Elastic and inelastic longitudinal electron scattering from 'Be in the first excited state

O.S.Bayakhmetov*¹, Zh.B.Seksembayev¹, S.K.Sakhiyev²

¹L.N.Gumilyov Eurasian National University, Astana, 010008, Kazakhstan ²Institute of Nuclear Physics, Almaty, 050032, Kazakhstan *Corresponding author: olzhik1992@mail.ru

The $1/2^+$ first excited state of ⁹Be, which lies at energy of 1.68 MeV and only about 20 keV above the neutron-emission threshold, is of especial interest. It is found that this state can be considered as a halo (the root mean-square radius is $<\mathbf{R}^*>=(3.42\pm0.2)$ fm) [1].

Electron scattering is one of the most effective methods of studying the properties of the energy levels of atomic nuclei [2]; so it is extremely productive and powerful tool to research nuclear structure.

Elastic and inelastic longitudinal electron scattering has been researched in the framework of three-particle (2α +n)-model with the $\alpha\alpha$ Ali-Bodmer potential [3]. Our calculations show that ⁹Be in the first excited state has a halo-structure (the rms charge radius is about < R_{ch} >=2.84 fm).

In this paper we calculated the transitions to the $J^{\pi}=1/2^+$, $3/2^+$ states of ⁹Be. According to the results, the probability of the transition to the $(3/2^+, 1/2)$ state is extremely low.

Figure 1. Elastic Coulomb form factor for the transition to the $(1/2^+, 1/2)$ state in ⁹Be

Figure 2. Inelastic Coulomb form factor for the transition to the $(3/2^+, 1/2)$ state in ⁹Be

References

[1] A.S.Demyanova, A.A.Ogloblin et al *JETP Let*ters, 2015, Vol.**102**, No. 7, pp. 413-416

[2] T.W.Donelly, *Rev.modern phys*, 1984, Vol.**56**, No.3-4, pp.461-566

[3] V.T. Voronchev, V.I. Kukulin et al *Yadernaya fizika*, 1994, Vol.**57**, №11, pp.1964-1980.