Mirror reflections of a black hole

Michael R R Good, Paul R. Anderson, Charles R. Evans
Department of Physics

Abstract

An exact correspondence between a black hole and an accelerating mirror is demonstrated. It is shown that for a massless minimally coupled scalar field, the same Bogolubov coefficients connecting the "in" and "out" states occur for a (1+1)-dimensional flat spacetime with a particular perfectly reflecting accelerating boundary trajectory and a (1+1)-dimensional curved spacetime in which a null shell collapses to form a black hole. Generalization of the latter to the (3+1)dimensional case is discussed. The spectral dynamics is computed in both (1+1)-dimensional spacetimes along with the energy flux in the spacetime with a mirror. It is shown that the approach to equilibrium is monotonic, asymmetric in terms of the rate, and there is a specific time which characterizes the system when it is the most out of equilibrium.

Original language English Article number 065010 | Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |
| :--- | :--- |
| Volume | 94 |
| Issue number | 6 |
| State | Published - Sep 12 2016 |

Good, M. R. R., Anderson, P. R., \& Evans, C. R. (2016). Mirror reflections of a black hole. Physical Review D - Particles, Fields, Gravitation and Cosmology, 94(6), [065010]. DOI: 10.1103/PhysRevD.94.065010

