domain could be observed in the composite, which lattice
fringes with the spacing of about 0.205, 0.215, and
0.411 nm agree well with the spacing between (222), (311),
and (111) of SiO2.
In order to verify the content of amorphous SiO2 in

SiO2@C/MWNT composite, the TG and DTG data were
collected and the results are shown in Fig. 4. The pro-
minent weight loss between 550 and 730 °C, reflected in
the TG curve, is related to oxidization of carbon and
MWNT. Furthermore, the DTG curve shows two dis-
tinct peaks at 635 and 690 °C, which correspond to
decomposition reaction of carbon layer and MWNT.
Based on the positions of these two curves, the SiO2

content in the ternary composite can be estimated as ca.
77.5 wt%. Considering these data and the TG results, the
mass composition of SiO2@C/MWNT could be esti-
mated as SiO2:C :MWNT = 77.5:17: 5.5 wt%.

Fig. 2 Raman spectra of SiO2@C and SiO2@C/MWNT composites

Fig. 3 a SEM image and b TEM image of SiO2@C/MWNT composite. c1 EDX mapping of C (c2), O (c3), and Si (c4) elements. d HRTEM image of
SiO2@C/MWNT composite
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The CR2025 coin cells were assembled to test the elec-
trochemical performance of the SiO2@C/MWNT nano-
composite. Figure 5 shows the CV data of SiO2@C/
MWNT. The CV curves present a reduction peak at
approximately 0.57 V vs. Li/Li+ at the first cycle. It is
related to the reduction reactions of lithium with SiO2

resulting in the side products of Li4SiO4, Li2Si2O5, and
Li2O. Among these, Li2Si2O5, as reported, is active in
the subsequent cycles, which enhances the electroche-
mical performance of the system [22], and Li2Si2O5 is
reversible while the Li2O and Li4SiO4 phases are irre-
versible upon cycling. The increase of current in the CV
curves could be related with this phenomenon. Along
with this, this phenomenon could be considered as a
part of electrochemical activation of the electrode upon
its cycling, which is commonly observed for porous
composite systems. A cathodic peak at 0–0.5 V can be
observed in the initial cycle, corresponding to the
alloying process of SiO2 [23]. On the other hand, the an-
odic peak at 0.24–0.9 V is extensive in the Li extraction

part, matching well with the de-alloying process between
amorphous Li-Si alloys and amorphous SiO2 [24, 25].
Figure 6a presents the charge/discharge curves of the

SiO2@C/MWNT composite anode. The composite exhibits
the initial discharge capacity of about 991 mAh g−1 while a
corresponding charge capacity is about 615 mAh g−1, and
this results in the initial coulombic efficiency of 62%. This
relatively low coulombic efficiency could mainly be due to
the formation of the solid electrolyte interface (SEI) on the
electrode surface during the initial charge/discharge
process. The discharge capacity becomes stable after 10
cycles, and the coulombic efficiency increases to ~100%. It
is found that the charging potential profile is extraordinarily
steep at potentials exceeding 1.4 V, which is due to a glassy
state character of SiO2 with a strong polarization [26]. As
shown in Fig. 6b, the potential profiles of the SiO2@C
composite are similar to the profiles of the ternary com-
posite but they exhibit lower capacities.
The counterpart SiO2@C composite was tested in the

same electrochemical environment. As shown in Fig. 7,
the comparative cycling performance studies of the bi-
nary and ternary electrodes were evaluated at a current

Fig. 5 Cyclic voltammograms of SiO2@C/MWNT composite
electrode at a scan rate of 0.1 mV s−1

Fig. 4 TG (black) and DTG data (red) of SiO2@C/MWNT composite
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Fig. 6 Charge/discharge profiles of a SiO2@C/MWNT and b SiO2@C
composite electrode at a current density of 100 mA g−1
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density of 100 mA g−1. It is obvious that the SiO2@C/
MWNT sample shows remarkably enhanced cyclability
than its SiO2@C counterpart. Specifically, the SiO2@C/
MWNT exhibits a high specific capacity of 744 mAh g
−1 at 100 mA g−1 in the second cycle and maintains a
capacity of 557 mAh g−1 after 40 cycles. However, the
corresponding capacity of SiO2@C retains only a ca-
pacity of about 333 mAh g−1 at the 40th cycle. The
superior cycling stability of the SiO2@C/MWNT elec-
trode could be attributed to the introduction of well-
dispersed MWNT in the composite. Incorporation of
MWNT with SiO2@C is designed to provide pathways
for electrolyte/Li+ ingress and to accommodate the
anode active mass volume expansion during cycling
[27]. An outstanding rate capability of the SiO2@C/
MWNT ternary electrode is illustrated in Fig. 8. One
can see that after 100 cycles, the specific discharge
capacity of the cell with the SiO2@C/MWNT compo-
site cathode slightly decreases, and it exhibits a capacity

of 215 mAh g−1 at a high-current density of 1000 mA g−1,
presenting its enhanced electrochemical stability. In the
same time, the SiO2@C composite retains a capacity of
only around 95 mAh g−1 when cycled at the same
current density.
In order to further clarify the role of MWNT networks

in the ternary composite, the EIS measurements were
performed and the results are shown in Fig. 9. It can be
seen that for the fresh cells, the diameter of the com-
pressed semicircle in the high-to-medium frequency
range for the SiO2@C/MWNT ternary electrode cor-
responds to 95Ω, which is about half of that for
SiO2@C, indicating that MWNT remarkably improves
the conductivity and enhances the charge transfer prop-
erties of the ternary electrode. Figure 9b shows changes
of EIS upon cycling and an equivalent circuit with a
series of constant phase elements (CPE) and resistances
obtained from the EIS data fitting. RE reflect the bulk re-
sistance of the electrolyte. The CPE1 and RSEI are the
charge capacitance and resistance of the solid electrolyte
interphase (SEI) layer, respectively. The CPE2 and RCT

Fig. 9 a EIS spectra of SiO2@C/MWNT and SiO2@C electrodes before
cycling. b EIS spectra of SiO2@C/MWNT electrode upon cycling and
an equivalent circuit obtained for this system
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Fig. 8 Rate performance of SiO2@C and SiO2@C/MWNT composite
electrodes at a current density of 1000 mA g−1
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Fig. 7 Cycle performance of SiO2@C and SiO2@C/MWNT composite
electrodes at a current density of 100 mA g−1
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are related to charge-transfer, which mirrors the lithium
ions intercalation into the electrode. The inclined line is
generated by the Warburg impedance (ZW), which rep-
resents the lithium-diffusion process within SiO2@C/
MWNT. After the initial cycle, the diameter of the semi-
circle remains the same at about 95Ω but the slope of
the Warburg component decreases compared with that
of a fresh cell, reflecting the lithium-ion diffusion
process within the electrode. Further, the resistance of
the ternary electrode decreases to about 30Ω due to the
activation process. After 50 cycles, the diameter of the
semicircle tends to stabilize, i.e., there is no remarkable
impedance change, which evidences the stability of the
ternary electrode upon cycling and its ability to be well
adapted to the volume changes. These results confirm
that MWNT can obviously improve the conductivity and

enhance the structure stability of the SiO2@C/MWNT
ternary electrode.
Furthermore the SiO2@C/MWNT nanocomposite elec-

trode exhibits a good-rate capability as shown in Fig. 10.
The SiO2@C/MWNT electrode delivers reversible capaci-
ties of ~710, 570, 300, 250, and 220 mAh g−1 at current
densities of 100, 200, 500, 750 and 1000 mA g−1, respect-
ively. When further, the current density was returned to
100 mA g−1, about 95% of the initial capacity could be re-
covered, indicating a good structural and electrochemical
stability of the system. It can also be seen from Fig. 10 that
the reversible capacities of SiO2@C are lower than that of
SiO2@C/MWNT over a whole range of the current den-
sities studied. It can be concluded that the MWNT com-
ponent enhances the conditions for lithium-ion diffusion
and the electric conductivity of the composite, favoring its
rate capability.
Table 1 compares the performance data reported for

the silicon anode for lithium-ion batteries with the
results of this work. It can be seen that the SiO2@C/
MWNT electrode prepared in this work exhibits an
enhanced electrochemical performance compared with
those reported previously. One can see that the re-
versible capacity and capacity retention of SiO2@C/
MWNT at 40th cycles are higher than for most of
other silicon electrodes reported in the literature.
These results indicate that the SiO2@C/MWNT com-
posite with a carbon containing layer structure and
MWNT could be considered as a promising anode
for high-performance Li-ion batteries.

Conclusions
The SiO2@C/MWNT ternary composite was success-
fully synthesized by a simple sol-gel method using low-
cost citric acid and TEOS as starting materials, followed
by heat treatment. Due to its unique core-shell and net-
work structure and enhanced contact between its indi-
vidual components, the resulting ternary composite
cathode exhibited a remarkably enhanced electroche-
mical performance compared with the binary SiO2@C
counterpart. Considering the simplicity and efficiency of
the preparation process and outstanding electrochemical
performance, the SiO2@C/MWNT composite can be
considered as a promising anode material for the next
generation lithium-ion batteries.
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