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Recently, it was shown that by using special artificial materials it is possible to ensure that all electromagnetic
modes of free space are conjugately matched to the modes of a material body and, thus, all modes deliver power
to the body in the most effective way. Such a fascinating feature is acquired because the conjugate matching does
not concern only the propagating modes but, most importantly, is applied to all evanescent modes; in this way,
all the possible ways of transferring the electromagnetic energy to the material body can be optimally exploited.
However, coupling to higher-order (mostly evanescent) modes is weak and totally disappears in the limit of an
infinite planar boundary. Here, we show that by properly perturbing the surface of the receiving or emitting body
with, for example, randomly distributed small particles, we can open up channels for super-radiation into the
far zone. The currents induced in the small particles act as secondary sources (radiation “vessels”) which send
the energy to travel far away from the surface and, reciprocally, receive power from far-located sources. For a
particular example, we theoretically predict about 20-fold power transfer enhancement between the conjugately
matched power-receiving body (as compared with the ideal black body) and far-zone sources. Reciprocally, the
proposed structure radiates about 20 times more power into the far zone as compared with the same source over
a perfect reflector.
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I. INTRODUCTION23

The problem of optimizing and maximizing absorption and24

emission of electromagnetic energy is relevant for a broad25

variety of applications such as antennas, radar absorbers,26

thermal emitters and accumulators, photovoltaic devices, and27

more [1–8]. For macroscopic bodies (having sizes large28

compared to the wavelength of electromagnetic radiation),29

it is usually assumed that the ultimate absorber and emitter30

is the ideal black body that completely absorbs all incident31

rays (e.g., [9]). Conceptually, ideal black body, introduced32

by Kirchhoff [10], is totally opaque and has zero reflection33

coefficient for any propagating plane wave (any incidence34

angle and any polarization); in this sense, it is the perfect35

absorber of electromagnetic energy. Following the Planck36

theory of thermal radiation [11], the ideal black body appears37

to be also the ultimate thermal emitter for radiating heat into38

free space. Practical realization of bodies whose properties39

mimic those of ideal black bodies is a scientific and technical40

challenge (see, e.g., [2,3]).41

However, it has been recently demonstrated that, in princi-42

ple, it is possible to engineer bodies which can absorb power43

not only from incident propagating waves (incident rays in44

the Kirchhoff black-body concept), but also from external45

evanescent fields or high-order spherical harmonics of the46

incident-wave spectrum [12,13]. Due to the resonant nature47

of surface modes of these superabsorbing and superemitting48

bodies, their absorption cross section grows without limit when49

the medium parameters approach the ideal values, and the50

thermal spectral emissivity at the resonance frequency be-51

comes arbitrarily high compared to Planck’s black body of the52

same size and the same temperature. The material structures53

proposed in [12,13] realize the ideas of conjugate matching of54

all modes of free space to all modes of the absorbing/emitting55

body [8,14,15], and we call them conjugately matched bodies56

or layers (CML).57

The material realizations proposed in [12,13] are based 58

on the use of double-negative (DNG) isotropic or uniaxial 59

media which obey the uniaxial perfectly matched layer (PML) 60

conditions [16]. High-order modes of conjugately matched 61

bodies [12,13] resonate with all modes of free space and most 62

effectively exchange energy with them. However, to effectively 63

absorb or emit all the modes, it is necessary that the modes 64

of the body are sufficiently coupled with the corresponding 65

modes of free space. In [12], it is shown that if a conjugately 66

matched body fills a half-space (a planar infinite interface with 67

free space), its properties are the same as of the conventional 68

ideal black body and no absorption or radiation enhancement 69

over the ideal black-body limit can take place. To couple with 70

higher-order free-space modes, we can make the surface not 71

planar, and in [12] it is shown that for bodies of finite sizes, 72

on an example of a sphere, unlimited power exchange power 73

is indeed possible. An alternative scenario was explored in 74

paper [13], where the conjugately matched body filled a half- 75

space with an infinite planar interface, but the sources in free 76

space were positioned close to the interface and created large 77

evanescent fields which directly couple to the resonant surface 78

modes of the conjugately matched layer. Also in this case it 79

was seen that the absorption in the body was dramatically 80

stronger than in an ideal black body at the same position. 81

In this paper, we show that it is possible to realize an infinite 82

and planar surface which can absorb and emit more power than 83

the ideal black body by perturbing the surface of a conjugately 84

matched layer, introduced in [13]. In this scenario, small 85

subwavelength scatterers randomly distributed over the body 86

surface offer necessary coupling between high-order resonant 87

surface modes and the far-zone fields, opening channels for 88

extra absorption or emission of energy. In the limit of ideal 89

material parameters, this planar interface not only absorbs 90

or reflects all incident propagating waves, but does the same 91

also for all evanescent harmonics. We show that a perturbed 92
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interface with a low-loss conjugately matched body acts as a93

“super-reflector” of fields developed from a small antenna in94

its vicinity by launching the energy stored in the antenna near95

field into space.96

In particular, we introduce a random grid of electrically97

thin cylinders close to a resonant interface with a conjugately98

matched layer, where huge reactive energy is stored. Inevitably,99

currents induced in thin conductive cylinders radiate into far100

zone as linear antennas, and we say that these cylinders act as101

radiation “vessels.” A random and sparse enough distribution102

of cylinders ensures that diffuse radiation survives in the far103

zone and is not coherently combined into a plane wave. We104

test the effects of this cluster of particles on the radiation105

from various conjugately matched layers and conclude that106

for a realizable passive structure, one can achieve a stable107

20–30-fold enhancement of the far-field power.108

Such super-reflectors are extremely strongly coupled to109

evanescent fields of external sources and can extract power110

from them in the most efficient way. In the antenna ter-111

minology, the effective area of the CML reflector is larger112

than the geometrical one, although the reflector size is very113

large compared with the wavelength. Basically, we aim at114

realization of a surface which (at its resonant frequency)115

would be “more reflective than the ideal perfectly conducting116

mirror,” and this property would hold even in the limit of the117

infinite planar reflector. If the perturbing elements are lossy,118

instead of enhancing reflection we can enhance absorption in119

a planar absorbing layer or enhance thermal radiation from120

a planar hot surface into the far zone beyond the Planck121

limit of the ideal black body. We expect that perturbing the122

surface can be a more effective mean to couple to far-zone123

field as compared to curved surfaces. In the study [12] it was124

expectedly found that for large spherical bodies, when the125

curvature of the surface becomes small, one needs extreme126

(low-loss) values of material parameters in order to realize127

enough effective coupling to high-order harmonics. The sur-128

face perturbation approach, introduced here, does not have this129

limitation.130

II. CONJUGATELY MATCHED LAYER (CML)131

We begin the study by a brief explanation of the concept of132

the conjugately matched layer, introduced in [13]. It has been133

recently reported [12,13] that there can exist material bodies134

which optimally absorb energy of electromagnetic fields, by135

achieving conjugate matching for every free-space mode. In136

the theoretical limit of negligible losses in the absorbing137

body, such an optimally designed finite-sized body can absorb138

the whole infinite energy of an incident propagating plane139

wave [12]. In [13], a uniaxial medium with special values140

for its constituent parameters has been suggested as possible141

realization. The permittivities and permeabilities (transversal142

with subscript t and normal to the material sample boundary143

with subscript n) satisfy the uniaxial perfectly matched144

layer (PML) conditions [16–20] and simultaneously possess145

negative real parts as in a double-negative (DNG) medium [21],146

contrary to the conventional uniaxial PML choice. For planar147

interfaces and TM polarization (sole magnetic component148

parallel to the half-space boundary), the material parameters149

satisfy 150

εt = μt = 1

εn

= a − jb, (1)

where a and b are real parameters and a < 0. We assume 151

harmonic time dependence exp(+jωt), where ω is the angular 152

operating frequency and j is the imaginary unit. The parameter 153

b > 0 corresponds to losses for propagating plane waves, 154

and it is easy to show [16,26] that sufficiently thick slabs 155

of such materials behave as perfect absorbers for arbitrary 156

incident propagating plane waves. From duality, a similar 157

expression for the parameters of uniaxial perfect absorbers 158

holds for the fields of the TE polarization: εt = μt = 1
μn

= 159

a − jb. To ensure that the thought properties hold for both 160

orthogonal polarizations, we can require that εn = μn. For 161

compactness, in the following we present only formulas for 162

the TM polarization, without compromising the generality. 163

Any uniaxial medium characterized by the constituent 164

parameters (εt ,μt ,εn) has the following TM wave impedance 165

Z (e.g., [26]): 166

Z = −j
η0

k0εt

√
εt

εn

k2
t − εtμtk

2
0, (2)

which relates the tangential to the interface components of 167

electric and magnetic fields of plane waves in the medium. 168

The notations η0 = √
μ0/ε0 and k0 = ω

√
ε0μ0 = 2π/λ0 cor- 169

respond to the free-space wave impedance and wave number, 170

respectively (ε0 and μ0 are the permittivity and permeability of 171

vacuum, while λ0 is the operational wavelength in free space). 172

The symbol kt is used for the transversal wave number of the 173

incident plane wave. Vector kt is parallel to the boundary of 174

the half-space and normal to the sole component of magnetic 175

field. The basic property of a material with the constituent 176

parameters given by (1) when a < 0 is that its wave impedance 177

Z is the complex conjugate of the TM wave impedance of 178

vacuum Z∗ = Z0 = −j
η0

k0

√
k2
t − k2

0 [13]. 179

Most importantly, this equality is valid for every real wave 180

number kt ∈ R, either of a propagating wave in free space 181

(|kt | < k0) or of an evanescent mode (|kt | > k0). Therefore, 182

the use of such conjugately matched layers (CLM), as we 183

call them, leads to maximal power transfer from arbitrary 184

incident fields into the medium since they optimally use every 185

possible way (mode) available from sources outside of the 186

material sample. Actually, in this ideal case of overall lossless 187

conjugately matched medium, fields tend to infinity at the 188

material surface. Assuming infinitesimally small losses in the 189

CML, infinite power can be delivered to the medium, provided 190

that the incident evanescent field is created by an antenna fed 191

by an ideal voltage or current source, capable of supplying 192

infinite power. In other words, the CML structure is identical 193

to ordinary PML for |kt | < k0 but operates totally differently 194

for |kt | > k0 aiming not at zero reflection but at the maximal 195

power transfer. 196

By inspection of (1), one can directly infer that if b > 0, 197

the transversal relative constituent parameters εt ,μt , are lossy; 198

however, the normal component of the permittivity εn is an 199

active one. In order to identify the overall character of the 200

uniaxial medium, we consider a perturbed version of the 201

ideal material parameter values by using a small additional 202
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FIG. 1. (a) The testbed configuration of a grounded electrically thick slab filled with a uniaxial material (εt ,μt ,εn) with the thickness L,
excited by a TM electric dipole line inclined by the angle θ located at a small distance g from the air-medium interface. (b) The same structure
in the presence of a cluster of N electrically thin (the radius r) circular perfect magnetic conductor (PMC) cylinders randomly distributed in
the vicinity of the air-slab interface with arbitrary coordinates (xn,yn) for n = 1, . . . ,N .

parameter δ controlling the imaginary part of the normal203

permittivity εn = 1
εt

− jδ = 1
a−jb

− jδ, which tends to the204

ideal CML medium parameters for δ → 0. To study the205

properties of such a quasi-CML medium, we use the testbed206

configuration illustrated in Fig. 1(a). For simplicity of analyt-207

ical considerations, we assume that there is no dependence on208

one of the tangential coordinates (z). A grounded slab of the209

thickness L, filled with a uniaxial material with the constituent210

parameters (εt ,μt ,εn), is excited by an infinite electric-dipole211

line located at the distance g from the air-medium interface.212

The exciting dipole moments are orthogonal to the axis z213

and inclined by the angle θ with respect to the axis x214

[Fig. 1(a)]. In this configuration, the magnetic field has only215

one nonzero component (along z) and the fields are TM216

polarized.217

In [13], an approximate analytical formula for the absorbed218

power (per unit length along the ẑ axis) has been derived. It219

shows that the absorbed power P is a sum of two terms. The first220

term corresponds to the power delivered by the propagating221

modes Pprop = μ0ω
3q2/16, and it is independent from the222

angle θ . Here, q is the electric dipole moment per unit length223

of the line (measured in Coulomb). The second term gives224

the power absorbed from the evanescent-modes fields and is225

written as [13]226

Pevan
∼= Pprop

8|a|
k2

0π

∫ +∞

k0

k2
t

(
k2
t − k2

0 sin2 θ
)

(
k2
t − k2

0

)3/2 e−2g
√

k2
t −k2

0

× δ

[1 + sgn(a)]2 + δ2
[

k2
t |εt |

2(k2
t −k2

0)
]2

dkt (3)

for δ → 0. It is noteworthy that the CML slab acts as an227

ultraefficient passive absorber (P → +∞) of the incoming228

illumination for δ > 0 and as an infinite-power active emitter229

(P → −∞) for δ < 0. In the limit of δ → 0+, both the230

field strength at the surface and the absorbed power diverge231

and tend to infinity. Therefore, it would be meaningful to232

inspect the field distributions leading to such unbounded field233

concentrations.234

III. EXCITATION OF CML 235

Let us examine the fields created by a small source in the 236

vicinity of an infinite and homogeneous CML slab within the 237

testbed setup shown in Fig. 1(a). The corresponding boundary- 238

value problem is scalar, and the magnetic field possesses a 239

sole component parallel to ẑ axis [H = ẑH (x,y)]. The used 240

Cartesian coordinate system (x,y,z) is also defined in Fig. 1(a), 241

with the primary dipole line source positioned at (x,y) = (0,0). 242

The incident magnetic field from that electric-dipole line 243

(existing in vacuum) can be expressed in the following integral 244

form [22]: 245

Hinc(x,y) = −ωq

4π

∫ +∞

−∞
e−|x|κ0(kt )

×
[

kt

κ0(kt )
cos θ + j sin θ sgn(x)

]
e−jkt ydkt , (4)

where the normal to the interface component of the wave 246

number κ0(kt ) =
√

k2
t − k2

0 is evaluated with a positive real 247

part and if the real part is zero, as a positive imaginary number. 248

Analytical expression for the incident field involving Hankel 249

function [22,23] is also available but not given here for brevity 250

since all the field quantities are expressed as spectral integrals. 251

The formulated boundary-value problem can be solved 252

analytically. As a result, we find that the secondary field 253

developed due to the presence of the uniaxial slab and the 254

PEC plane in free space (x < g) is given by Hsec(x,y) = 255∫ +∞
−∞ Ssec(kt )eκ0(kt )x−jkt ydkt , where 256

Ssec(kt ) = ωq

4π
e−2gκ0(kt )

(
kt

κ0(kt )
cos θ + j sin θ

)

× κ(kt ) − εt coth[κ(kt )L]κ0(kt )

κ(kt ) + εt coth[κ(kt )L]κ0(kt )
. (5)

The value of 257

κ(kt ) =
√

k2
t

εt

εn

− k2
0εtμt (6)
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FIG. 2. The magnitude of the spatial spectral density function of the secondary field Ssec(kt ) at x = 0 with respect to the normalized wave
number kt/k0 for various inclination angles θ and (a) a = 2 (DPS-PML) and (b) a = −2 (CML). Common plot parameters: b = 0.1, δ = 0.001,
g = 0.03λ0, L = 3λ0. The represented quantity is normalized by Sinc(90◦) = jωq/(4π ).

is the normal component of the plane-wave propagation258

constant in the CML slab. The total field in vacuum equals259

to Hback(x,y) = Hinc(x,y) + Hsec(x,y).260

In Fig. 2, we present the magnitude of the integrand in261

the formula of the secondary magnetic field for x = 0 (very262

close to the air-CML boundary located at x = g), equal to263

|Ssec(kt )| as a function of the normalized transversal wave264

number kt/k0 for various inclination angles of the source265

θ . The presented quantity is normalized by the (constant)266

magnitude of the integrand of the incident field (4) for θ = 90◦:267

Sinc(90◦) = jωq

4π
, which is independent from kt and gives us a268

metric of the incident power. Figure 2(a) corresponds to a269

double-positive (DPS) conventional uniaxial PML [16] and270

it is directly observed that |Ssec| vanishes exponentially for271

evanescent waves (|kt | > k0). On the contrary, for the CML272

case [Fig. 2(b)], the integrand values have huge magnitudes 273

for |kt | > k0 regardless of the angle θ . These graphs verify 274

the aforementioned theoretical expectation that unbounded 275

absorbed power of (3) in the CML case (a < 0 and |δ| → 0) is 276

due to the extremely large magnitudes of the evanescent fields 277

developed in the vicinity of the interface, as demonstrated by 278

Fig. 2(b). Note the different scale in Figs. 2(a) and 2(b): the 279

values in the region −1 < kt/k0 < 1, which correspond to the 280

propagating-wave part of the spectrum, are the same in both 281

figures. 282

Figure 3 shows the spatial distribution of the total magnetic 283

field |Hback(x,y)| for the two cases of Fig. 2 (with θ = 90◦). 284

The represented quantity is normalized by the value of 285

the incident field at (x,y) = (g,0) and is expressed in dB. 286

We again observe how more efficient is the CML medium 287
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FIG. 3. The spatial distributions of the total magnetic field Hback(x,y) normalized by Hinc(g,0) expressed in dB for (a) a = 2 (DPS-PML)
and (b) a = −2 (CML). Common plot parameters: b = 0.1, δ = 0.001, g = 0.03λ0, L = 3λ0, θ = 90◦.
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[Fig. 2(b)] in exciting fields along its boundary compared to288

the conventional PML case [Fig. 2(a)]. However, since the289

nature of these fields is evanescent, they are rapidly decaying290

with increasing the distance from the surface (x → −∞). It291

should be stressed that the concentration of the fields in the292

vicinity of the CML interface is always huge regardless of the293

sign of δ, both for overall passive (δ > 0) or active (δ < 0)294

structures.295

In this paper, we propose to make use of this concentration296

of fields along the boundary of the two regions (x = g) to297

create an “antenna,” which would “launch” the energy stored298

in this region into the far zone x → −∞. This is not an easy299

task, though. It is well known that resonant surface modes300

along infinite and regular surfaces do not radiate energy into301

the far zone. In other words, despite the huge difference of302

the two systems (PML versus CML slab) in the near field,303

the behavior of the field radiated in the far region is similar.304

Actually, with the use of the stationary phase method, one can305

directly evaluate the azimuthal profiles of the incident and the306

secondary fields in the far zone as follows:307

hinc(ϕ) ∼ k0jωq

4
sin(ϕ − θ ), x → −∞, (7)

hsec(ϕ) ∼ −πk0Ssec(k0 sin ϕ) cos ϕ, x → −∞, (8)

for 90◦ < ϕ < 270◦. We notice that the expression of the308

secondary component, which describes the effect of the309

grounded slab, is proportional to a specific value of the function310

Ssec(kt ): the one corresponding to kt = k0 sin ϕ. Since this311

value is always smaller in magnitude than k0 (ϕ ∈ R), namely,312

corresponding to a propagating and not to an evanescent mode,313

it is clear that huge reactive fields of Fig. 2(b) do not to314

contribute to far-zone radiation. The situation is not the same315

if one uses as an electromagnetic energy sink a finite-size316

body filled with a suitable CML medium. In cylindrical [13] or317

spherical [12] cases, there are no purely evanescent modes and318

thus all the fields contribute (poorly) to the radiative power. In319

the infinite slab case analyzed here, the necessity of something320

that can act as a radiation “vessel” to allow the field energy321

stored in resonant surface modes to propagate far away from322

the source, becomes clear.323

IV. RADIATION WITH “VESSELS”324

A. Circuit theory approach325

In an attempt to find a way to exploit this huge field326

concentration and transform the sizable magnitude of evanes-327

cent modes (developed close to x = g) into radiative fields,328

we consider the configuration of Fig. 1(b). Let us randomly329

distribute small cylindrical scatterers in the vicinity of the330

air-CML slab interface. It is expected that the large evanescent331

fields would excite currents along these wires, which will act332

as radiation vessels, and their own field would be expressed as333

cylindrical modes which are always partially propagating and334

survive in the far region.335

The idea of perturbing the surface with tiny scatterers can336

be understood from the equivalent circuit corresponding to337

the fields of a particular evanescent plane-wave component338

exciting the CML slab in presence of a small scatterer, shown339

in Fig. 4. The ideal voltage source V represents the primary340

V

CML

RCML

LCML
RRAD

Radiation
“Vessel”

CVAC
jωM

Vacuum

I

IRAD

I

jXRAD

Electric
Dipole
Source

FIG. 4. Sketch of the equivalent circuit for excitation by a partic-
ular evanescent TM plane-wave component. The wave impedance of
TM waves in vacuum Z0 corresponds to the capacitance CVAC, while
the impedance Z of the CML contains a loss resistor RCML and an
inductive LCML component. The cylindrical vessel in the near field
of vacuum-CML interface is characterized by a radiation resistance
RRAD and a reactive impedance XRAD.

radiator (an electric dipole source in this configuration) and 341

capacitance CVAC expresses the wave impedance of free space 342

for a specific value of kt , given by (2) for εt = μt = εn = 1. 343

The inductive complex impedance (RCML + jωLCML) is given 344

by (2) with the parameters of the CML layer. Resistance RCML 345

models the dissipative losses in the CML slab and the current 346

flown through the primary circuit is denoted by I . The small 347

scatterer (radiation “vessel”) in the vicinity of the interface 348

is modeled by the radiation vessel circuit, of current IRAD, 349

formed by a nonresonant reactive element (jXRAD) (capacitive 350

or inductive) and a small resistor of the radiator RRAD. If 351

the scatterer is lossless, RRAD corresponds to the radiation 352

resistance, and if it is absorptive, the resistance is the sum of the 353

radiative and dissipative terms. Near-field coupling between 354

the scatterer and the resonant surface mode of the interface is 355

modeled for simplicity by mutual inductance jωM . In general, 356

the mutual impedance jωM can be a complex number with 357

any sign of the imaginary part; however, here we confine our 358

analysis to a very closely positioned particle, in which case 359

the mutual impedance is predominantly reactive (M ∈ R) and 360

inductive (M > 0) for the considered TM polarization. 361

The circuit in the absence of the radiation vessels (M = 0) 362

has been analyzed in [13], and it is clear that the power 363

delivered to the loss resistor RCML tends to infinity when the 364

series LC circuit works at resonance and under the additional 365

condition RCML → 0. In other words, the absorbed power 366

is limited only by the energy available from the primary 367

source, while there is no radiation towards the far zone 368

(PRAD = 0). In the presence of the vessels, however, the 369

systems behave dramatically different. Considering the circuit 370

of Fig. 4, we can easily find the current amplitude both in 371

the directly fed branch (I ) and in the circuit of the radiating 372

373
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vessel (IRAD):374

I = V (RRAD + jXRAD)

ω2M2 + (RRAD + jXRAD)
(
RCML + jωLCML + 1

jωCVAC

) , (9)

375

IRAD = − jωMV

ω2M2 + (RRAD + jXRAD)
(
RCML + jωLCML + 1

jωCVAC

) . (10)

If we assume that there are no particles playing the role376

of radiation vessels (M = 0), we notice that at the resonant377

frequency of the mode jωLCML + 1
jωCVAC

= 0 and in the limit378

of negligible losses into the CML slab RCML → 0, the current379

I increases without bound. However, the radiated power PRAD380

is zero because the resistance RCML represents the dissipative381

process, not the radiative operation. In this way, we come382

again to the aforementioned conclusion that the power is383

accumulated in the near field and does not reach the far zone.384

On the contrary, when the pin comes close to the vacuum-CML385

interface, the radiated power equals to that delivered to RRAD386

since it models the function of the vessel as antenna. Therefore,387

PRAD = |V |2
2

ω2M2RRAD

(ω2M2 + RRADRCML)2 + (XRADRCML)2
, (11)

under the assumption that the system works at CML resonant388

frequency, namely, ω = 1/
√

LCMLCVAC. For resonant and389

low-loss CML (RCML → 0), the expression for the radiated390

power simplifies to PRAD = RRAD|V |2
2ω2M2 . It is clear that in order to391

enhance radiation, we need to bring the CML to resonance392

and reduce its losses, while the vessels can be small and393

nonresonant. Coupling between the scatterers and the surface394

modes should be weak in the scenario.395

In the reciprocal situation of excitation by far-zone sources,396

we see that it is possible to enhance absorption beyond the397

ideal black-body full absorption of propagating plane waves398

by making the small scatterers lossy. In this case, assuming399

that the scatterers do not create a significant shadow for the400

propagating modes, the propagating plane waves deliver nearly401

all their power to the CML body, while the evanescent waves402

(high-order cylindrical harmonics) couple to the resonant403

surface modes via the small scatterers and deliver additional404

power into the loss resistors of the scatterers.405

B. Electromagnetic theory approach406

Having understood the basic operational principle from an407

equivalent circuit, which is by default an approximation for408

every single mode kt , we will next solve the problem rigorously409

for the entire spectrum of kt . A spectrum integral formulation410

is feasible if we assume random but specific positions of a411

finite number of scatterers (xn,yn) on the xy plane, where412

n = 1, . . . ,N [as shown in Fig. 1(b)]. For the sake of simplicity413

of test calculations, we assume that particles are circular414

cylinders of a small radius r and of perfectly magnetically415

conducting (PMC) material. In Fig. 1(b), the pins are located416

even at x < 0 since we have implied that the distance g of417

the primary dipole from the interface is electrically small and418

thus the evanescent fields may be strong even at the left side419

of the source. Such a choice does not affect the presented420

concept since similar results can be obtained if we restrict 421

the radiation vessels positions to the strip 0 < x < g. We 422

chose perfect magnetic conductor pins as a simple model of 423

lossless scatterers supporting magnetic currents which is most 424

appropriate for the considered TM polarization. Conceptual 425

results will not change for any other small lossless scatterers 426

at the same positions. Green’s function of the considered 427

configuration for both source (χ,ψ) and observation points 428

(x,y) in vacuum is comprised of two components. The singular 429

component is just a cylindrical wave [23]: 430

Gsingular(x,y,χ,ψ) = −j

4
H

(2)
0 (k0

√
(x − χ )2 + (y − ψ)2),

(12)
where H

(2)
0 is the Hankel function of zero order and second 431

type. The smooth component of Green’s function describes the 432

effect of the grounded CML slab on the free-space field and is 433

found as follows: 434

Gsmooth(x,y,χ,ψ) =
∫ +∞

−∞
Sgre(kt )e

κ0(kt )(x+χ)e−jkt (y−ψ)dkt ,

(13)

where the spatial spectral density is given by [24] 435

Sgre(kt ) = 1

4π

e−2κ0(kt )g

κ0(kt )

εt coth[κ(kt )L]κ0(kt ) − κ(kt )

εt coth[κ(kt )L]κ0(kt ) + κ(kt )
. (14)

If we use the symbol Mn (n = 1, . . . ,N) for the magnetic 436

currents (measured in volt/meter) induced along the axes of 437

the cylinders, the scattered magnetic field produced due to the 438

presence of them is given as the following integral [25]: 439

Hscat(x,y) = −jk0

η0

N∑
n=1

∫
(Cn)

Mn(l)[Gsingular(x,y,χ (l),ψ(l))

+Gsmooth(x,y,χ (l),ψ(l))]dl. (15)

The notation Cn is used for the contours of cylinder’s surfaces. 440

Since the cylinder radius is electrically small (k0r 	 1), the 441

magnetic currents can be assumed to be uniformly distributed 442

over the cylinder perimeter, and modeled by line currents 443

along the cylinder axes, namely, Mn(l) ∼= Mn. In this way, the 444

approximate boundary condition for zero total magnetic field at 445

the centers of the cylinders Hback(xm,ym) + Hscat(xm,ym) = 0 446

for m = 1, . . . ,N can be enforced to formulate the following 447

N × N linear system of equations with respect to the unknown 448

magnetic currents Mn: 449

N∑
n=1

Mn[Imn + 2πrGsmooth(xm,ym,xn,yn)]

= η0

jk0
Hback(xm,ym). (16)
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The quantity Imn is the following approximately evaluated450

integral:451

Imn =
∫

(Cn)
Gsingular(xm,ym,χ (l),ψ(l))dl

= −jπr

2

{
H

(2)
0 (k0r), m = n

H
(2)
0 (k0dmn), m 
= n

(17)

where dmn =
√

(xm − xn)2 + (ym − yn)2 is the distance be-452

tween the centers of the nth and the mth particles.453

In this way, the induced magnetic currents can be found and454

the scattered field in the far region (ϕ-dependent profile) takes455

the form456

hscat(ϕ) ∼ −j2πk0r

η0

N∑
n=1

Mn[ejk0ρn cos(ϕ−ϕn)

−πk0 cos ϕSgre(k0 sin ϕ)e−jk0ρn cos(ϕ+ϕn)],

x → −∞ (18)

where ρn = √
x2

n + y2
n and ϕn = arctan(xn,yn) are the polar457

coordinates of the cylindrical radiation vessels. Thus, we have458

obtained the analytical solution for the far field of the CML slab459

in the presence of numerous radiation vessels. In the following,460

we are going to use both approaches (circuit analysis and461

electromagnetic analysis) in order to study, interpret, and462

quantify the radiation enhancement achieved when the pins463

are located in the vicinity of the vacuum-CML interface.464

V. NUMERICAL RESULTS465

In the following examples, we use a large number of vessels466

which are positioned neither very close to each other, to avoid467

building effective PMC walls which will block the incident468

illumination, nor too far since we want a strong background469

field at their positions. In particular, we locate N = 80 random470

points (xn,yn) for n = 1, . . . ,N belonging to a narrow vertical471

strip {−λ0/20 < x < λ0/20, − 10λ0 < y < 10λ0}. The dis-472

tance between every couple of centers of the cylinders dmn is473

kept larger than λ0/5, so that the lattice is inhomogeneous at474

the wavelength scale and there is strong diffuse scattering into475

the far zone [26]. As referred above, we confine ourselves to476

uniaxial media (under TM illumination) with477

εt = μt = a − jb, εn = 1

εt

− jδ = 1

a − jb
− jδ, (19)

and we are mainly interested in the CML cases with a < 0.478

Obviously, the presented results are dependent on the random479

distribution of the radiation vessels; however, our studies of a480

number of particular realizations of the pins distribution show481

that the obtained conclusions are valid regardless of the spatial482

distribution of the PMC pins in the vicinity of the CML slab.483

A. Radiation enhancement484

A metric of how strong is the effect of the radiation485

vessels on the radiated far-field strength should be definitely486

related with the energy of the azimuthal field profiles:487

{hinc(ϕ),hsec(ϕ),hscat(ϕ)}. In particular, we can define the488

radiation enhancement ratio R as the ratio of the far-zone489

power radiated in the presence of the near-field scatterers over 490

the corresponding quantity in the absence of them: 491

R =
∫ 3π/2
π/2 |h(ϕ)|2dϕ∫ 3π/2

π/2 |hinc(ϕ) + hsec(ϕ)|2dϕ

≡
∫ 3π/2
π/2 |hinc(ϕ) + hsec(ϕ) + hscat(ϕ)|2dϕ∫ 3π/2

π/2 |hinc(ϕ) + hsec(ϕ)|2dϕ
. (20)

Here, we evaluate and analyze the radiation enhancement fac- 492

tor R when certain parameters of the considered configuration 493

vary. We are seeking for combinations of the structure, the 494

material parameters, and the excitation which lead to R � 1, 495

namely, a substantial improvement of the radiated power when 496

one puts a random cluster of cylinders in the near region of the 497

resonant surface. 498

In Fig. 5(a), we show the ratio R as a function of the real part 499

a of the relative transversal permittivities/permeabilities (a = 500

Re[εt ] = Re[μt ]) for various perturbation parameters δ. One 501

directly observes a huge change in the magnitude of R taking 502

place when the material parameters transit from the double- 503

negative (CML) slabs (a < 0) to double-positive, conventional 504

PML slabs (a > 0). This feature is explained by the resonant 505

nature of the CML with a < 0. That is why we are focusing on 506

the case of CML (a < 0) rather than the conventional uniaxial 507

PML (a > 0). With the purple dots, we show (in the DNG 508

cases a < 0) the points on each curve for which the normal 509

permittivity becomes lossless (it is lossy on the left side of 510

the dots and active on the right side). In other words, the dots 511

indicate the equality δ = b
a2+b2 ⇒ a = −

√
b
δ

− b2, which is 512

valid (within the considered ranges of a) only for the three of 513

the four curves of Fig. 5(a) [and for none of Fig. 5(b)]. It is clear 514

that when one moves along that “ultimate passivity boundary” 515

(where none of the permittivity/permeability components are 516

active) defined by the aforementioned successive purple dots, 517

takes a decreasing R both for increasing δ and for increasing 518

a < 0 (when |a < 0| becomes smaller). We can also conclude 519

that even when the medium is lossy for any direction of the 520

fields, the radiation enhancement is significant. 521

Most importantly, these results prove that the radiation 522

enhancement due to strong coupling of resonant surface modes 523

to the far-field modes is orders of magnitude higher than 524

possible reduction of radiation of propagating modes into the 525

far zone. Recall that in the absence of the scatterers and δ → 0, 526

the CML slab is perfectly matched to free space. For small 527

values of b, all propagating modes are fully reflected, and we 528

clearly see that adding pins makes the reflected fields more 529

than two orders of magnitude stronger than reflected from a 530

conventional perfect reflector. Furthermore, R is larger when δ 531

is closer to zero which is anticipated by the limiting expression 532

of (3) in the DNG case. The best results are recorded when a 533

is negative but close to zero (much larger than −1, namely, for 534

−1 	 a < 0) where the radiation enhancement is giant and 535

practically independent from δ. In Fig. 5(b), we represent R 536

as a function of a for several loss parameters b. Again, we 537

note that the cluster works only in the CML case, where it 538

does a very good job (R > 50 on average). Finally, a smaller 539

imaginary part b (with fixed δ > 0) favors the increase in the 540

radiated power achieved with the cylindrical vessels. 541
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FIG. 5. The radiation enhancement ratio R as a function of the real part of the transversal components a = Re[εt ] = Re[μt ] for (a) several
perturbation parameters δ = Im[1/εt − εn] of the normal component of the material parameters (with b = 0.1) and (b) several values of the
imaginary part b = −Im[εt ] = −Im[μt ] (with δ = 0.03). Plot parameters: r = λ0/200, N = 80, g = λ0/20, L = 3λ0, θ = 90◦.

The singular behavior of the radiated power in the limit542

a → 0− can be explained by considering the quality factor543

of the resonating surface modes. To do that, we calculate the544

equivalent inductance LCML and resistance RCML considering545

the wave impedance Z of the CML medium (2); similarly,546

one can find expressions for the capacitive effect of free space547

CVAC by evaluating Z0. If one assumes that δ > 0 (to ensure548

overall passivity), evanescent modes |kt | > k0 (for which the549

interesting phenomena happen) and a < 0 (to have resonance),550

the quality factor of the equivalent RLC series circuit takes551

the form552

Q = 1

RCML

√
LCML

CVAC
⇒

Q ∼=

√
2
(
k2
t − k2

0

)
k2
t

√
2
(
k2
t − k2

0

) + bδk2
t

(−a)δ
, δ → 0+. (21)

It is easy to see that the loss parameter RCML is proportional to553

(−a)δ in this case. Thus, for a fixed level of losses in the CML554

slab (measured by δ), the quality factor behaves as 1/a for a →555

0−. Figure 6 shows the values of the quality factor on the plane556

a

1/
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FIG. 6. The decimal logarithm of the quality factor of the
equivalent circuit log Q with respect to the real part of the transver-
sal components a = Re[εt ] = Re[μt ] and the inverse perturba-
tion parameter 1/δ = 1/Im[1/εt − εn]. Plot parameters: kt = 1.5k0,
b = 0.1.

(a,1/δ) in the region −2 < a < 0.2, 1 < 1/δ < 100. It is clear 557

that Q obtains huge magnitudes when |a|,δ are very small for 558

the CML scenario, namely, under the assumption of a < 0. The 559

ultimate passivity boundary, along which we have a nonactive 560

εn (Im[εn] = 0), is indicated by a white line with purple dots. It 561

divides the map (a,1/δ) into two regions: one upper right which 562

corresponds to active normal permittivity (Im[εn] > 0) and 563

one lower left which concerns a passive normal permittivity 564

(Im[εn] < 0). 565

In Fig. 7(a), we depict the variations of the radiation 566

enhancement R with respect to the perturbation parameter 567

δ = Im[ 1
εt

− εn] = Im[ 1
μt

− εn] for several values of the real 568

parts a of the transversal constituent components. When δ > 0, 569

namely, when the structure is overall passive, the effect of the 570

radiation vessels becomes weaker and weaker for increasing δ, 571

which is also obvious from Fig. 5(a). Note, however, that when 572

the real part of the transversal permittivity approaches zero 573

from negative values, radiated power enhancement remains 574

substantial even for rather large positive δ, that is, for rather 575

high overall losses in the system. On the other hand, when 576

δ < 0, the structure is overall active and the whole slab acts 577

as an additional power source; that is why the variations 578

are sharper and more parameter dependent. In particular, R 579

possesses substantially oscillating and, on the average, much 580

higher values when δ < 0; in addition, the fluctuations are 581

weaker and the output more stable when a is negative but 582

close to zero. It should be pointed out that these “spikes” 583

in the response of the active structures reminds of electrical 584

thickness resonances combined with a proper excitation. As 585

it will be illustrated later in the analysis, such behavior is not 586

attributed mainly to the presence of a random grid of pins but 587

to the fact that the grounded slab is active and infinite in size. 588

Again, one can observe the behavior of the system along the 589

“ultimate passivity limit” (purple dots) which indicate once 590

again that the functions R = R(δ > 0) and R = R(a < 0) are 591

decreasing. 592

In Fig. 7(b), the change of R = R(δ) is shown for various 593

b = Im[εt ] = Im[μt ]. The radiation enhancement is almost 594

independent from the imaginary part b in the passive scenario, 595

while, similarly to Fig. 7(a), shaky response is observed when 596

δ < 0. It appears that when the system is overall active, one 597

can find specific narrow intervals of δ where extremely high 598
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FIG. 7. The radiation enhancement ratio R as function of the perturbation parameter δ = Im[1/εt − εn] for (a) various real part of transversal
components a = Re[εt ] = Re[μt ] (with b = 0.2) and (b) various imaginary parts b = −Im[εt ] = −Im[μt ] (with a = −1). Plot parameters:
r = λ0/200, N = 80, g = λ0/20, L = 3λ0, θ = 90◦.

radiation is achieved regardless of the inherent losses b along599

the transversal directions.600

As far as the rapid oscillations of the device response for601

δ < 0 are concerned, we show in Fig. 8(a) the reflection602

coefficient when the radiation vessels are absent and the603

structure is illuminated by an obliquely incident propagating604

plane wave. In Fig. 8(a), we represent the decimal logarithm605

of the reflection coefficient with respect to the perturbation606

parameter of the imaginary part δ and the incidence angle.607

Apparently, the reflection coefficient can be larger than unity608

for the active case (δ < 0); furthermore, sharp maxima are609

recorded for the same half-plane close to the grazing angle.610

In other words, similar “spikes” as those appearing in Fig. 7611

constitute a characteristic of the active structure even though612

no evanescent modes are considered (real incidence angles)613

and no radiation vessels are used. They are just resonances614

of an infinite active slab which pumps energy to the system615

occurring at specific excitation directions. To better understand616

how these oscillations depend on the real part of the transversal617

permittivity/permeability of the CML, we show [Fig. 8(b)] the618

average magnitude of the aforementioned reflection coefficient619

(with respect to the real incidence angle) as a function of δ for620

several a. It is clear that the number of peaks increases for621

more negative a and most of them are exhibited for δ → 0−; 622

such a conclusion is compatible with the variations in Fig. 7(a). 623

Finally, the curve spikes in Fig. 8(b) do not appear at the same δ 624

as those in Fig. 7(a) since they correspond to different systems 625

(excitation and structure); however, the inherent tendency of 626

the active slab (δ < 0) towards abruptly changing response is 627

demonstrated in both cases. 628

A more systematic approach which proves the necessity 629

of an overall active slab (δ < 0) in order to have sharp 630

maxima comes from the corresponding transmission-line 631

model of the grounded CML slab. The reflection coefficient 632

of a vessel-free structure [which is represented in Fig. 8(a)] 633

is written in terms of the TM wave impedances (2) as 634

follows: RC = Z0−Z tanh[κ(kt )L]
Z0+Z tanh[κ(kt )L] . The quantity RC has large (or 635

infinite) magnitude, which imply sharp variations, when its 636

denominator takes small (or zero) values. It is more feasible 637

when the argument of hyperbolic tangent is an imaginary 638

number; it is then replaced by a trigonometric tangent whose 639

range is infinite and thus the equality Z0 + Z tanh[κ(kt )L] = 0 640

becomes easier to get (even approximately) satisfied. Such 641

a condition can only be fulfilled when quantity under the 642

square root of κ(kt ) is negative and thus purely real, namely, 643

when Im[κ2(kt )] = 0 ⇒ k2
t = 2bk2

0( 1
2b−(a2+b2)δ − δ). For this 644

δ
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FIG. 8. (a) The decimal logarithm of the magnitude of the reflection coefficient of the vessel-free structure as function of the perturbation of
the imaginary part δ and the incidence angle (with a = −1.5). (b) The average magnitude of the reflection coefficient over all the real incidence
angles as function of the perturbation δ for various real parts of transversal components a. Plot parameters: b = 0.2, L = 3λ0.
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FIG. 9. The radiation enhancement ratio R for various values of the real part of transversal components a = Re[εt ] = Re[μt ] as a function
of the electrical distance of the source from the interface g/λ0 (L = 3λ0). (a) Overall passive CML with δ = 0.02. (b) Overall active CML with
δ = −0.02. Plot parameters: b = 0.2, r = λ0/200, N = 80, θ = 90◦.

direction of excitation, the propagation constant in the CML645

slab is real and takes the form κ ∼= k0
a2+b2√

2b

√
δ for small δ → 0.646

It is now clear that the only way for the quantity tanh[κ(kt )L]647

to have the sharp variations of the trigonometric tangent is to648

use an overall active structure with δ < 0 (given that b > 0).649

In Fig. 9, we identify the influence of the location of the650

primary source in representative passive and active scenarios651

(δ = ±0.02). In Fig. 9(a), we can see that the radiation falls652

rapidly as the primary source gets distant from the air-CML653

slab interface because the evanescent part of the exciting654

field gets weaker. However, especially in the active case655

shown in Fig. 9(b), radiation enhancement remains significant656

even when the distance to the source is much larger than657

the wavelength. As indicated above, in the active case the658

enhancement factor R takes, on the average, higher values659

and exhibits a less monotonic behavior as a function of the660

geometrical and material parameters of the configurations.661

B. Radiation patterns662

Apart from the macroscopic insight offered by the radiation-663

enhancement metric R, one can understand many features by664

observing the azimuthal variations of the far-field patterns for665

the introduced radiation-enhancing mirrors. The represented 666

quantities are normalized by |hinc(0)| = k0ωq/4. The incident 667

field in the far region hinc(ϕ) is evaluated by (7), the back- 668

ground field hinc(ϕ) + hsec(ϕ) is given by (8), and the total field 669

in the presence of the cylinders hinc(ϕ) + hsec(ϕ) + hscat(ϕ) is 670

computed using (18). 671

In Fig. 10, we illustrate two characteristic cases: one passive 672

[Fig. 10(a)] and one active [Fig. 10(b)]. The far-field patterns 673

are represented in the case that the grounded CML slab is 674

nearly fully reflecting propagating waves (we select the dissi- 675

pation parameter b = 0 and the CML loss factor δ is small). 676

The three curves compare the far-field pattern of the primary 677

source into free space (green), the pattern for the CML slab 678

without perturbing pins (blue), and the CML slab with radia- 679

tion enhancing vessels (red). The green curve is simply the pat- 680

tern of a dipole line source, with the maximum in the broadside 681

direction [in both Figs. 10(a) and 10(b)]. CML slab without 682

pins basically acts as a reflector for the propagating part of the 683

incident spectrum and its response gets substantially enhanced 684

along the grazing-angle directions (ϕ ∼= 90◦,270◦) for the 685

active scenario. We can see that for the passive mirror the max- 686

imum enhancement of the field strength equals 2 (fourfold in 687

terms of power), which takes place for directions along which 688
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FIG. 10. The azimuthal profiles |h(ϕ)|2 (normalized by |hinc(0)|2 = k2
0ω

2q2/16) of the incident field, the background field and the total
field as functions of angle ϕ for: (a) a passive scenario (δ = +0.01) and (b) an active scenario (δ = −0.01). Plot parameters: a = −2, b = 0,
L = 3λ0, gλ0/10, r = λ0/100, N = 80, θ = 90◦.
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FIG. 11. The azimuthal profiles |h(ϕ)|2 [normalized by |hinc(0)|2 = k2
0ω

2q2/16] of the incident field, the background field, and the total
field for (a) a = −0.25, δ = 0.02, L = 2.557λ0, g = λ0/20 (R ∼= 84) and (b) a = −1, δ = −0.02, L = 3λ0, g = 0.0665λ0 (R ∼= 525). Plot
parameters: b = 0.2, r = λ0/200, N = 80, θ = 90◦.

the reflected field sums up in phase with the field of the primary689

source. This value is the maximal possible value of the reflected690

field from any ideally reflecting planar mirror (with arbitrary691

reflection phase). We clearly see that the radiation vessels692

provide an additional radiation channel via the evanescent part693

of the spectrum, and the radiated power is strongly enhanced,694

well above the fundamental limit for any lossless mirror.695

In Fig. 11, we represent the results also for a passive696

[Fig. 11(a)] and an active [Fig. 11(b)] case which correspond697

to high radiation enhancement R. Losses in the CML are698

present (b = 0.2), so that the reflections of the propagating699

part of incident waves are weak. That is why we see that the700

blue and green curves nearly coincide for the passive CML.701

The chosen value of δ = 0.02 leads to an enhancement in702

radiation by a factor of R ∼= 84. In this case, it is apparent that703

the far-field response of the CML slab without the radiation704

enhancing cluster is almost identical to the incident field,705

which is anticipated from (8). However, when one puts the706

randomly distributed vessels in the near field, the output power707

of the antenna gets significantly amplified (and the pattern708

becomes asymmetric with respect to ϕ = 180◦). In Fig. 11(b),709

corresponding to an active CML, we use δ = −0.02 and the710

enhancement is huge in all directions (the overall radiated711

power enhancement factor R ∼= 525).712

All the proposed structures used in the aforementioned713

cases incorporate as the main component the CML medium,714

a material whose effective properties are described above. For715

this reason, the issue of actually realizing DNG structures716

with controllable values of the longitudinal parameters may be717

raised. To emulate the negative transversal permittivities and718

permeabilities, one of the most promising configurations is the719

so-called fishnet structure [27,28]; a multilayered structure of720

perforated thin metal sheets. As far as the longitudinal direction721

is concerned, one can insert into the formed holes rods of722

negative permittivity materials or wire media to achieve the723

desired response. A more detailed description on how materials724

with CML properties may be constructed is contained in [13].725

VI. CONCLUSIONS726

It is well known that infinite homogeneous planar sur-727

faces can fully reflect electromagnetic waves in the limit of728

negligible losses. In this case, the amplitude of waves radiated 729

by a source near the mirror can be doubled as compared with 730

the incident waves. This surface is thought to be “ideally 731

shiny.” On the other hand, the reflection coefficient from 732

planar surfaces can be, in principle, made zero for all incident 733

propagating waves (any polarization and any incident angle). 734

In this case, all power of incident propagating plane waves 735

is absorbed and the surface is “ideally black,” absorbing 736

maximum power and, reciprocally, emitting maximal heat 737

power according to the Plank law. In both these scenarios, 738

evanescent waves do not participate in power exchange 739

between far-zone external sources and the material body. 740

In this paper, we have shown that perturbing the boundary 741

of an infinite planar surface which maintains resonant surface 742

modes, can in principle realize a planar reflector which reflects 743

more power than any ideally reflecting planar surface. Due 744

to perturbations, surface modes couple to propagating plane 745

waves and create additional channels for power exchange via 746

evanescent fields. Such perturbed resonant surface extracts 747

extra power from near sources and sends that into space. The 748

amplitude of the reflected field can be orders of magnitude 749

larger than the maximal value of 2 for any usual lossless 750

mirror. Making the perturbation lossy, it can become possible 751

to overcome the black-body limit even for planar surfaces. In 752

this scenario, the black body absorbs nearly all propagating 753

waves, while the perturbations provide coupling between the 754

resonant surface modes and an additional energy sink via 755

evanescent modes. 756

The perturbations are random at the wavelength scale 757

and nonresonant. In this configuration, the surface-averaged 758

currents induced in the perturbation objects (which could 759

partially reflect propagating waves and compromise their 760

absorption in the CML body) are small because they couple to 761

nonresonant propagating modes of the absorbing or reflecting 762

body. On the other hand, current components which vary fast 763

on the wavelength scale can be huge because they couple to 764

highly resonant CML body. These spatially inhomogeneous 765

resonant currents on the perturbations provide additional 766

channels for power exchange between the body and free-space 767

wave modes, allowing stronger reflections than from an ideal 768

reflector or more absorption than in the ideal black body. 769
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Analyzing the far-zone radiation patterns, we see that770

there is an analogy between the revealed phenomena and771

superdirectivity of antennas [29]. Superdirective radiators can772

create a narrow beam with the directivity higher than that of the773

same configuration which is uniformly excited [30]. However,774

in the configuration which we have introduced here, it appears775

that the planar reflector sends superdirective beams nearly776

everywhere (pattern oscillations are determined by random777

positions of radiation vessels). There is also a connection of778

the revealed phenomena to the concept of perfect lens as a779

slab of a lossless double-negative material [31]. The perfect780

lens operation also exploits resonance of surface modes at an781

interface between free space and a double-negative material.782

In the perfect lens concept, high-amplitude reactive fields783

at the entry interface are focused behind the lens thanks784

to interactions between resonant modes of the two parallel785

surfaces of the lens. In papers [12,13], it was shown how786

the reactive energy of the resonant surface modes can be787

fully absorbed. Here, we have shown that this energy can788

be launched into space, creating super-reflectors and far-field789

superemitters.790

This study is relevant also to the technologies of wireless791

power transfer. In order to ensure the fastest wireless energy792

transfer from a source to the user, one needs to maximize793

the channel capacity for power transport. In communications 794

technologies, the concept of MIMO (multiple input, multiple 795

output) exploits the idea of sending signals via many different 796

rays which may reach the receiver. However, if we are 797

concerned with the task of energy transfer, still only one 798

mode is conventionally exploited, even if multiple antennas 799

are used to send power to the receiver. In the near-field 800

scenario, this is the magnetic dipole mode of receiving coil 801

antennas. In the far-field scenario, this is the propagating plane 802

wave (transverse electromagnetic, TEM) mode. Here, we have 803

shown how a multichannel wireless power transfer can be in 804

principle realized. 805

Although in this paper we have considered a particular 806

realization of surface perturbations in the form of a random 807

array of thin cylinders, the concept is general and the surface 808

can be perturbed in many various ways, for instance, simply 809

making the surface rough at the appropriate wavelength scale. 810

Likewise, the surface does not have to be planar or infinite: 811

properly perturbing the surface of a finite-size conjugately 812

matched body we can dramatically enhance its coupling 813

to electromagnetic fields in space. Discussed superemission 814

and superabsorption phenomena can potentially enable new 815

approaches to optimizing wireless transfer of energy or 816

information and in radiative heat transfer management. 817
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superabsorbers, Phys. Rev. B 89, 121416(R) (2014).

[8] D.-H. Kwon and D. M. Pozar, Optimal characteristics of an
arbitrary receive antenna, IEEE Trans. Antennas Propag. 57,
3720 (2009).

[9] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (Wiley, Weinheim, 2007), p. 129.

[10] G. Kirchhoff, On the relation between the radiating and
absorbing powers of different bodies for light and heat, Philos.
Mag. 4, 1 (1860).

[11] M. Planck, The Theory of Heat Radiation, 2nd. ed. translated by
M. Masius (P. Blakiston’s Son, Philadelphia, 1914).

[12] S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov,
Overcoming black body radiation limit in free space:

Metamaterial superemitter, New J. Phys. 18, 013034
(2016).

[13] C. A. Valagiannopoulos, J. Vehmas, C. R. Simovski, S. A.
Tretyakov, and S. Maslovski, Electromagnetic energy sink,
Phys. Rev. B 92, 245402 (2015).

[14] Y. I. Bobrovnitskii, Impedance theory of sound absorption: The
best absorber and the black body, Acoust. Phys. 52, 638 (2006).

[15] L. N. Zakhariev and A. A. Lemanski, Scattering of Waves
by “Black” Bodies (Sovetskoje Radio 34, Moscow, 1972) (in
Russian).

[16] S. D. Gedney, An anisotropic perfectly matched layer-absorbing
medium for the truncation of FDTD lattices, IEEE Trans.
Antennas Propag. 44, 1630 (1996).

[17] R. W. Ziolkowski, The design of Maxwellian absorbers for
numerical boundary conditions and for practical applications
using artificial engineered materials, IEEE Trans. Antennas
Propag. 45, 656 (1997).

[18] F. L. Teixeira and W. C. Chew, General closed-form PML
constitutive tensors to match arbitrary bianisotropic and disper-
sive linear media, IEEE Microwave Guided Wave Lett. 8, 223
(1998).

[19] S. A. Tretyakov and T. G. Kharina, The perfectly matched layer
as a synthetic material with active inclusions, Electromagnetics
20, 155 (2000).

[20] N. Tedeschi, F. Frezza, and A. Sihvola, On the perfectly matched
layer and the DB boundary condition, J. Opt. Soc. Am. A 30,
1941 (2013).

[21] V. G. Veselago, The electrodynamics of substances with simul-
taneously negative values of ε and μ, Usp. Fiz. Nauk 92, 517
(1967) [Sov. Phys.–Usp. 10, 509 (1968)].

[22] C. A. Valagiannopoulos, M. S. Mirmoosa, I. S. Nefedov, S.
A. Tretyakov and C. R. Simovski, Hyperbolic-metamaterial

005100-12

http://dx.doi.org/10.1002/adma.201200674
http://dx.doi.org/10.1002/adma.201200674
http://dx.doi.org/10.1002/adma.201200674
http://dx.doi.org/10.1002/adma.201200674
http://dx.doi.org/10.1103/PhysRevApplied.3.037001
http://dx.doi.org/10.1103/PhysRevApplied.3.037001
http://dx.doi.org/10.1103/PhysRevApplied.3.037001
http://dx.doi.org/10.1103/PhysRevApplied.3.037001
http://dx.doi.org/10.1063/1.3184594
http://dx.doi.org/10.1063/1.3184594
http://dx.doi.org/10.1063/1.3184594
http://dx.doi.org/10.1063/1.3184594
http://dx.doi.org/10.1088/1367-2630/12/6/063006
http://dx.doi.org/10.1088/1367-2630/12/6/063006
http://dx.doi.org/10.1088/1367-2630/12/6/063006
http://dx.doi.org/10.1088/1367-2630/12/6/063006
http://dx.doi.org/10.1103/PhysRevLett.109.104301
http://dx.doi.org/10.1103/PhysRevLett.109.104301
http://dx.doi.org/10.1103/PhysRevLett.109.104301
http://dx.doi.org/10.1103/PhysRevLett.109.104301
http://dx.doi.org/10.1364/OE.21.014988
http://dx.doi.org/10.1364/OE.21.014988
http://dx.doi.org/10.1364/OE.21.014988
http://dx.doi.org/10.1364/OE.21.014988
http://dx.doi.org/10.1103/PhysRevB.89.121416
http://dx.doi.org/10.1103/PhysRevB.89.121416
http://dx.doi.org/10.1103/PhysRevB.89.121416
http://dx.doi.org/10.1103/PhysRevB.89.121416
http://dx.doi.org/10.1109/TAP.2009.2025975
http://dx.doi.org/10.1109/TAP.2009.2025975
http://dx.doi.org/10.1109/TAP.2009.2025975
http://dx.doi.org/10.1109/TAP.2009.2025975
http://dx.doi.org/10.1080/14786446008642901
http://dx.doi.org/10.1080/14786446008642901
http://dx.doi.org/10.1080/14786446008642901
http://dx.doi.org/10.1080/14786446008642901
http://dx.doi.org/10.1088/1367-2630/18/1/013034
http://dx.doi.org/10.1088/1367-2630/18/1/013034
http://dx.doi.org/10.1088/1367-2630/18/1/013034
http://dx.doi.org/10.1088/1367-2630/18/1/013034
http://dx.doi.org/10.1103/PhysRevB.92.245402
http://dx.doi.org/10.1103/PhysRevB.92.245402
http://dx.doi.org/10.1103/PhysRevB.92.245402
http://dx.doi.org/10.1103/PhysRevB.92.245402
http://dx.doi.org/10.1134/S1063771006060030
http://dx.doi.org/10.1134/S1063771006060030
http://dx.doi.org/10.1134/S1063771006060030
http://dx.doi.org/10.1134/S1063771006060030
http://dx.doi.org/10.1109/8.546249
http://dx.doi.org/10.1109/8.546249
http://dx.doi.org/10.1109/8.546249
http://dx.doi.org/10.1109/8.546249
http://dx.doi.org/10.1109/75.678571
http://dx.doi.org/10.1109/75.678571
http://dx.doi.org/10.1109/75.678571
http://dx.doi.org/10.1109/75.678571
http://dx.doi.org/10.1080/027263400308348
http://dx.doi.org/10.1080/027263400308348
http://dx.doi.org/10.1080/027263400308348
http://dx.doi.org/10.1080/027263400308348
http://dx.doi.org/10.1364/JOSAA.30.001941
http://dx.doi.org/10.1364/JOSAA.30.001941
http://dx.doi.org/10.1364/JOSAA.30.001941
http://dx.doi.org/10.1364/JOSAA.30.001941
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699


THEORETICAL CONCEPTS OF UNLIMITED-POWER EMITTER . . . PHYSICAL REVIEW B 00, 005100 (2016)

antennas for broadband enhancement of dipole emission to free
space, J. Appl. Phys. 116, 163106 (2014).

[23] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of
Waves, IEEE Series on Electromagnetic Wave Theory (Wiley,
Hoboken, NJ, 1972).

[24] C. A. Valagiannopoulos, On examining the influence of a
thin dielectric strip posed across the diameter of a pene-
trable radiating cylinder, Prog. Electromagn. Res. C 3, 203
(2008).

[25] C. A. Valagiannopoulos, Study of an electrically anisotropic
cylinder excited magnetically by a straight strip line, Prog.
Electromagn. Res. C 73, 297 (2007).

[26] S. A. Tretyakov, Analytical Modeling in Applied Electromag-
netics (Artech House, London, 2003).

[27] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A.
Genov, G. Bartal, and X. Zhang, Three-dimensional optical
metamaterial with a negative refractive index, Nature (London)
455, 376 (2008).

[28] M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M.
Soukoulis, and E. N. Economou, Left-handed metamaterials:
The fishnet structure and its variations, Phys. Rev. B 75, 235114
(2007).

[29] S. A. Schelkunoff, A mathematical theory of linear arrays, Bell
Syst. Tech. J. 22, 80 (1943).

[30] R. C. Hansen, Fundamental limitations in antennas, Proc. IEEE
69, 170 (1981).

[31] J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys.
Rev. Lett. 85, 3966 (2000).

005100-13

http://dx.doi.org/10.1063/1.4900528
http://dx.doi.org/10.1063/1.4900528
http://dx.doi.org/10.1063/1.4900528
http://dx.doi.org/10.1063/1.4900528
http://dx.doi.org/10.2528/PIERC08042906
http://dx.doi.org/10.2528/PIERC08042906
http://dx.doi.org/10.2528/PIERC08042906
http://dx.doi.org/10.2528/PIERC08042906
http://dx.doi.org/10.2528/PIER07041203
http://dx.doi.org/10.2528/PIER07041203
http://dx.doi.org/10.2528/PIER07041203
http://dx.doi.org/10.2528/PIER07041203
http://dx.doi.org/10.1038/nature07247
http://dx.doi.org/10.1038/nature07247
http://dx.doi.org/10.1038/nature07247
http://dx.doi.org/10.1038/nature07247
http://dx.doi.org/10.1103/PhysRevB.75.235114
http://dx.doi.org/10.1103/PhysRevB.75.235114
http://dx.doi.org/10.1103/PhysRevB.75.235114
http://dx.doi.org/10.1103/PhysRevB.75.235114
http://dx.doi.org/10.1002/j.1538-7305.1943.tb01306.x
http://dx.doi.org/10.1002/j.1538-7305.1943.tb01306.x
http://dx.doi.org/10.1002/j.1538-7305.1943.tb01306.x
http://dx.doi.org/10.1002/j.1538-7305.1943.tb01306.x
http://dx.doi.org/10.1109/PROC.1981.11950
http://dx.doi.org/10.1109/PROC.1981.11950
http://dx.doi.org/10.1109/PROC.1981.11950
http://dx.doi.org/10.1109/PROC.1981.11950
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1103/PhysRevLett.85.3966



