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Abstract—In this paper, we propose a novel online centralized
algorithm for energy cooperation among energy harvesting capable
base stations (BSs) in multi-tier cellular networks. BSs are con-
nected to the non-renewable source used by a BS when it cannot
harvest sufficient energy to serve its connected users. BSs with
the extra harvested energy operate cooperatively and share their
surplus energy with BSs that have not harvested sufficient energy.
To stimulate BSs with energy deficit to use the shared energy
of other BSs, an energy pricing framework is established which
results in reducing of the non-renewable energy consumption. We
formulate the problem of maximizing the fairness of the renewable
energy distribution. The closed-form of energy share given to
each BS with energy deficit is found, by which the renewable
energy distribution fairness is maximized. Energy is shared by
the smart grid. The problem of minimizing the smart grid usage
cost for distributing energy is formulated and an online algorithm
is proposed to approximate its solution. Simulation results show
that the approximate algorithm reduces the non-renewable energy
consumption significantly and reduces the cost of smart grid usage
near to the optimal solution.

I. INTRODUCTION

Deploying small cells (e.g., femtocells and picocells) along
with traditional macrocells in cellular networks is a promising
solution to meet the exploding demand of the capacity and
coverage [1]. Depending on their capabilities, small cell base
stations (BSs) are classified into different types such as mi-
crocells, picocells and femtocells. Various technical challenges
raise when such cells are deployed such as resource assignment,
power allocation and interference management. Since small cells
has short coverage and limited power consumption, one can
think of running those devices using battery power. To make the
cellular network green, energy harvesting from renewable energy
sources for better charging has received attention. Harvesting
energy from the sources like solar and wind power is a thriving
economical approach for reducing the use of fossil energy
resources [2], [3]. In such cases, one need to model both the
battery charging behavior as well as user power consumptions.

Energy harvesting receivers are considered in [4] where
channel state information is used in order to find an adaptive
energy beamforming to supply energy to receivers. The power
consumption model of BSs from different types in cellular
networks is investigated in [5]. In [5], the relation between
the BSs transmit power and the users requested traffic rates is
obtained. In [6], a heterogeneous network is studied where BSs
in different tiers are self-powered. If a BS has not harvested
sufficient energy, it is kept OFF for charging energy, and its
connected users are served by neighbouring BSs which are ON.
In [7], the authors study a non-cooperative game among storage
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units. In order to maximize its utility, each storage unit decides
strategically on the amount energy to sell in a local market.
The energy exchange is done by the smart grid. The game
is guaranteed to have at least one Nash equilibrium. Energy
cooperation in energy harvesting networks has been explored
recently, for instance, in [8], [9], where harvesting modules
share a portion of their harvested energy with other harvesting
modules. In [8], the optimal energy cooperation among a source
and a relay is found that maximizes the network throughput.

The energy cooperation between two cellular BSs equipped
with harvesting and hybrid modules is studied in [9]. In [9], the
harvested energy and the demanded energy are considered to be
deterministic and the optimal energy cooperation policy of BSs is
derived. In [10], the joint energy and communication cooperation
approaches for energy cost saving in cellular networks is studied
where the smart grid facilitates two-way energy exchange. The
joint design and combination of the physical layer technique
of the coordinated multi-point (CoMP) with two way energy
trading is studied in [11], where BSs are connected to the smart
grid. In contrary to these solutions which considers trade with
smart grid, in our framework, the harvested energy is not traded
between the BS and the grid. We propose a framework for
energy exchange among BSs by which one can combat the effect
of the intermittent nature of the harvested energy from non-
renewable source. A non-cooperative Stackelberg game between
the residential units of energy and the shared facility controller
is proposed in [12] to explore how both entities can benefit
from their energy trading with each other and the grid. Optimal
energy management decisions to minimize the total electricity
cost and the operation delay is investigated in [13] where users
are connected to smart grid.

In this paper, an online centralized approach for reducing
the non-renewable energy consumption in multi-tier cellular
networks with energy harvesting capability is studied. We as-
sume that the harvested and the demanded energy from BSs
have stochastic nature. BSs with the extra harvested energy
operate cooperatively and share their surplus energy with BSs
that have not harvested sufficient energy. To stimulate BSs with
energy deficit to utilize the harvested energy of other BSs, an
energy pricing framework is established resulting in reducing
the non-renewable energy consumption. By using the Jain’s
fairness index, the fairness of the renewable energy distribution is
quantified. We formulate the problem of maximizing the fairness
of the renewable energy distribution. We derive an equation
which shows the share each BS with deficit energy receives such
that the fairness between BSs is maximized. Energy is shared
by the smart grid. When BSs share their energy using the smart
grid, the grid operator charges a cost for such service. This cost
increases as the amount of the shared energy and the distance
among BSs increases. The problem of minimizing the smart grid



usage cost for distributing energy is formulated and an online
algorithm is proposed to approximate its solution. Simulation
results show that the approximate algorithm reduces the non-
renewable energy consumption significantly and reduces the cost
of smart grid usage near to the optimal solution. The cost of
installing large batteries is removed as the proposed algorithm
is applied and the waste of energy in limited batteries reduces.

The rest of this paper is organized as follows. The system
model is given in Section II. Our proposed energy distribution
frameworks is presented in Section III and performance evalua-
tions are given in Section VI.

II. SYSTEM MODEL

Consider the downlink of a small cell network that encom-
passes K tiers of BSs. Assume that BSs operating in tier k are
distributed according to a Poisson Points Process (PPP) with
density λk. Without lack of generality, we assume that the only
source of energy consumption in a BS is the energy used to
serve the connected users. The downlink transmit power of a BS
operating in tier k is Pk. The distribution of the users follows
a PPP with density λu and each user is allowed to connect to
only one BS. Tiers are unbiased and a user connects to a BS
with the highest average received signal power. As the transmit
power and densities of BSs operating in different tiers are not
identical, the number of users served by BSs are not equal. The
average number of users that a BS of tier k serves is [6]

Nk =
PcλuP

2
γ
k

K∑
j=1

λjP
2/γ
j

, (1)

where γ is the pass loss exponent considered equal for all the
tiers. Moreover, Pc is the coverage probability and denotes the
portion of the users connected to a BS with SINR above than
a threshold. We consider a time-slotted system where a user
demands a traffic rate in bits per second at the beginning of
each time slot from the connected BS. The demanded rate has a
stochastic nature and it is assumed to be constant during a time
slot. Let Rmi,k(t) and pmi,k(t) respectively denote the demanded
rate of the user m connected to the ith BS of tier k at time
slot t and the power consumption of the BS in Watts to provide
the user with its demanded rate. Due to the stochastic nature of
demanded rates of connected users, the consumed power at BSs
is stochastic. The consumed power to serve each user connected
to a BS can be modeled as an arbitrary random process. The
number of connected users to the ith BS operating in tier k
at time slot t is denoted by N i

k(t). It is modeled as a Poisson
random variable [5], where its mean value is given in (1). If pik(t)
denotes the consumed power of the ith BS of tier k at time slot
t, we have pik(t) =

∑Nik(t)
m=1 p

m
i,k(t). Since the consumed power

is constant throughout the time slot, the consumed energy is
T pik(t) Joules where T is the time slot duration.

The BSs harvest energy from environment. The amount of
the harvested energy of the ith BS of tier k at time slot t is
denoted by µik(t). It has a stochastic nature. In our model,
we have no restriction on the distribution of this variable. A
BS stores the harvest energy in its battery and its capacity is
limited. We assume that all the BSs of tier k have similar battery
capacities of ck. The harvested energy is wasted if the battery is
full. Let eik(t) denote the battery level of the ith BS of tier k at
time slot t. As the harvested energy has stochastic nature, it is
possible that in some time slots, the harvested energy by a BS
is more than the required energy to serve its connected users.
On the other hand, in some times lots, the harvested energy is

not sufficient to serve its connected users. The BS is compelled
to compensate its energy deficit in such cases.

To compensate their energy deficit, BSs are connected to
the non-renewable energy source. To reduce the non-renewable
energy consumption, we allow a BS with extra harvested energy
to share its surplus energy with BSs with energy deficit. The
energy exchange between BSs is carried out using the smart
grid. A smart grid enables a precise measurement of the electric
power by using digital devices which can communicate with
each other. When the BSs share their energy using the smart
grid, the smart grid operator charges a cost for such service.
This cost is an increasing function of the distance as well as the
amount of the shared energy [14]. In our model, we assume that
distances between BSs are known. It is supposed that the energy
transfer from a BS to other BSs is possible. Assume that the ith
BS of tier k shares ES(t) Joules with other BSs or receives
ES(t) Joule from other BSs. Its battery level is updated as

eik(t+ 1) = (2)
min

{
max

{
eik(t)− T pik(t), 0

}
+ µik(t)± ES(t+ 1), ck

}
,

where ES(t) is added if the BS receives energy, or it is
subtracted if the BS shares its extra stored energy with other
BSs. In (2), the maximum stored energy in the battery is equal
to the battery capacity. Furthermore, the BS can not use more
energy than the stored amount from its battery.

III. RENEWABLE ENERGY DISTRIBUTION FRAMEWORKS

Based on the system model presented in the previous sec-
tion, we build a framework for energy exchange between BSs.
The goal is to reduce the non-renewable energy consumption
performed such that the maximum of the renewable energy
distribution fairness is attained. Simultaneously, the cost of
using the smart grid for renewable energy distribution among
BSs with energy deficit is minimized. Consider that the energy
consumption by a BS to serve a user costs a known price of
ϕ units of money per Joule for the user. Moreover, the used
non-renewable energy costs ζ units of money per Joule for a
BS where ϕ < ζ. In order to make the financial transactions,
a Credit Clearance Service (CCS) is used [15], [16], where all
the BSs have credit accounts with initial fund. We assume that
the CCS is also the network control center.

At the beginning of each time slot, all the BSs send a
message to the CCS which contains the information of the
amount of energy they are willing to share or receive. Based
on these information, the BSs are divided into two groups, i.e,
BSs with extra harvested energy and BSs with energy deficit.
Let S denote the set of BSs with extra harvested energy, where
n = |S| denotes its cardinality. We denote the ith BS in S by
si. The set of BSs with energy deficit is denoted by B and
its cardinality is n′ = |B|. We denote the jth BS in B by bj .
We update our notation for the battery level, the number of
connected users and the demanded power based on our new
definitions as follows. esi(t), Nsi(t) and psi(t) are used for the
BS si with the extra harvested energy, and ebj (t), Nbj (t) and
pbj (t) are used for the BS bj with energy deficit, respectively.
The cost of transferring a unit of energy from BS si to BS bj
is captured by an increasing function Γ (gsi,bj ) where gsi,bj is
the distance between BSs si and bj in meters. We assume that
Γ (gsi,bj ) < ϕ, ∀si ∈ S, ∀bj ∈ B. This inequality is used to show
that the non-renewable energy costs more than the shared energy
of other BSs, and thus, a BS is motivated to compensate its
energy deficit by the extra stored energy of other BSs. Moreover,
this inequality ensures that a BS with energy deficit has incentive



to compensate its energy shortage with extra stored energy of
other BSs to serve connected users. The cost of the smart grid
usage is paid by the BS receiving the energy (i.e., BS with energy
deficit). Let ρsi(t) denote the amount of extra energy the BS si
is willing to share at time slot t. Then, we find

ρsi(t) = esi(t)− T psi(t). (3)

The amount of the required energy of the BS bj at time slot t is

ρbj (t) = |ebj (t)− T pbj (t)|. (4)

The total extra energy stored in BSs of the network at time slot
t is

∑|S|
i=1 ρsi(t). The total needed energy of BSs with energy

deficit at time slot t is
∑|B|
j=1 ρbj (t). The utility function of the

BS si at time slot t is

Usi(t) = ϕ T psi(t). (5)

The energy share that the BS bj receives from other BSs is
ηbj (t). This can be less than the energy that BS bj needs to serve
its users. Let EN (t) denote the amount of energy purchased
from the non-renewable source in time slot t which is EN (t) =
ρbj (t)− ηbj (t). The utility function of the BS bj at time slot t
is

Ubj (t) = ϕ T pbj (t)− ζ EN (t)− Γ (gsi,bj )ηbj (t). (6)

We notice that Γ (gsi,bj )ηbj (t) is the cost of sharing ηbj (t) Joule
between BSs si and bj by the smart grid.

A. Fair Renewable Energy Distribution Scheme

The BSs with extra energy operate cooperatively and share
their surplus energy with BSs which are in shortage of energy.
As ϕ < ζ and Γ (gsi,bj ) < ϕ, ∀si ∈ S, ∀bj ∈ B, one can obtain
Γ (gsi,bj ) < ζ, ∀si ∈ S, ∀bj ∈ B. Thus, BS bj has incentive
to compensate its energy deficit with extra harvested energy
of other BSs rather than using non-renewable energy which
is more expensive. Since BSs with energy deficit are willing
to compensate all their energy deficit with the extra harvested
energy of other BSs and the amount of the extra harvested energy
is limited, the extra harvested energy should be distributed
among all BSs fairly. As BSs have different harvesting rates,
the demanded energy and battery capacities, the equal energy
share is not fair. To quantify the fairness in a resource allocation
problem, various measures have been proposed [17]–[19]. A
well-known approach is the one referred by the Jain’s index
[19]. The Jain’s fairness index for allocation of resources among
n agents is

fairness =
(
n∑
i=1

xi)
2

n
n∑
i=1

x2
i

, (7)

where xi is the allocated share to agent i. The Jain’s fairness
index is between 1

n and one, where one denote the highest
fairness and 1

n measures the lowest level of fairness [19].
Assume that a resources are divided between n similar agents
and each agent’s share is a/n. By substituting xi = a/n in (7),
it is observed that the fairness reaches one. In other words, when
the agents are similar, the equal share maximizes the fairness. We
propose an approach to maximize the fairness of the renewable
energy distribution. Each BS may compensate part of its energy
deficit with the expensive non-renewable energy. The ratio of the
non-renewable energy consumption by the BS bj to its required
energy is (ρbj (t) − ηbj (t))/ρbj (t). The BS bj is motivated to
minimize the consumed non-renewable energy which is equal to
minimize this ratio. This is equal to maximizing ηbj (t)/ρbj (t),

which is the ratio of the received renewable energy to the total
needed energy of the BS bj as ηbj (t) is the only variable.

To obtain a fair energy distribution, we use ratio
ηbj (t)/ρbj (t) as the notion of the resource share of BS bj . We
use ηbj (t)/ρbj (t) instead of xi in (7). We try to maximize the
Jain’s index as

max
ηb(t)

(
n′∑
j=1

ηbj (t)

ρbj (t)

)2

n′
n′∑
j=1

(
ηbj (t)

ρbj (t)

)2
s.t. ηbj (t) ≤ ρbj (t), ∀bj ∈ B,

n′∑
j=1

ηbj (t) = min

{
n∑
i=1

ρsi(t),
∑n′

j=1 ρbj (t)

}
,

0 ≤ ηbj (t), ∀bj ∈ B, (8)

where ηb(t) = [ηb1(t), . . . , ηbn′ (t)] is the vector of energy
shares. The first constraint in (8) shows that a given energy share
to the BS bj is less than or equal to its needed energy. The second
constraint states that the aggregate energy that the BSs with
energy deficit receive from renewable energy sources is equal to
minimum of the total extra energy in the BSs (i.e.,

∑n
i=1 ρsi(t))

and the shortage of energy in that BSs (i.e,
∑n′

j=1 ρbj (t)).

To solve the above optimization problem in (8), we investi-
gate the convexity of the objective function and the constraints.
The constrains are linear, and therefore, they are affine. It is
straightforward to show that the objective function is neither
convex nor concave in its domain. The maximum of the objective
function is one [19]. Since the objective function is neither
convex nor concave, by applying KKT conditions, we can find
the local and global extremums or saddle points [20]. The global
maximum point of the above optimization, is found by the
following theorem.

Theorem 1: The global maximum point of the optimization
problem formulated in (8) that satisfies all constraints is

η?bj (t) =
ρbj (t) min{

∑n
i=1 ρsi(t),

∑n′

j=1 ρbj (t)}
n′∑
j=1

ρbj (t)

,∀bj ∈ B.

(9)

Proof: The proof is given in [21].

It is observed from (9) that the energy deficit of BSs is compen-
sated totally when the total stored energy in BSs of the network
is more than the total demanded energy from BSs. Thus, the non-
renewable energy usage is zero in this case. Moreover, when the
total stored energy in BSs of the network is less than the total
demanded energy from BSs, the entire extra stored energy in the
network is used. Next, the renewable energy is distributed such
that the total cost of the smart grid usage for sharing energy
is minimized. To maintain the fairness maximized, the energy
share given to BS bj is η?bj (t). Consider that the amount of the
shared energy among BSs si and bj is σsi,bj . We assume that Σ
is the matrix of energy transfer between BSs. The ith element of
the jth column of Σ is σsi,bj .We use the following optimization
problem to minimize the smart grid usage cost

max
Σ

n∑
i=1

n′∑
j=1

Γ (gsi,bj )σsi,bj



TABLE I. SUMMARY OF THE APPROXIMATE ALGORITHM FOR
ASSIGNING THE SUPPLY TO THE DEMAND

Phase 1 - Initialization:
Each BS reports the amount its extra or needed energy to the CCS.
BSs with the extra energy are stored in the set S.
BSs with energy deficit are stored in the set B.

Phase 2 - Assigning BSs to each other
repeat:

A random BS bj from B is chosen and η?bj (t) is found.
repeat:

The closest BS with the extra stored energy si ∈ S to the BS bj is found.
if ρsi (t) ≥ η

?
bj

(t)

η?bj
(t) Joule from the BS si battery is transferred to the BS bj ,

ρsi (t) = ρsi (t)− η
?
bj

(t),
η?bj

(t) = 0,
end if
if ρsi (t) < η?bj

(t)

All the stored energy in the BS si battery is transferred to
the BS bj and the BS si is removed from S,
η?bj

(t) = η?bj
(t)− ρsi (t),

ρsi (t) = 0,
end if

until η?bj (t) = 0

The BS bj is removed from B.
until the set B is empty

s.t.
n′∑
j=1

σsi,bj ≤ ρsi(t), ∀si ∈ S,

n∑
i=1

σsi,bj =
ρbj (t)min{

∑n
i=1 ρsi(t),

∑n′

j=1 ρbj (t)}
n′∑
j=1

ρbj (t)

,

∀bj ∈ B,
0 ≤ σsi,bj , ∀si ∈ S,∀bj ∈ B. (10)

The above optimization determines how much energy a BS with
energy deficit receives from each BS with the extra stored energy.
In the above optimization, Γ (gsi,bj ), ∀si ∈ S,∀bj ∈ B is a
known constant. The first constraint states that the BSs with extra
stored energy can share less or equal to their surplus energy. The
second constraint ensures that the fairness is maximized. The last
constraint ensures that the shared energy is positive and causal.
The optimization problem formulated in (10) is similar to the
travelling saleman problem which is demonstrated to be an NP-
complete problem in the class of NP-hard problems [22].

B. Approximate Algorithm for Assigning the Supply to the
Demand

As the optimization problem in (10) is NP-hard, when the
number of BSs in the network increases, the computational
complexity grows exponentially which is in contrast to the real
time energy distribution considered in this paper. To perform
the real time energy distribution, an approximate algorithm is
proposed which utilizes the concept of the nearest neighbor algo-
rithm. The nearest neighbor algorithm quickly gives an efficient
solution [22]. The amount of the energy that BS bj receives from

other BSs is η?bj (t) =
ρbj (t)min{

∑n
i=1 ρsi (t),

∑n′
j=1 ρbj (t)}

n′∑
j=1

ρbj (t)

. The first

phase of the approximate algorithm is reporting the amount of
needed or extra energy of each BS to the CCS and forming sets S
and B. In the second phase, like the nearest neighbor algorithm,
the proposed algorithm starts from an arbitrary BS with energy
deficit bj , ∀j ∈ B, and according to distances between BSs, it
finds the closest BS with the extra harvested energy. Assume that
this BS with the extra harvested energy is si. If η?bj (t) is less than
the extra stored energy in BS si battery, ρsi(t), some amount of
energy remains in the battery of the BS si after η?bj (t) Joule is

transferred to the BS bj . Next, the BS bj is removed from B. The
extra energy of the BS si is updated as ρsi(t) = ρsi(t)−η?bj (t).
If η?bj (t) is more than the extra energy of the BS si, the total
extra stored energy is shared with bj . The extra energy of the
BS si goes to zero, ρsi(t) = 0. The BS si is removed from
S. Additionally, the needed energy of the BS bj is updated as
η?bj (t) = η?bj (t)− ρsi(t). The algorithm chooses the nearest BS
with the extra stored energy for energy transfer to the BS bj until
the BS bj acquires η?bj (t) Joule. When the BS bj acquires η?bj (t)
Joule, the BS bj is removed from B. Another BS is chosen from
B, and its energy deficit is compensated in the same way. The
algorithm terminates when the set B is empty. The summary
of the approximate algorithm for assigning the supply to the
demand is given Table I. The proposed algorithm is run by the
CCS which controls the network. Since the harvested energy by a
BS is correlated in time, the high harvested energy in successive
time slots culminates in waste of energy due to the BS limited
battery capacity. As the extra stored energy of a BS is shared,
the waste of energy reduces.

IV. PERFORMANCE RESULTS

A three-tier small cell network is considered that includes
macrocells (tier 1), microcells (tier 2) and picocells (tier 3).
BSs of tiers are distributed according to PPPs with densities
[ 1
5002 ,

3
5002 ,

5
5002 ] m−2, respectively, in a 1.35 km × 1.35 km

area. Additionally, users distribution follows a PPP with density
80

5002 m−2. The transmit power of BSs, depending on their tier,
sorted as [40, 6.3, 1] Watt. The path-loss exponent is considered
to be 4, the coverage probability is 0.65 and the time slot
duration is one second. BSs earn ϕ = 2500 units of money
by consuming one Joule to serve connected users. The non-
renewable energy consumption by a BS costs ζ = 5000 units
of money per Joule. The cost of transferring one Joule by
the smart grid is Γ (gsi,bj ) = gsi,bj . The consumed power to
serve each user is modeled as a correlated Gaussian process.
The harvested energy by each BS is modeled as a correlated
Gaussian process. Means of the demanded power from different
tiers are [22.5, 5, 0.85] Watt, respectively. Gaussian processes
are correlated by Cholesky decomposition method. Both the
harvested energy and the demanded energy at each time slot
are correlated by their previous values at the last time slot and
two previous time slot.

Fig. 1 depicts the effect of the proposed approximate al-
gorithm and battery capacities on the consumed non-renewable
power of tiers in 600 time slots. Means of the harvested energy
of BSs in different tiers are [23.3, 5.8, 1.1] Joule. The sum of
the harvested energy of BSs in the network in all time slots
are more than the demanded energy from BSs in the network.
Thus, the harvested energy in BSs of the network is sufficient
to serve connected users in all time slots. The harvested energy
by a BS and the demanded energy are stochastic, therefore, the
BS is with energy shortage in some time slots. By using the
proposed approximate algorithm, the consumed power from the
non-renewable source is reduced considerably. In the initial time
slots, the larger battery capacity is not influential due to the fact
that the extra stored energy is less than the battery capacity. As
more time slots are elapsed, the extra stored energy increases,
and the larger battery capacities become more helpful. The
proposed algorithm distributes the extra stored energy among
BSs with energy deficit instead of storing the extra energy in
the batteries. Therefore, BSs require smaller batteries to store
energy when the algorithm is applied. Applying the algorithm
removes the cost of installing large batteries. When the algorithm
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Fig. 1. Comparison of the non-renewable power consumption in the network
with and without applying the approximate algorithm.
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Fig. 2. Plot 1: the cost of the smart grid usage. Plot 2: cumulative utilities of
a macrocell and a microcell when the approximate algorithm is applied. Plot 3:
comparison of cumulative utilities of a macrocell and a microcell in the presence
of the approximate algorithm and without it.

is not applied, the non-renewable energy consumption increases
as the harvested energy is wasted in limited batteries.

The smart grid usage cost is depicted in Fig. 2. Reducing the
smart grid usage cost increases the utility functions of BSs. Fig.
2 shows that the approximated solution found by the algorithm
is near to the optimal solution. Since the algorithm distributes
energy according to the closed-form of the energy share formula
given in (9), the fairness of the energy distribution is one. The
run time of the approximate algorithm for 600 time slots is
1.4 second. The cumulative utility functions of a macrocell,
a microcell and a picocell when the approximate algorithm is
applied are depicted in Fig. 2. As a BS consumes more energy, it
earns more money. Hence, it is seen from Fig. 2 that a macrocell
earns more revenue than BSs in the other tiers. The cumulative
utilities of a macrocell and a microcell, in the presence of the
approximate algorithm and without it, are depicted in Fig. 2.
It is observed that when BSs share energy by the smart grid,
BSs gain more utilities. Without the algorithm, the utilities
of the BSs decrease by the high price of the non-renewable
energy. However, with the algorithm, the non-renewable energy
consumption reduces, and thus, the utilities of BSs increase.
Hence, using the algorithm not only reduces the non-renewable
energy consumption, it enhances BSs gained utilities as well.
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