Power Distribution of Device-to-Device Communications in Underlaid Cellular Networks

Morteza Banagar, Behrouz Maham, Petar Popovski, Francesco Pantisano

School of Engineering

Abstract

Device-to-device (D2D) communications have recently emerged as a novel transmission paradigm in wireless cellular networks. D2D transmissions take place concurrently with the usual cellular connections, and thus, controlling the interference brought to the macro-cellular user equipment (UE) is of vital importance. In this letter, we consider the uplink transmission of a tier of D2D users that operates as an underlay for the traditional cellular network. Using a network model based on stochastic geometry, we derive the equilibrium cumulative distribution function (CDF) of the D2D transmit power. Considering interference-limited and relatively lossy environment cases, closed-form equations are derived for the power CDF. Finally, a tight closed-form upper-bound for the derived power distribution is proposed, and the analytical results are validated via simulation.

Original language	English
Article number	7383234
Pages (from-to)	204-207
Number of pages	4
Journal	IEEE Wireless Communications Letters
Journal Volume	IEEE Wireless Communications Letters 5
Journal Volume Issue number	IEEE Wireless Communications Letters 5 2

Banagar, M., Maham, B., Popovski, P., & Pantisano, F. (2016). *Power Distribution of Device-to-Device Communications in Underlaid Cellular Networks*. *IEEE Wireless Communications Letters*, *5*(2), 204-207. [7383234]. DOI: 10.1109/LWC.2016.2518176