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Long-range and short-range tumor-stroma networks 
synergistically contribute to tumor-associated epilepsy

Xiao-Yuan Mao1,2, Tursonjan Tokay3, Hong-Hao Zhou1,2 and Wei-Lin Jin4,5

1 Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
2 Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. 
China
3 Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Republic of Kazakhstan
4 Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin 
Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, 
Shanghai Jiao Tong University, Shanghai, P. R. China
5 National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China

Correspondence to: Xiao-Yuan Mao, email: maoxiaoyuan2011@163.com

Correspondence to: Wei-Lin Jin, email: weilinjin@sjtu.edu.cn
Keywords: brain tumor, tumor microenvironment, tumor-associated epilepsy, long-range mode, short-range mode
Received: December 07, 2015 Accepted: February 23, 2016 Published: March 07, 2016

AbstrAct
Epileptic seizures are frequently caused by brain tumors. Traditional anti-epileptic 

treatments do not acquire satisfactory responses. Preoperative and postoperative 
seizures seriously influence the quality of life of patients. Thus, tumor-associated 
epilepsy (TAE) is an important subject of the current research. The delineation of the 
etiology of epileptogenesis in patients with primary brain tumor may help to find the 
novel and effective drug targets for treating this disease. In this review, we describe 
the current status of treatment of TAE. More importantly, we focus on the factors 
that are involved in the functional connectivity between tumors and stromal cells. 
We propose that there exist two modes, namely, long-range and short-range modes, 
which likely trigger neuronal hyperexcitation and subsequent epileptic seizures. The 
long-range mode is referred to as factors released by tumors including glutamate 
and GABA, binding to the corresponding receptor on the cellular membrane and 
causing neuronal hyperactivity, while the short-range mode is considered to involve 
direct intracellular communication between tumor cells and stromas. Gap junctions 
and tunneling nanotube network are involved in cellular interconnections. Future 
investigations focused on those two modes may find a potential novel therapeutic 
target for treating TAE.

IntroductIon

It has been established that primary brain tumors are 
one of the most common and lethal cancers worldwide 
[1-11]. The classification scheme of the World Health 
Organization (WHO) [12] reports that brain tumors mainly 
contain these types as follows: glioma, pituitary adenomas, 
meningiomas, acoustic neurinoma, craniopharyngioma, 
metastatic tumors. 

Tumor microenvironment was shown to be an 
important contributor to epilepsy in patients with brain 
tumors and it is estimated that the incidence varies between 
30% and 100% depending on the type of tumor [13-
15]. For instance, there is a 75% risk of epileptogenesis 

in the patients with the low grade astrocytoma while 
glioblastomas carry a 29%-49 risk of epileptic seizures 
[16], suggesting that malignancies are more epileptogenic 
[17-21]. Similarly, in 508 Chinese adult patients with 
low grade gliomas, there are 350 persons (accounting 
for 68.9%) presented with seizures [22]. Metastatic brain 
tumor can also induce seizures in about 25% of patients 
[23]. Nearly 35% of brain tumor patients continue to 
suffer from spontaneous seizure recurrence, known as 
tumor-associated epilepsy (TAE), and these patients were 
often refractory to widely used anti-epileptic drugs such as 
Valproic acid and Phenytoin [24, 25]. The epileptogenesis 
and treatment-related problems seriously decreased the 
quality of life in patients with brain tumor. Up to date, 
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the relationship between epileptogenesis and brain tumor 
is poorly understood. It was previously hypothesized that 
epileptogenesis might be associated with tumor invasion 
as epileptic discharges often appeared from the peri-
tumoral region [26-29]. It implies that the intracellular 
communication exists between tumor cells and stroma 
cells [30, 31].

treAtment of tAe

Currently, the traditional anti-epileptic drugs have 
been employed for the treatment of TAE. These drugs 
exert anti-epileptic potential via multiple targets. Table 
1 displayed the putative mechanism of the common 
anti-epileptic drugs and the potential therapy for the 
treatment of TAE. In general, there are two major types 
of anti-epileptic drugs: first generation drugs (including 
Valproic acid, Carbamazepine and Phenytoin) and second 
generation drugs (including Levetiracetam, Lamotrigine 
and Topiramate) [32, 33]. These drugs have multiple 
mechanisms of action. For instance, Valproic acid exerts 
anti-epileptic potential via inhibiting voltage-gated sodium 
channels and enhancing GABAergic inhibition [34, 35]. 
The efficacy of traditional anti-epileptic drugs has been 
studied previously. In a prospective analysis of 26 patients 
with the primary brain tumor, seizures were significantly 
decreased by more than 50% in 65% of the patients after 

treatment with Levetiracetam [27]. Besides, Maschio et al. 
also found that Levetiracetam treatment reduced seizure 
frequency by more than 50% in 72% of 19 patients [32] 
and Newton et al. observed in 90% of 41 patients [36]. 
Other anti-epileptic drugs studied in patients with a brain 
tumor are Valproic acid and Topiramate. 55.6% of seizure 
freedom and 20% of seizure reduction (reduced seizure 
frequency of more than 50%) were found in a cohort of 47 
patients with a brain tumor after add-on and monotherapy 
with Topiramate [37]. 

In considering which anti-epileptic drugs to select 
for treatment of patients with TAE, it is essential for 
physicians to weigh the benefit and potential harms. As a 
beneficial aspect, using anti-epileptic drugs could reduce 
the risk of first seizure or seizure recurrence and improve 
the quality of life [38]. As a harmful or negative facet, 
treatment with these drugs may cause related adverse 
effects, drug-drug interactions and lastly also increase 
financial burden. Anti-epileptic drugs often trigger a broad 
range of side effects, such as liver dysfunction and skin 
rash [39]. Aguiar et al. found that the patients with brain 
tumor were more vulnerable to the adverse reactions of 
anti-epileptic drugs than other epileptic patients [40]. 
During radiotherapy, patients receiving monotherapy 
with Oxcarbazepine had a higher risk of skin rash such as 
Stevens-Johnson syndrome [41]. Additionally, phenytoin 
treatment could also cause 14%-27% of rash in patients 

table 1: the proposed targets of common anti-epileptic drugs and the potential therapy for tumor-associated epilepsy
mechanisms of action relevant tumor type major potential anti-epileptic drugs

Sodium channels Glioma VPA, CBZ, LTG, TPM, PHT, ZNS
GABA Glioma

VPA, LTG
TPM, PB
LEV
LEV
PHT, ZNS

GABA receptors Glioma
Potassium channels Glioma
SV2A Glioma

Enzyme changes Glioma

PI3K-mTOR pathway Glioma ZNS

AMPA receptors Gangglioglioma
PB
PBGABA receptors Gangglioglioma

Potassium channels Gangglioglioma
LEV
LEVIL-1β Gangglioglioma

PI3K-mTOR pathway Gangglioglioma ZNS
TPM
TPM
TPM
TPM
LEV

AMPA receptors Gangglioglioma
GABA receptors
Potassium channels
Kainate receptors
SV2A

Gangglioglioma
Gangglioglioma
Astrocytoma
Glioneuronal tumors

Note: GG = ganglioglioma; GN = glioneuronal tumours; VPA = valproic acid; TPM = topiramate; CBZ = carbamazepine; PB 
= Phenobarbital; LTG = lamotrigine; LEV = levetiracetam; PHT = phenytoin; ZNS = zonisamide.
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with brain tumors [16]. Cognitive deficits were also 
reported in many patients with brain tumors and might be 
more common in first generation anti-epileptic drugs such 
as Phenytoin, Carbamazipine and Valproic acid than the 
second generation drugs [42, 43]. Indeed, the results of 
Klein et al. revealed that low-grade glioma patients who 
used antiepileptic drugs exhibited worse cognitive tests 
than patients who did not use antiepileptic drugs [44]. 
Recent investigations have demonstrated that some anti-
epileptic drugs generate pharmacokinetic interactions. In 
addition, Valproic acid was previously found to enhance 
chemotherapeutic effects in patients with glioblastoma due 
to its histone deacetylase-inhibiting properties [45].

Glioma patients often undergo chemotherapy during 
their disease course. Temozolomide was considered as 
the first-line reagent for treating patients with low-grade 
and high-grade gliomas [7, 46]. In a group of 30 patients 
with low-grade gliomas during chemotherapy with 
temozolomide, 54% of epileptic patients had a reduced 
seizure frequency and 21% became seizure free, implying 
that quality of life of these patients was greatly improved 
after temozolomide treatment [47]. The improvement of 
TAE after treatment with temozolomide was also verified 
by Pace et al. [48]. 

tumor-stromA cross-tAlk In tAe

The critical roles of tumor microenvironment 
(TME) on tumorigenesis and tumor progression have 
been emphasized for many years in multiple types of 
cancers, including brain tumors [49-54]. Specifically, 
it was previously illustrated that autocrine factors such 
as transforming growth factor-α (TGF-α) and heparin-
binding epidermal growth factor (HB-EGF) secreted 
by glioma cells could diffuse through the peri-tumoral 
stroma and consequently influenced parenchymal cells 
surrounding the tumor mass [50]. Conversely, normal 
brain parenchymal cells such as microglia could secret 
EGF and bind the corresponding receptor EGFR on the 
glioma cells, providing a permissive microenvironment for 
malignant glioma progression. Astrocyte-specific deletion 
of PTEN-targeting microRNAs or blockade of astrocyte 
exosome secretion suppressed metastasis formation 
of brain tumor cells [55]. These findings imply that the 
factors in TME have the capacity to promote tumor 
progression to some extent. Several types of cells are 
involved in brain TME, as shown in Figure 1. Typically, 
they comprise brain tumor cells, astrocytes, microglia, 
oligodendrocytes, neurons, neuronal progenitors, 
macrophages, pericytes, endothelial cells and extracellular 
matrix. In fact, there exists an interaction between brain 

figure 1: the scheme of brain microenvironment. The components in the brain tumor microenvironment are shown in this figure. 
It is shown that there exists an interaction between brain tumor cell and astrocyte, microglia, oligodendrocyte and macrophage. In the dotted 
ellipse, brain tumor cells are surrounded by extracellular matrix ( ), pericytes ( ) and endothelial cells ( ). 
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tumor cell and astrocyte, microglia, oligodendrocyte and 
macrophage. Recent investigations indicate that glutamate, 
a well-known excitatory neurotransmitter, is released by 
glioma cells and causes high extracellular glutamate levels 
in tumor environment, resulting in neuronal excitotoxicity 
and the occurrence of TAE [56, 57]. Excessive production 
of glutamate concentrations in glioma microenvironment 
is correlated with reduced expression of excitatory amino 
acid transporter 2 (EAAT2) and increased system xc-
cystine/ glutamate transporter (SXC) expression [58]. 
In fact, a preclinical trial reveals that blockade of SXC 
by sulfasalazine can remarkably diminish extracellular 
glutamate content and alleviate epileptic seizures in tumor-
bearing mice [57]. These findings imply the central role 
of the interaction between brain tumor cells and stromas 
in tumor microenvironment in the etiology of TAE. 
Intercellular communication is another important facet 
of tumor-stroma crosstalk. As one of the most important 
cellular communications, gap junctions were found to 
exist between tumor cells and stroma cells, finally altering 

the function of tumor cells [59]. In details, it is shown 
that functional glioma-glioma gap junctions inhibit glioma 
invasion while glioma-astrocyte and astrocyte-astrocyte 
cellular communications promote it in an in vitro transwell 
invasion assay. What is more important, gap junctions are 
regarded as a crucial contributor of epileptic seizures [60]. 
In a genetic model of absence epilepsy, it was observed 
that epileptic activity was significantly suppressed after 
treating with carbenoxolone, a gap junction blocker 
[61]. Collectively, it is summarized that there exists two 
possible modes that participate in TAE, namely long-
range and short-range modes (Figure 2). The long-range 
mode refers to as factors released by tumors including 
glutamate, binding to the corresponding receptor on the 
cellular membrane and causing neuronal hyperactivity, 
while the short-range mode is considered to involve 
direct intracellular communication such as gap junctions 
between tumor cells and stromas.

figure 2: Proposed long-range mode and short-range mode in tumor associated epilepsy. We hypothesize that there exists 
two modes contributing to TAE. One is the long-range mode which indicates that tumor cell released the Glu, Ca2+ and etc, causing 
neuronal hyperexcitation (as shown in the right part of this figure) and in turn brings out epileptic seizures. The other is the short-range 
mode which shows that tumor cell interconnects with astrocyte (marked by yellow starriness) or microglia (green starriness-like form) via 
connectivity such as gap junction (as shown in the left part of this figure) and subsequently activate astrocyte or microglia, finally causing 
neuronal hyperexcitability and triggering seizures.
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the long-rAnge mode In tAe: 
the glutAmAte releAse from 
glIomA cells cAused neuronAl 
hyPerexcItAbIlIty

Glutamate is regarded as the most important 
excitatory neurotransmitter in the brain. Recently, this 
excitatory amino acid has been involved in the etiology of 
glioma. Indeed, the results of the previous microdialysis 
study revealed the marked elevation of peritumoral 
glutamate contents in glioma patients (nearly 100 fold 
higher than levels in uninvolved brain) [62]. This increase 
in peritumoral glutamate concentration triggers neuronal 
hyperexcitability, finally leading to tumor-associated 
seizures [57, 58]. Ye et al. reported that the glutamate 
release from glioma cells might be ascribed to the 
activity of SXC, responsible for the cellular synthesis 
of glutathione (GSH) [56, 63]. Prior work revealed that 
SXC was highly expressed in 190 glioma patients and 
the elevated SXC expression was correlated with the 
occurrence of tumor-related epilepsy [58]. Additionally, 
the blockade of SXC by sulfasalazine, one U.S. Food and 
Drug Administration (FDA)-approved SXC inhibitor, was 
shown to inhibit glutamate release and epileptic seizures 
[57]. SLC7A11, the catalytic subunit responsible for 
SXC-induced glutamate release, was also found to be 
greatly elevated in glioma patients with epileptic activity 
[64]. And compared with tumors lacking SLC7A11, 
intracranially implanted SLC7A11-expressing tumors 
could trigger evident glutamate excitotoxicity and induced 
seizures [64]. These findings hint that SXC is responsible 
for releasing glutamate from gliomas and SLC7A11 
expression is positively correlated with tumor-associated 
seizures. 

the long-rAnge mode In tAe: 
loss of gAbAergIc Interneurons 
And dePolArIzIng gAbAergIc 
resPonses

To some extent, it is also important for GABAergic 
interneurons to maintain the excitation-inhibition 
balance in the brain [65]. Loss of GABAergic synaptic 
transmission was previously found to result in neuronal 
hyperexcitability, finally causing epileptic seizures [66, 
67]. L. Campbell et al. disclosed that the marked reduction 
of peritumoal parvalbumin-positive GABAergic inhibitory 
interneurons was observed in a mouse glioma model with 
seizures, accompanied with the deficiency in spontaneous 
and evoked inhibitory neurotransmission [65]. GABA-
induced inhibitory responses are largely activated by 
A type GABA receptors (GABAARs) [67]. As is known 
to all, GABAARs are ligand-gated chloride-permeable 
ion channels assembled from a diversity of polypeptide 
subtypes (α1-α6, β1-β3, γ1-γ3, δ ε, π, θ, ρ1-ρ3) [68]. 

GABAAR-induced fast-hyperpolarizing inhibition relies 
upon the low intracellular concentration of chloride. 
The potassium chloride cotransporter 2 (KCC2) is the 
neuron-specific member of the SLC12A family of cation-
chloride cotransporters, which mainly extrudes neuronal 
chloride in adult central nervous system [69, 70]. Previous 
investigations elucidated that KCC2 was in charge of an 
inwardly directed electrochemical gradient of chloride 
and subsequently generated GABAA receptor-induced 
hyperpolarizing inhibitory responses in adult brain [71, 
72]. Indeed, it was previously found that KCC2 could 
prevent neuronal hyperexcitation in mouse hippocampus 
[73]. In contrast, KCC2 knockout or deficiency 
contributed to the development of epilepsy in flies or 
mice [74]. It is plausible that decreased function of KCC2 
can convert GABA to an excitatory neurotransmitter and 
generate depolarizing GABAergic responses. In a mouse 
glioma model with peritumoral epilepsy, impaired KCC2 
expression was found to induce depolarizing GABA 
responses due to altered chloride homeostasis [65]. It 
implies that peritumoral Glu concentration is necessary 
but not sufficient for TAE and inhibition triggered by 
GABA is also a central contributor of neuronal excitation. 

the short-rAnge mode In tAe: 
AlterAtIon of gAP junctIon Is 
of vItAl ImPortAnce to tumor-
stromA crosstAlk

The intracellular communication via gap junctions 
represents an important pathway to promote cell 
growth and differentiation [59, 75-77]. Additionally, the 
intracellular coupling via gap junctions also activates Ca2+ 
signaling in glial cells, which in turn enhances neuronal 
activity at a distance [78, 79]. Gap junctions are formed 
by the docking of intracellular channels, each consisting in 
hexameric arrangements of intrinsic membrane proteins, 
connexins (CXs) and each six connexins compose one 
connexon. The expression of CX is cell-type dependent. 
Neurons (CX43, CX32, CX36), oligodendrocytes (CX32, 
CX47, CX29), astrocytes (CX43, CX30, CX26) and 
microglia (CX43, CX36, CX32) express different CXs 
in the brain [80]. A previous investigation illustrated that 
CX43 was abundantly expressed in reactive astrocytes 
surrounding glioma [81], suggesting CX43-induced 
alteration of gap junctions were involved in the tumor-
stroma crosstalk. Besides, previous studies supported 
the notion that increased glial gap junction coupling 
was associated with occurrence of epilepsy [82, 83]. 
Up-regulation of astrocytic CX43 might exacerbate 
generalized seizures in mesial temporal lobe epilepsy 
[84]. In addition, blockade of neuronal CX36 channels 
by Quinine was found to significantly prevent epileptic 
seizures in experimental animal models [85, 86]. A recent 
investigation depicted that treatment with a traditional anti-
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epileptic drug, namely, Valproic acid, remarkably reduced 
seizure frequency and duration in patients with GBM [87]. 
As a classical chemotherapeutic agent, Temozolomide 
was also reported to improve seizure control in glioma 
patients [84]. And in glioblastoma cells, inhibition of 
CX43 by a selective blocker called the C-terminal peptide 
mimetic αCT1, could enhance therapeutic responses in 
Temozolomide-resistant cancers [88]. It suggests that 
Temozolomide may alleviate TAE via enhancing gap 
junctions. Further experimental investigations are essential 
to verify this speculation.

The direct cellular interconnection can be also 
performed by tunneling nanotube network (TNN). The 
TNN was a newly discovered tubular structure between 
two cells in 2004 [89] and has been found in multiple types 
of cells, such as rat astrocytes and neurons [90], PC12 cells 
[91] and mouse macrophage J774 cells [92]. Recently, 
Zhang et al. found that the tunneling nanotube was formed 
between rat primary astrocytes and C6 glioma cells [93]. 
Established tunneling nanotubes between astrocytes and 
glioma cells significantly inhibited the proliferation of 
glioma cells. We speculate that the generation of tumor-
related seizures may be linked with the tunneling nanotube 
between glioma cells and human astrocytes.

PersPectIves

Epilepsy is very common in patients with brain 
tumors and often not successfully treated after surgical 
resection. The etiology of TAE is not well understood, 
but the tumor-induced cellular/molecular alterations 
which contribute to the changes of surrounding stromas, 
finally leading to the functional connectivity (Figure 1). 
We propose two modes are likely to be involved in TAE 
(Figure 2). 

One mode is performed via paracrine mechanisms, 
namely, secreting neurotransmitters, microvesicles or 
exosomes by tumor cells and subsequently causing 
neuronal hyperexcitability and seizures. We consider 
this mode as a long-range effect on neurons. Indeed, a 
previous investigation illustrated that glioma-released 
glutamate had a high risk of seizures in patients [58]. 
MicroRNA-451/microRNA-21 in extracellular vesicles 
released from primary human glioblastoma cells were 
also found to be transferred to microglial and result in the 
marked reduction of microRNA-451/microRNA-21 target 
c-Myc mRNA [94]. 

The other mode refers to the direct cellular 
communication between tumor cells and adjacent stromas 
in the microenvironment, which is called short-range 
mode. In fact, it was reported that brain tumors could 
interconnect and build a functional network via microtube-
associated gap junctions and TNN [89]. We speculate that 
altered gap junctions and TNN exist between tumor cells 
and adjacent astrocytes, and these changes may induce 
tumor-associated epileptic seizures. 

In summary, it was for the first time to propose that 
there exist two major molecular mechanisms, namely, 
long-range mode and short-range mode, underlying 
TAE. As mentioned above, glutamate released by 
tumor cells could alter the biological behaviors of 
astrocytes and cause neuronal hyperexcitability, finally 
initiating human epilepsy. However, inhibition of 
glutamate release generates serious side effects. The 
other possible mechanisms called short-range mode 
(cellular interconnection) attract our attention. Further 
investigations of gap junctions and tunneling nanotube 
network between tumor and stromas may find a novel 
effectively therapeutic target for the treating TAE.
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