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Abstract—In this paper, a cooperative cognitive radio network
(CRN) with energy harvesting capabilities of its secondary users
is considered. Specifically, cooperative spectrum sensing and
multi-antenna beamforming are employed to improve the sensing
performance and the energy transfer efficiency, respectively. In
our approach, a homogeneous CRN scenario is studied where the
optimal sensing probability of each second user (SU) is obtained
to maximize the control center (CC) throughput while satisfying
the energy causality and primary user (PU) collision constraints.
An iterative algorithm is proposed to obtain the optimal charging
time. Numerical results depict that in an energy constrained
scenario, cooperative spectrum sensing with beamforming per-
forms much better than cooperative spectrum sensing without
beamforming in terms of increased system throughput.

Index Terms—Cooperative spectrum sensing, energy harvest-
ing, energy cooperation, cognitive radio networks, energy beam-
forming

I. INTRODUCTION

Green mobile networks have received substantial attention
from both academia and industry as a promising approach
to increasing energy efficiency in response to the growing
concerns about operational expenditures. Green networks ad-
dress the global environmental cost of using fossil energy to
power the cellular infrastructure [1]. Representative works in-
clude energy harvesting hardware and devices, energy-efficient
communication techniques, energy-aware network architec-
ture/protocol design, energy-friendly software applications,
and renewable energy sources. Interest with regard to the
powering mobile networks with renewable energy sources has
increased substantially.

Since radio frequency (RF) signals that can carry energy and
be used as a vehicle for transporting information at the same
time, simultaneous wireless information and power transfer
(SWIPT) proposed in [2] becomes an interesting new area of
research. The authors in [3] studied the performance limits
for multiple-input-multiple-output (MIMO) SWIPT systems
and characterized achievable rate-energy tradeoffs for various
practical receiver designs. In order to maximize the harvested
energy, it is necessary to coordinate the transmit direction to
the receiver (energy beamforming). The key for successful

energy beamforming is the channel state information (CSI)
knowledge at the transmitter side [4].

In addition to the CSI determination, another key design
objective in wireless communication is the spectral effi-
ciency which addresses the increasing spectrum demands of
multimedia services. Cognitive radio networks (CRNs) are
seen as promising technologies to achieve greater spectral
efficiency [5]. Large portions of the licensed spectrum are
seriously underutilized, leading the concept of opportunistic
spectrum access, allowing secondary users to exploit under-
utilized spectrum gains [6].

Spectrum sensing is a well-recognized enabling technique
for CRNs. Due to the hidden terminal problem, a secondary
user (SU) may not notice the existence of the primary user
(PU) and increase the interference to the licensed systems. One
method to solve the above hidden terminal problem is allowing
multiple cognitive users to cooperatively perform spectrum
sensing. It has been shown that the performance of spectrum
sensing can be improved with an increase of the number of
cooperative partners [7] and can therefore overcome both the
hidden terminal problem and poor channel conditions (multi-
path fading and shadowing) [8].

Recently, there has been research on CR systems using
energy-harvesting techniques [9]. Optimal couple of sensing
duration and detection threshold was studied in [10]. In our
previous work, an RF-energy harvesting CRN employed coop-
erative spectrum sensing and an optimal cooperative spectrum
sensing strategy was proposed to maximize the control center
(CC) spectral efficiency [11]. Due to the limited antennas at
the power source, however, the energy efficiency based on the
aforementioned systems was difficult to satisfy the practical
requirement without energy beamforming, especially when for
long transfer distances.

In this paper, we consider beamforming RF-energy har-
vesting CR systems which use cooperative spectrum sensing
in order to improve the sensing accuracy and the energy
efficiency. The main contributions of this paper are twofold:
i) A new mutually beneficial relationship between the CC
and the SU is proposed and ii) An optimization problem to
achieve the optimal sensing-throughout trade-off under the



energy causality constraints is formulated and resolved.
In Section II, we describe the system model and formulate

the expressions for the normalized effective throughput of
the CC. The proposed beam and sensing policy with optimal
solution is presented in Section III together with our proposed
iterative algorithm. We provide the numerical results and
discussions in Section IV and conclude with Section V.

II. SYSTEM MODEL

We consider a CRN where there are N single-antenna
SUs, one CC with M antennas and one PU. Each SU has
harvested energy to power its uplink information transmis-
sion and spectrum sensing. We assume that the CC and all
SUs are perfectly synchronized and operate with a time-
division-duplexing (TDD) protocol. We consider frame-based
transmissions over flat-fading channels on a single frequency
band. The system consists of a licensed channel occupied
by a PU transmitter. In each time slot, the PU occupies the
spectrum with a probability p0 and the spectrum is idle with
probability pi = 1 − p0. As shown in Fig. 1, N SUs access
the PU spectrum opportunistically. SUs use energy-harvesting
techniques to recharge their batteries. Each SU employs a hard
decision fusion scheme due to its higher energy and bandwidth
efficiency over a soft fusion scheme along with a reliable
detection performance that is asymptotically similar to that
of a soft fusion scheme [12].

Fig. 1. Cooperative spectrum sensing exploiting RF-energy harvesting with
multi-antenna beamforming

Fig. 2. Time Slot Structure

The time structure is shown in Fig. 2 and detailed as the
following five steps:
• Channel estimation: during interval (0, Tc], the SUs

send orthogonal training pilots, and the CC estimates
the channels and obtains the CSI by exploiting channel
reciprocity.

• Energy harvesting: during interval (Tc, α], the CC trans-
fers wireless energy to all SUs via energy beamforming
with appropriately designed weights.

• Channel sensing: during interval (Tc+α, Tc+α+τ ], the
energy harvester stops working and the sensing receiver
is powered on for sensing channel.

• Information reporting: during interval (Tc+α+τ, Tc+α+
τ+Tr], every SU makes its own decision on the presence
of the PU and then transmits its one bit decision to the
CC.

• Data transmission: during interval (Tc + α+ τ + Tr, T ],
the CC accesses the channel to transmit information only
when it senses that the PU is inactive meanwhile ensuring
the specified PU protection level. For cooperative spec-
trum sensing, the CC makes a final decision on the PU’s
activity based on the received decisions.

Without loss of generality, we consider that all the SUs
have the same sensing performance with the probability of
detection Pd and the probability of false alarm Pf . For the
case of a complex valued phase shift keying PU signal with
average received signal-to-noise ratio (SNR) γ at each SU and
circularly symmetric complex Gaussian noise with power σ2

n,
the Pd and Pf are given by [13]
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where ε is the detection threshold and fs is the sampling
rate. Q(·) denotes the complementary cumulative distribution
function of a zero mean, unit variance Gaussian distribution.

The average normalized throughput of the CC with a time
structure shown in Fig. 2 is given by

R = (1− Tc+α+τ+Tr
T

)(1−Qf (τ, ε)). (3)

where Qf (τ, ε) = 1−
N∏
n=1

(1− Pf (τ, ε)).
From the above formula, it can be seen that the charging

time α, the sensing time τ and the threshold ε have a great
impact on the throughput. In the following part, we will dis-
cuss the optimal charging time, the sensing time, the sensing
threshold, and the beamforming vector, which maximizes the
throughput.

III. OPTIMAL SPECTRUM SENSING POLICY

The use of beamforming RF-energy harvesting technology
for the SUs charging, increasing the SU’s mobility, but too
much charging time reduces the transmission time of the



timeslot, reducing the throughput. Therefore we need to find
the optimal energy beamformer, charging time, the sensing
time and the threshold, which can achieve the maximum
throughput under the condition of meeting the energy con-
straint and spectrum constraints.

The simplified problem formulation of the normalized
throughput tradeoff with cooperative sensing exploiting beam-
forming RF-energy harvesting is given as

max
α

R(α) (4)

s. t. A ≤ α ≤ B. (5)

where A =
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r
n

pdβnM/N+P sn
We then propose an iterative algorithm to find the solution

of the α optimization problem (4-5). There is no closed-form
solution for α, hence, a search for the optimal α over A ≤
α ≤ B is required. If R(α) is a unimodal function in the range
of A ≤ α ≤ B, however, instead of an exhaustive search,
efficient search algorithms can be used.

Denote α∗ as the optimal sensing time; R(α) is a unimodal
function if it is monotonically increasing in A ≤ α < α∗ and
monotonically decreasing in α∗ < α ≤ B. Therefore, R(α) is
the only local maximum in the entire range of A ≤ α ≤ B.

Proposition: If the three conditions listed below are sat-
isfied, then R(α) must be a unimodal function in the entire
range of A ≤ α ≤ B.

1)∇R(A) > 0.
2)∇R(B) < 0.
3) There is only one unique α∗ where A ≤ α ≤ B such

that ∇R(α∗) = 0. where ∇ denotes the differentiation of the
function with respect to its argument.

The first condition means that R(α) is an increasing func-
tion at the point α = A and the second condition means
that the function R(α) is decreasing at the point α = B.
Hence, these two conditions imply that there must be at least
a point in A < α < B that maximizes R(α). If the third
condition is true, then together with the first condition imply
that R(α) is strictly increasing in A ≤ α < α∗. Combining
the second and third conditions implies that R(α) is strictly
decreasing in α∗ < α ≤ B. Hence, the three conditions imply
that R(α) must be the only local maximum in the entire range
of A ≤ α ≤ B and R(α) is a unimodal function in that region.

We can prove that R(α) does satisfy all the three conditions
for it to be a unimodal function in A ≤ α ≤ B. The proofs
are not shown in this paper due to the space constraint. Here,
we give the expression of ∇R(α) as follows,

∇R(α) = − 1

TP sn
((D−Qf (α))+(TP sn−αD−C)(1−∇Qf (α)),

(6)
where
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Since R(α) is a unimodal function, efficient search algo-
rithms such as Bisection search, Fibonacci search, Golden
section search, etc., can be used to find the optimal α. An
example of using Bisection search method to find the optimal
α is given in Algorithm 1.

Algorithm 1 find the optimal α that maximize R(α)
Initialization: αmin ← A, and αmax ← B.
while (αmax − αmin) > µ
do α = αmin + (αmax − αmin)/2
if sign(∇R(α)) == sign(∇R(αmin))
then αmin ⇐ α
else αmax ⇐ α
end if
end while
Output: α∗ = αmin + (αmax − αmin)/2

IV. PERFORMANCE EVALUATION

In this section, computer simulation results are presented to
evaluate the throughput tradeoff with OR fusion rule where
each SU is assumed to use the energy detector. Simulations
are carried out to find α that simultaneously achieves the
maximum R and provides sufficient protection to the PU.

We set M=50, the number of SUs to be N = 3, the frame
duration, the estimating time and the reporting time are set to
be T = 20 ms, Tc = 0 ms and Tr = 1 ms, respectively. The
bandwidth of the channel and the sampling frequency of the
received signal are both assumed to be 6 MHz. We use the
long-term fading model βn = d−3n , where the distance dn= 10
m for all SUs. The estimating power, the sensing power, the
reporting power and the transmit power of an SU are set as 2
W, 1 W, 2 W and 400 W, respectively. The targeted probability
of detection for the protection of the PU is set at Pd = 95%.
Optimal values of was found when the SNR of the PU’s signal
received at the SUs is vary from -30 dB to 0 dB.

Fig. 3. Maximum normalized throughput with different N SUs



Fig. 3 compares the maximum normalized throughput when
the number of the SUs is different. We can see that for N= 3,
4, 5, SUs, the maximum normalized throughput is larger with
more cognitive radios in the system. Due to the increased SUs
that can receive energy concurrently, the increased number of
SUs is no longer a burden for the CC.

Fig. 4. Maximum normalized throughput with different M antennas

Fig. 4 shows the optimal throughput at different M anten-
nas. We can see that as M increases, to reach the same energy,
less time is needed to charge. Thus, we have more time to
transmit and can get more throughput.

Fig. 5. Maximum normalized throughput with respects to transmit power

From Fig. 5, we can further see that when transmit power
pd is less than 0.29 W, the charging energy can not achieve
the expected energy consumption and the system shuts down.
Therefore, the lowest limit of transmit power pd need to be
further analyzed in future works.

V. CONCLUSION

This paper proposed a new beamforming RF-energy har-
vesting CR system which employed cooperative spectrum
sensing with OR fusion rule to improve the sensing accuracy
and the transfer efficiency. An optimal sensing policy was
derived to maximize the CC throughput while satisfying the
PU collision and the energy causality constraints at each
SU. Cooperative spectrum sensing with beamforming per-
forms better than cooperative spectrum sensing without multi-
antenna beamforming in terms of increased system throughput.
The sensing policy optimizes the CC throughput by selecting
the appropriate charging time α, sensing time τ , and detection
threshold ε. A greater value of transmit power pd can improve
the CC throughput and low limit of transmit power pd need
to be further analytically derived.
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