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Abstract

The nonlinear Brinkman-Forchheimer-extended Darcy equation is used to model some
porous medium flow in chemical reactors of packed bed type. The results concerning the
existence and uniqueness of a weak solution are presented for nonlinear convective flows
in medium with nonconstant porosity and for small data. Furthermore, the finite element
approximations to the flow profiles in the fixed bed reactor are presented for several
Reynolds numbers at the non-Darcy’s range.
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1 Introduction

In this section we introduce the mathematical model describing incompressible isothermal flow
in porous medium without reaction. The considered equations for the velocity and pressure
fields are for flows in fluid saturated porous media. Most of research results for flows in
porous media are based on the Darcy equation which is considered to be a suitable model
at a small range of Reynolds numbers. However, there are restrictions of Darcy equation for
modeling some porous medium flows, e.g. in closely packed medium, saturated fluid flows at
slow velocity but with relatively large Reynolds numbers. The flows in such closely packed
medium behave nonlinearly and can not be modelled accurately by the Darcy equation which
is linear. The deficiency can be circumvented with the Brinkman–Forchheimer-extended
Darcy law for flows in closely packed media, which leads to the following model: Let Ω ⊂ Rn,
n = 2, 3, represent the reactor channel. We denote its boundary by Γ = ∂Ω. The conservation
of volume-averaged values of momentum and mass in the packed reactor reads as follows

−div (εν∇u− εu⊗ u) +
ε

%
∇p+ σ(u) = f in Ω ,

div (εu) = 0 in Ω ,
(1)
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where u : Ω→ Rn, p : Ω→ R denote the unknown velocity and pressure, respectively. The
positive quantity ε = ε(x) stands for porosity which describes the proportion of the non-solid
volume to the total volume of material and varies spatially in general. The expression σ(u)
represents the friction forces caused by the packing and will be specified later on. The right-
hand side f represents an outer force (e.g. gravitation), % the constant fluid density and ν
the constant kinematic viscosity of the fluid, respectively. The expression u ⊗ u symbolizes
the dyadic product of u with itself.

The formula given by Ergun [3] will be used to model the influence of the packing on the
flow inertia effects

σ(u) = 150ν
(1− ε)2

ε2d2
p

u + 1.75
1− ε
εdp

u|u| . (2)

Thereby dp stands for the diameter of pellets and | · | denotes the Euclidean vector norm.
The linear term in (2) accounts for the head loss according to Darcy and the quadratic term
according to Forchheimer law, respectively. For the derivation of the equations, modelling
and homogenization questions in porous media we refer to e.g. [2, 4]. To close the system (1)
we prescribe Dirichlet boundary condition

u|Γ = g , (3)

whereby ∫
Γi

εg · n ds = 0 (4)

has to be fulfilled on each connected component Γi of the boundary Γ. We remark that in
the case of polygonally bounded domain the outer normal vector n has jumps and thus the
above integral should be replaced by a sum of integrals over each side of Γ. The distribution
of porosity ε is assumed to satisfy the following bounds

0 < ε0 ≤ ε(x) ≤ ε1 ≤ 1 ∀x ∈ Ω , (A1)

with some constants 0 < ε0, ε1 ≤ 1.
A comprehemsive account of fluid flows through porous media beyond the Darcy law’s

valid regimes and classified by the Reynolds number, can be found in, e.g., [10]. Also, see
[11] for simulating pumped water levels in abstraction boreholes using such nonlinear Darcy-
Forchheimer law, and [12], [13], and [14] for recent referenes on this model.

In the next section we use the porosity distribution which is estimated for packed beds
consisting of spherical particles and takes the near wall channelling effect into account. This
kind of porosity distribution obeys assumption (A1).

Let us introduce dimensionless quantities

u∗ =
u

U0
, p∗ =

p

%U2
0

, x∗ =
x

dp
, g∗ =

g

U0
,

whereby U0 denotes the magnitude of some reference velocity. For simplicity of notation we
omit the asterisks. Then, the reactor flow problem reads in dimensionless form as follows

−div
( ε

Re
∇u− εu⊗ u

)
+ ε∇p+

α

Re
u + βu|u| = f in Ω ,

div (εu) = 0 in Ω ,
u = g on Γ ,

(5)
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where

α(x) = 150κ2(x) , β(x) = 1.75κ(x) (6)

with

κ(x) =
1− ε(x)

ε(x)
, (7)

and the Reynolds number is defined by

Re =
U0 dp
ν

.

The existence and uniqueness of solution of the nonlinear model (5) with constant porosity
and without the convective term has been established in [5]. We will extend this result to the
case when the porosity depends on the location and with the convective term in this work.

Remark 1 (5) becomes a Navier-Stokes problem if ε ≡ 1.

Notation Throughout the work we use the following notations for function spaces. For
m ∈ N0, p ≥ 1 and bounded subdomain G ⊂ Ω let Wm,p(G) be the usual Sobolev space
equipped with norm ‖ · ‖m,p,G. If p = 2, we denote the Sobolev space by Hm(G) and use
the standard abbreviations ‖ · ‖m,G and | · |m,G for the norm and seminorm, respectively.
We denote by D(G) the space of C∞(G) functions with compact support contained in G.
Furthermore, Hm

0 (G) stands for the closure of D(G) with respect to the norm ‖ · ‖m,G.
The counterparts spaces consisting of vector valued functions will be denoted by bold faced
symbols like Hm(G) := [Hm(G)]n or D(G) := [D(G)]n. The L2 inner product over G ⊂ Ω
and ∂G ⊂ ∂Ω will be denoted by (·, ·)G and 〈·, ·〉∂G, respectively. In the case G = Ω the
domain index will be omitted. In the following we denote by C the generic constant which is
usually independent of the model parameters, otherwise dependences will be indicated.

2 Existence and uniqueness results

In the following the porosity ε is assumed to belong to W 1,3(Ω) ∩ L∞(Ω). We start with the
weak formulation of problem (5) and look for its solution in suitable Sobolev spaces.

2.1 Variational formulation

Let

L2
0(Ω) := {v ∈ L2(Ω) : (v, 1) = 0}

be the space consisting of L2 functions with zero mean value. We define the spaces

X := H1(Ω) , X0 := H1
0(Ω) , Q := L2(Ω) , M := L2

0(Ω) ,

and

V := X0 ×M .
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Let us introduce the following bilinear forms

a : X ×X→ R , a(u,v) =
1

Re

(
ε∇u,∇v

)
,

b : X ×Q → R , b(u, q) =
(
div(εu), q

)
,

c : X ×X→ R , c(u,v) =
1

Re

(
αu,v

)
.

Furthermore, we define the semilinear form

d : X ×X ×X → R , d(w;u,v) =
(
β|w|u,v

)
,

and trilinear form

n : X ×X ×X → R , n(w,u,v) =
(
(εw · ∇)u,v

)
.

We set
A(w;u,v) := a(u,v) + c(u,v) + n(w,u,v) + d(w;u,v) .

Multiplying momentum and mass balances in (5) by test functions v ∈ X0 and q ∈ M ,
respectively, and integrating by parts implies the weak formulation:

Find (u, p) ∈X ×M with u|Γ = g such that

A(u;u,v)− b(v, p) + b(u, q) = (f ,v) ∀ (v, q) ∈ V . (8)

First, we recall the following result from [6]:

Theorem 2 The mapping u 7→ εu is an isomorphism from H1(Ω) onto itself and from H1
0 (Ω)

onto itself. It holds for all u ∈ H1(Ω)

‖εu‖1 ≤ C{ε1 + |ε|1,3} ‖u‖1 and
∥∥∥u
ε

∥∥∥
1
≤ C

{
ε−1

0 + ε−2
0 |ε|1,3

}
‖u‖1 .

In the following the closed subspace of H1
0(Ω) defined by

W = {w ∈H1
0(Ω) : b(w, q) = 0 ∀ q ∈ L2

0(Ω)}.

will be employed. Next, we establish and prove some properties of trilinear form n(·, ·, ·) and
nonlinear form d(·; ·, ·).

Lemma 3 Let u,v ∈ H1(Ω) and w ∈ H1(Ω) with div (εw) = 0 and w · n|Γ = 0. Then we
have

n(w,u,v) = −n(w,v,u) . (9)

Furthermore, the trilinear form n(·, ·, ·) and the nonlinear form d(·; ·, ·) are continuous, i.e.

|n(u,v,w)| ≤ Cε ‖u‖1‖v‖1‖w‖1 ∀ u,v,w ∈H1(Ω) , (10)

|d(u,v,w)| ≤ Cε ‖u‖1‖v‖1‖w‖1 ∀ u,v,w ∈H1(Ω) , (11)

and for u ∈W and for a sequence uk ∈W with lim
k→∞

‖uk − u‖0 = 0, we have also

lim
k→∞

n(uk,uk,v) = n(u,u,v) ∀ v ∈W . (12)
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Proof. We follow the proof of [7, Lemma 2.1, §2, Chapter IV] and adapt it to the trilinear
form

n(w,u,v) =
(
(εw · ∇)u,v

)
=

n∑
i,j=1

(
εwj∂jui, vi

)
,

which has the weighting factor ε. Hereby, symbols with subscripts denote components of bold
faced vectors, e.g. u = (ui)i=1,...,n. Let u ∈H1, v ∈D(Ω) and w ∈W . Integrating by parts
and employing density argument, we obtain immediately (9)

n∑
i,j=1

(
εwj∂jui, vi

)
= −

n∑
i,j=1

(
∂j (εwjvi) , ui

)
+

n∑
i,j=1

〈εwjnjui, vi〉

= −
n∑

i,j=1

(
εwj∂jvi, ui

)
−
(
div (εw)u,v

)
+
〈
(εw · n)u,v

〉
= −n(w,v,u).

From Sobolev embedding H1(Ω) ↪→ L4(Ω) (see [1]) and Hölder inequality follows∣∣(εwj∂jui, vi)∣∣ ≤ |ε|0,∞ ‖wj‖0,4 ‖∂jui‖0 ‖vi‖0,4 ≤ C |ε|0,∞ ‖wj‖1 |ui|1 ‖vi‖1 ,
and consequently the proof of (10) is completed. Since lim

k→∞
‖uki ukj −uiuj‖0,1 = 0 and ε∂jvi ∈

L∞(Ω), the continuity estimate (10) implies

lim
k→∞

n(uk,uk,v) = − lim
k→∞

n(uk,v,uk) = − lim
k→∞

n∑
i,j=1

(
εukj ∂jv

k
i , u

k
i

)
= −

n∑
i,j=1

(
εuj∂jvi, ui

)
= −n(u,v,u) = n(u,u,v) .

The continuity of d(·; ·, ·) follows from Hölder inequality and Sobolev embedding H1(Ω) ↪→
L4(Ω) (see [1])

|d(u;v,w)| ≤ |β|∞ ‖u‖0,4 ‖v‖0,4 ‖w‖0 ≤ Cε‖u‖1 ‖v‖1 ‖w‖1 .

�
In the next stage we consider the difficulties caused by prescribing the inhomogeneous Dirichlet
boundary condition. Analogous difficulties are already encountered in the analysis of Navier–
Stokes problem. We will carry out the study of three dimensional case. The extension in two
dimensions can be constructed analogously. Since g ∈H1/2(Γ), we can extend g inside of Ω
in the form of

g = ε−1 curlh

with some h ∈H2(Ω). The operator curl is defined then as

curlh = (∂2h3 − ∂3h2, ∂3h1 − ∂1h3, ∂1h2 − ∂2h1) .

We note that in the two dimensional case the vector potential h ∈H2(Ω) can be replaced by
a scalar function h ∈ H2(Ω) and the operator curl is then redefined as curlh = (∂2h,−∂1h).
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Our aim is to adapt the extension of Hopf (see [8]) to our model. We recall that for any
parameter µ > 0 there exists a scalar function ϕµ ∈ C2(Ω̄) such that

• ϕµ = 1 in some neighborhood of Γ (depending on µ) ,

• ϕµ(x) = 0 if dΓ(x) ≥ 2 exp (−1/µ) , where dΓ(x) := inf
y∈Γ
|x− y|

denotes the distance of x to Γ ,

• |∂jϕµ(x)| ≤ µ/dΓ(x) if dΓ(x) < 2 exp (−1/µ) , j = 1, . . . , n .


(Ex)

For the construction of ϕµ see also [7, Lemma 2.4, §2, Chapter IV].

Let us define
gµ := ε−1 curl (ϕµh) . (13)

In the following lemma we establish bounds which are crucial for proving existence of velocity.

Lemma 4 The function gµ satisfies the following conditions

div (εgµ) = 0, gµ|Γ = g ∀µ > 0 , (14)

and for any δ > 0 there exists sufficiently small µ > 0 such that

|d(u + gµ; gµ,u)| ≤ δ ‖β‖0,∞ |u|1
(
|u|1 + ‖gµ‖0

)
∀ u ∈X0 , (15)

|n(u, gµ,u)| ≤ δ |u|21 ∀ u ∈W . (16)

Proof. The relations in (14) are obvious. We follow [5] in order to show (15). Since
h ∈ H2(Ω) Sobolev’s embedding theorem implies h ∈ L∞(Ω), so we get according to the
properties of ϕµ in (Ex) the following bound

|gµ| ≤ C ε−1
0

{
|∇h|+ µ

dΓ(x)
|h|
}
≤ C

{
µ

dΓ(x)
+ |∇h|

}
.

Defining
Ωµ := {x ∈ Ω : dΓ(x) < 2 exp(−1/µ)}

we obtain from Cauchy-Schwarz and triangle inequalities

|
(
β|u + gµ|, gµ · u

)
| ≤ ‖β‖0,∞ ‖u‖0 ‖u · gµ‖0,Ωµ

+ ‖β‖0,∞ ‖gµ‖0 ‖u · gµ‖0,Ωµ ,
(17)

‖u · gµ‖20,Ωµ ≤
∫

Ωµ

|u|2|gµ|2dx

≤ C
∫

Ωµ

|u|2
{(
µ/dΓ(x)

)2
+ 2µ/dΓ(x) |∇h|+ |∇h|2

}
dx

≤ C
{
µ2‖u/dΓ‖20,Ωµ + 2µ‖u/dΓ‖0,Ωµ ‖u‖0,4,Ωµ

∥∥|∇h|∥∥
0,4,Ωµ

+ ‖u‖20,4,Ωµ
∥∥|∇h|∥∥2

0,4,Ωµ

}
≤ C

{
µ‖u/dΓ‖0,Ωµ + ‖u‖0,4

∥∥|∇h|∥∥
0,4,Ωµ

}2
,
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and consequently

‖u · gµ‖0,Ωµ ≤ C
{
µ‖u/dΓ‖0,Ωµ + ‖u‖0,4

∥∥|∇h|∥∥
0,4,Ωµ

}
. (18)

Applying Hardy inequality (see [1])

‖v/dΓ‖0 ≤ C|v|1 ∀ v ∈ H1
0 (Ω)

and using Sobolev embedding H1(Ω) ↪→ L4(Ω), estimate (18) becomes

‖u · gµ‖0,Ωµ ≤ Cλ(µ)‖u‖1, (19)

where
λ(µ) := max

{
µ,
∥∥|∇h|∥∥

0,4,Ωµ

}
.

From (17), (19), Poincaré inequality and from the fact that lim
µ→0

λ(µ) = 0 we conclude that

for any δ > 0 we can choose sufficiently small µ > 0 such that

|(β |u + gµ|gµ,u)| ≤ δ ‖β‖0,∞ |u|1
(
|u|1 + ‖gµ‖0

)
holds. Therefore the proof of estimate (15) is completed. Now, we take a look at the trilinear
convective term

n(u, gµ,u) =
(
(εu · ∇)gµ,u

)
Ωµ

=

(
(εu · ∇)

{
ε−1 curl (ϕµh)

}
,u

)
Ωµ

=

(
(u · ∇) {curl (ϕµh)} ,u

)
Ωµ

−
(
(u · ∇ε) gµ,u

)
Ωµ
.

The first term of above difference becomes small due to [7, Lemma 2.3, §2, Chapter IV], and
it satisfies ∣∣∣((u · ∇) {curl (ϕµh)} ,u

)
Ωµ

∣∣∣ =
∣∣∣((u · ∇)(εgµ),u

)
Ωµ

∣∣∣ ≤ δ|u|21 (20)

as long as µ > 0 is chosen sufficiently small. Using Hölder inequality, Sobolev embedding
H1(Ω) ↪→ L6(Ω) yields ∣∣∣((u · ∇ε) gµ,u)Ωµ∣∣∣ ≤ C‖ε‖1,3 ‖gµ · u‖0 ‖u‖1 ,
which together with (19) implies for sufficiently small µ > 0 the bound∣∣∣((u · ∇ε) gµ,u)Ωµ∣∣∣ ≤ δ|u|21 . (21)

From (20) and (21) follows the desired estimate (16). �
While the general framework for linear and non-symmetric saddle point problems can be
found in [6], our problem requires more attention due to its nonlinear character. Setting
w := u− gµ, the weak formulation (8) is equivalent to the following problem

Find (w, p) ∈ V such that

A(w + gµ;w + gµ,v)− b(v, p) + b(w + gµ, q) = (f ,v) ∀ (v, q) ∈ V . (22)
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Let us define the nonlinear mapping G : W →W with

[
G(w),v

]
:=a(w + gµ,v) + c(w + gµ,v)− (f ,v)

+ n(w + gµ,w + gµ,v) + d(w + gµ;w + gµ,v) ,
(23)

whereby [·, ·] defines the inner product in W via [u, v] := (∇u,∇v). Then, the variational
problem (22) reads in the space of ε-weighted divergence free functions W as follows

Find w ∈W such that [
G(w),v

]
= 0 ∀ v ∈W . (24)

2.2 Solvability of nonlinear saddle point problem

We start our study of the nonlinear operator problem (24) with the following lemma.

Lemma 5 The mapping G defined in (23) is continuous and there exists r > 0 such that

[
G(u),u

]
> 0 ∀ u ∈W with |u|1 = r. (25)

Proof. Let (uk)k∈N be a sequence in W with lim
k→∞

‖uk − u‖1 = 0. Then, applying Cauchy–

Schwarz inequality and (16), we obtain for any v ∈W

∣∣∣[G(uk)−G(u),v
]∣∣∣ ≤ 1

Re

∣∣∣(ε∇(uk − u),∇v
)∣∣∣+

1

Re

∣∣∣(α(uk − u),v
)∣∣∣

+
∣∣∣(β|uk + gµ|(uk − u),v

)∣∣∣+
∣∣∣(β(|uk + gµ| − |u + gµ|)(u + gµ),v

)∣∣∣
+
∣∣∣n(uk,uk,v)− n(u,u,v)

∣∣∣+
∣∣∣n(uk − u, gµ,v)

∣∣∣+
∣∣∣n(gµ,u

k − u, ,v)
∣∣∣

≤ ε1

Re
|uk − u|1|v|1 +

1

Re
‖α‖0,∞‖uk − u‖0‖v‖0

+ ‖β‖0,∞‖uk + gµ‖0,4‖uk − u‖0‖v‖0,4 + ‖β‖0,∞‖u + gµ‖0,4‖uk − u‖0‖v‖0,4

+
∣∣∣n(uk,uk,v)− n(u,u,v)

∣∣∣+ C‖uk − u‖1‖gµ‖1‖v‖1 .

The boundedness of uk in W , (12), the Poincaré inequality, and the above inequality imply
that ∣∣∣[G(uk)−G(u),v

]∣∣∣→ 0 as k →∞ ∀v ∈W .

Thus, employing

|G(uk)−G(u)|1 = sup
v∈W
v 6=0

[
G(uk)−G(u),v

]
|v|1

,
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we state that G is continuous. Now, we note that for any u ∈W we have[
G(u),u

]
=

1

Re

(
ε∇(u + gµ),∇u

)
+

1

Re

(
α(u + gµ),u

)
+
(
β|u + gµ|(u + gµ),u

)
+ n(u + gµ,u + gµ,u)− (f ,u)

≥ ε0

Re
|u|21 −

ε1

Re
|(∇gµ,∇u)|+ 1

Re
(αu,u)− 1

Re
|(αgµ,u)|

+ (β|u + gµ|, |u|2)−
∣∣(β|u + gµ|gµ,u)

∣∣
+ n(u, gµ,u) + n(gµ, gµ,u)− ‖f‖0‖u‖0
≥ ε0

Re
|u|21 −

ε1

Re
|gµ|1|u|1

− 1

Re
‖α‖0,∞‖gµ‖0‖u‖0 −

∣∣(β|u + gµ|gµ,u)
∣∣

−
∣∣n(u, gµ,u)

∣∣− C‖gµ‖21‖u‖1 − ‖f‖0‖u‖0 .

(26)

From the Poincaré inequality, we infer the estimate

‖v‖1 ≤ C|v|1 ∀ v ∈ H1
0 (Ω),

which together with (15), (16) and (26) results in[
G(u),u

]
≥
{ ε0

Re
− δ(1 + ‖β‖0,∞)

}
|u|21

−
{ ε1

Re
|gµ|1 + C1

1

Re
‖α‖0,∞‖gµ‖0 + δ‖β‖0,∞‖gµ‖0 + C2‖gµ‖21 + C3‖f‖0

}
|u|1.

Choosing δ such that

0 < δ < δ0 :=
ε0

Re

(
1 + ‖β‖0,∞

)−1
,

and r > r0 with

r0 :=

ε1

Re
|gµ|1 +

1

Re
C1‖α‖0,∞‖gµ‖0 + δ‖β‖0,∞‖gµ‖0 + C2‖gµ‖21 + C3‖f‖0

ε0

Re
− δ(1 + ‖β‖0,∞)

, (27)

leads to the desired assertion (25). �
The following lemma plays a key role in the existence proof.

Lemma 6 Let Y be finite-dimensional Hilbert space with inner product [·, ·] inducing a norm
‖ · ‖, and T : Y → Y be a continuous mapping such that[

T (x), x
]
> 0 for ‖x‖ = r0 > 0.

Then there exists x ∈ Y , with ‖x‖ ≤ r0, such that

T (x) = 0.

Proof. See [9]. �
Now we are able to prove the main result concerning existence of velocity.

Theorem 7 The problem (24) has at least one solution u ∈W .
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Proof. We construct the approximate sequence of Galerkin solutions. Since the space W is
separable, there exists a sequence of linearly independent elements

(
wi
)
i∈N ⊂ W . Let Xm

be the finite dimensional subspace of W with

Xm := span{wi , i = 1, . . . ,m}

and endowed with the scalar product of W . Let um =
m∑
j=1

ajw
j , aj ∈ R , be a Galerkin

solution of (24) defined by [
G(um),wj

]
= 0, ∀ j = 1, . . . ,m . (28)

From Lemma 5 and Lemma 6 we conclude that[
G(um),w

]
= 0 ∀ w ∈Xm (29)

has a solution um ∈ Xm. The unknown coefficients aj can be obtained from the algebraic
system (28). On the other hand, multiplying (28) by aj , and adding the equations for j =
1, . . . ,m we have

0 =
[
G(um),um

]
≥
{

1

Re
− δ(1 + ‖β‖0,∞)

}
|um|21

−
{ 1

Re
|gµ|1 + C1

1

Re
‖α‖0,∞‖gµ‖0 + δ‖β‖0,∞‖gµ‖0 + C2‖gµ‖21 + C3‖f‖0

}
|um|1.

This gives together with (27) the uniform boundedness in W

|um|1 ≤ r0,

therefore there exists u ∈W and a subsequence mk → ∞ ( we write for the convenience m
instead of mk ) such that

um ⇀ u in W .

Furthermore, the compactness of embedding H1(Ω) ↪→ L4(Ω) implies

um → u in L4(Ω).

Taking the limit in (29) with m→∞ we get[
G(u),w

]
= 0 ∀ w ∈Xm. (30)

Finally, we apply the continuity argument and state that (30) is preserved for any w ∈W ,
therefore u is the solution of (24). �
For the reconstruction of the pressure we need inf-sup-theorem

Theorem 8 Assume that the bilinear form b(·, ·) satisfies the inf-sup condition

inf
q∈M

sup
v∈X0

b(v, q)

|v|1 ‖q‖0
≥ γ > 0. (31)

Then, for each solution u of the nonlinear problem (24) there exists a unique pressure p ∈M
such that the pair (u, p) ∈ V is a solution of the homogeneous problem (22).

10



Proof. See [7, Theorem 1.4, §1, Chapter IV]. �
We end up this subsection by proving the existence of the pressure.

Theorem 9 Let w be solution of problem (24). Then, there exists unique pressure p ∈M .

Proof. We verify the inf-sup condition (31) of Theorem 8 by employing the isomorphism of
Theorem 2. From [7, Corollary 2.4, §2, Chapter I] follows that for any q in L2

0(Ω) there exists
v in H1

0(Ω) such that

(divv, q) ≥ γ∗‖v‖1‖q‖0

with a positive constant γ∗. Setting u = v/ε and applying the isomorphism in Theorem 2,
we obtain the estimate

b(u, q) = (divv, q) ≥ γ∗‖v‖1‖q‖0 ≥ γε‖u‖1‖q‖0

where γε =
γ∗

C
{
ε−1

0 + ε−2
0 |ε|1,3

} . From the above estimate we conclude the inf-sup condition

(31). �

2.3 Uniqueness of weak solution

We exploit a priori estimates in order to prove uniqueness of weak velocity and pressure.

Theorem 10 If ‖gµ‖1, ‖f‖−1 := sup
0 6=v∈H1(Ω)

(f ,v)

‖v‖1
are sufficiently small, then the solution

of (24) is unique.

Proof. Assume that (u1, p1) and (u2, p2) are two different solutions of (22). From (9) in
Lemma 3 we obtain n(w,u,u) = 0 ∀ w,u ∈W . Then, we obtain

0 =
[
G(u1)−G(u2),u1 − u2

]
= a(u1 − u2,u1 − u2) + c(u1 − u2,u1 − u2)− (f ,u1 − u2)

+ n(u1 + gµ,u1 + gµ,u1 − u2)− n(u2 + gµ,u2 + gµ,u1 − u2)

+ (β|u1 + gµ|(u1 + gµ),u1 − u2)

−
(
β|u2 + gµ|(u2 + gµ),u1 − u2)

≥ ε0

Re
|u1 − u2|21 − ‖f‖−1‖u1 − u2‖1

+ n(u1 − u2,u2 + gµ,u1 − u2)

+
(
β|u1 + gµ|(u1 − u2),u1 − u2

)
+
(
β(|u1 + gµ| − |u2 + gµ|)(u2 + gµ),u1 − u2

)
≥ ε0

Re
|u1 − u2|21 − ‖f‖−1‖u1 − u2‖1

− |n(u1 − u2,u2,u1 − u2)| −
∣∣n(u1 − u2, gµ,u1 − u2)

∣∣
− ‖β‖0,∞

∣∣(|u1 + gµ| · |u1 − u2|, |u1 − u2|
)∣∣

− ‖β‖0,∞
∣∣(∣∣|u1 + gµ| − |u2 + gµ|

∣∣ · |u2 + gµ|, |u1 − u2|
)∣∣ .

(32)
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From Cauchy-Schwarz inequality and Sobolev embedding H1(Ω) ↪→ L4(Ω) we deduce∣∣(|u1 + gµ| · |u1 − u2|, |u1 − u2|
)∣∣ ≤ C {‖u1‖0 + ‖gµ‖0

}
‖u1 − u2‖21 , (33)∣∣(∣∣|u1 + gµ| − |u2 + gµ|

∣∣ · |u2 + gµ|, |u1 − u2|
)∣∣

≤ C
{
‖u2‖0 + ‖gµ‖0

}
‖u1 − u2‖21,

(34)

and according to (10) we have

|n(u1 − u2,u2,u1 − u2)| ≤ C‖u2‖1‖u1 − u2‖21, (35)

and by (14) we can find µ such that

|n(u1 − u2, gµ,u1 − u2)| ≤ ε0

4Re
‖u1 − u2‖21. (36)

Now, we find upper bounds for u1 and u2. Testing the equation (22) with u results in

ε0

Re
‖u‖21 ≤ ‖f‖−1‖u‖1 +

ε0

Re
‖gµ‖1‖u‖1 + C‖gµ‖0‖u‖0

+ C‖gµ‖21‖u‖1 + C‖β‖0,∞‖gµ‖0‖u‖21 + C‖β‖0,∞‖gµ‖20,4‖u‖1 .

From Sobolev embedding H1(Ω) ↪→ L4(Ω) we deduce for sufficiently small ‖gµ‖1

‖u‖1 ≤
‖f‖−1 + C1‖gµ‖1 + C2‖gµ‖21

ε0

Re
− C3‖β‖0,∞‖gµ‖1

=: C
(
‖gµ‖1, ‖f‖−1

)
. (37)

Putting (33)-(37) into (32) and using the inequality

‖f‖−1‖u1 − u2‖1 ≤
ε0

4Re
‖u1 − u2‖21 +

2Re

ε0
‖f‖2−1

we obtain

0 ≥ ε0

2Re
‖u1 − u2‖21 −

2Re

ε0
‖f‖2−1 − C

(
‖gµ‖1, ‖f‖−1

)
‖β‖0,∞‖u1 − u2‖21

− ε0

4Re
‖u1 − u2‖21 − C

(
‖gµ‖1, ‖f‖−1

)
‖u1 − u2‖21 .

(38)

For sufficiently small ‖gµ‖1, ‖f‖−1 the constant C(‖gµ‖1, ‖f‖−1) in (37) gets small and con-
sequently the right hand side of (38) is nonnegative. This implies u1 = u2 and according to
Theorem 9 is p1 − p2 = 0. �

3 A Channel Flow Problem in Packed Bed Reactors

In this section, we provide an example of the flow problem in packed bed reactors with
numerical solutions at small and relatively large Reynolds numbers to show the nonlinear
behavior of the velocity solutions. Let the reactor channel be represented by Ω = (0, L) ×
(−R,R) where R = 5 and L = 60. In all computations we use the porosity distribution which
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Figure 1: Varying porosity.

is determined experimentally and takes into account the effect of wall channelling in packed
bed reactors

ε(x, y) = ε(y) = ε∞

{
1 +

1− ε∞
ε∞

e−6(R−|y|)
}
, (39)

where ε∞ = 0.45. The distribution of the porosity is presented in Figure 1. We distinguish
between the inlet, outlet and membrane parts of domain boundary Γ, and denote them by
Γin, Γout and Γw, respectively. Let

Γin = {(x, y) ∈ Γ : x = 0} ,
Γout = {(x, y) ∈ Γ : x = L} ,
Γw = {(x, y) ∈ Γ : y = −R, y = R} .

At the inlet Γin and at the membrane wall we prescribe Dirichlet boundary conditions, namely
the plug flow conditions

u|Γin = uin = (uin, 0)T ,

and

u|Γw = uw =

{
(0, uw)T for y = −R ,
(0,−uw)T for y = R ,

whereby uin > 0, uw > 0. At the outlet Γout we set the following outflow boundary condition

− 1

Re

∂u

∂n
+ pn = 0

13



where n denotes the outer normal. In order to avoid discontinuity between the inflow and
wall conditions we replace constant profile by trapezoidal one with zero value at the corners.
Our computations are carried out on the Cartesian mesh using biquadratic conforming and
discontinuous piecewise linear finite elements for the approximation of the velocity and pres-
sure, respectively. The finite element analysis of the Brinkman-Forchheimer-extended Darcy
equation will be conducted in the forthcoming work. The plots of velocity magnitude in fixed
bed reactor (uw = 0) are presented along the vertical axis x = 50. In the investigated reactor
the inlet velocity is assumed to be normalized (uin = 1). Due to the variation of porosity
we might expect higher velocity at the reactor walls Γw. This tunnelling effect can be well
observed in Figure 2 which shows the velocity profiles for different Reynolds numbers. We re-
mark that the maximum of velocity magnitude decreases with increasing Reynolds numbers.
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Figure 2: Flow profiles in fixed bed reactor at x = 50.

4 Conclusion

In this work, we have extended the existence and uniqueness of solution result in literature
for the porous medium flow problem based on the nonlinear Brinkman-Forchheimer-extended
Darcy law. The existing result is valid only for constant porosity and without the considered
convection effects, and our result holds for variable porosity and it includes convective ef-
fects. We also provided a numerical solution to demonstrate the nonlinear velocity solutions
at moderately large Reynolds numbers for which case the Brinkman-Forchheimer-extended

14



Darcy law applies.
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