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Abstract—We present a multi-user multiple-input multiple-
output (MIMO) cognitive radio system consisting of a secondary
receiver that deploys spatial multiplexing to decode signals from
multiple secondary transmitters, under the presence of primary
transmissions. The secondary receiver carries out minimum
mean-squared error detection to decode the secondary data
streams, while it performs spectrum sensing at the remaining
signal to capture the potential presence of primary activity.
Assuming Rayleigh fading as well as the realistic cases of channel
fading time variation and channel estimation errors, we present
novel closed-form expressions for important system measures,
namely, the detection and false-alarm probabilities as well as
the transmission power of the secondary nodes. The enclosed
numerical results verify the accuracy of the presented analysis.

Index Terms—Cognitive radio, detection probability, imperfect
channel estimation, spatial multiplexing, spectrum sensing.

I. INTRODUCTION

Spectrum sensing plays a key role in the performance

of shared access networks by impacting the performance of

both the primary and secondary networks. Several spectrum

sensing approaches, that vary on the accomplished reliability

of primary activity detection, have been proposed so far to

preserve the transparency of cognitive radio (CR) networks.

These approaches can be categorized into the following two

main types: i) quiet [1]; and ii) active [2].

The conventional approach for spectrum sensing is the quiet

type, according to which each potential cognitive transmitter

first senses the spectrum for a fixed-time duration, and then

transmits its data in the remaining time, if it senses the

channel as idle. The main problem with this sensing type is the

capacity reduction for the secondary data transmission within

a given frame duration. In order to overcome this problem, the

more sophisticated active sensing type has been proposed [2]–

[4]. In particular, a simultaneous spectrum sensing and data

transmission approach was proposed in [3], where the receiver

first cancels the secondary data using interference cancellation,

and then, senses the remaining signal for the presence or

absence of a primary activity. Other active sensing techniques

for multi-user cognitive systems were proposed in [2] and [4].

In both studies, it was assumed that some secondary nodes

transmit, while others perform spectrum sensing. In the case

of a primary signal detection, the latter nodes inform the

former ones about the primary activity and request to them to

stop their transmissions. Nevertheless, several problems arise

by following these two approaches; more spectrum resources

are required because of the signaling overhead caused by

the informing process whereas, extra power resources are

consumed from the sensing nodes during spectrum sensing

and because of transmitting their sensing reports.

In this paper, a new simultaneous (active) spectrum sens-

ing and data transmission approach for multi-user multiple-

input multiple-output (MIMO) CR networks is presented. The

spectrum sensing is performed at the multi-antenna secondary

receiver upon the signal reception from multiple secondary

single-antenna transmitters. The spatial multiplexing mode of

operation is adopted, for the first time, where all the potential

secondary transmitters send their data streams simultaneously

in a given frame duration. Overall, the main benefits of the

proposed approach are threefold: (a) the sensing and data

transmission time are both optimal since they coincide with the

entire frame duration. Thus, the accuracy of the performance

of primary activity detection is further improved. In addition,

spectrum sensing is performed by the different transmitters

(i.e., by nodes that are sufficiently separated in terms of

transmission wavelengths), and thus, robust enough. Besides,

the spatial multiplexing mode of operation further enhances

the aggregate sum-capacity of the network; (b) an efficient

tradeoff between sensing time and data transmission time, and

its relevant computation is no longer an issue; and (c) the

inter-user interference problem is effectively mitigated, since

all antennas at the receiver are used first for signal detec-

tion/decoding for the secondary data and then for spectrum

sensing in the same frame duration.

Notation: Vectors and matrices are represented by lowercase

and uppercase bold typeface letters, respectively. Also, X−1

is the inverse of X and xi denotes the ith coefficient of

x. A diagonal matrix with entries x1, . . . , xn is defined as

diag{xi}ni=1. The superscripts (·)T and (·)H denote transposi-

tion and Hermitian transposition, respectively, ‖·‖ corresponds

to the vector Euclidean norm, while | · | represents absolute

(scalar) value. In addition, Iv stands for the v × v identity



matrix, E[·] is the expectation operator,
d
= represents equality

in probability distributions, and Pr[·] returns probability. Also,

fX(·) and FX(·) represent the probability density function

(PDF) and cumulative distribution function (CDF) of the ran-

dom variable (RV) X , respectively. Complex-valued Gaussian

RVs with mean μ and variance σ2, while chi-squared RVs with

v degrees-of-freedom are denoted, respectively, as CN (μ, σ2)
and X 2

2v . Furthermore, Γ(a) � (a−1)! (with a ∈ N
+) denotes

the Gamma function [5, Eq. (8.310.1)], while Γ(·, ·) is the

upper incomplete Gamma function [5, Eq. (8.350.2)]. Further,

J0(·) represents the zeroth-order Bessel function of the first

kind [5, Eq. (8.441.1)], 1F1(·, ·; ·) denotes the Kummer’s con-

fluent hypergeometric function [5, Eq. (9.210.1)], and Qν(·, ·)
is the generalized νth order Marcum-Q function [6].

II. SYSTEM MODEL

We consider a multi-user MIMO secondary communication

system, which is consisted of mc single-antenna cognitive

transmitters and a receiver equipped with N ≥ mc antennas

operating under the presence of mp single-antenna primary

nodes. Notice that, although N ≥ mc is a necessary condition

in order to capture the available degrees-of-freedom during the

detection of the independent data streams from the cognitive

transmitting nodes, it holds that N ≶ (mp + mc). More-

over, independent and non-identically distributed Rayleigh flat

fading channels are assumed, reflecting non-equal distances

among the involved nodes with respect to the receiver; this

is an appropriate condition for practical applications. The

spatial multiplexing mode of operation is implemented in the

secondary system, where mc independent data streams are

simultaneously transmitted by the corresponding secondary

nodes. A suboptimal yet quite efficient detection scheme is

adopted at the secondary receiver, the so-called linear mini-

mum mean-squared error (MMSE).

Using the definition M � mp +mc, the received signal at

the nth sample time instance reads as

y[n] = Ĥ[n]s[n] +w[n], (1)

where y[n] ∈ C
N×1, Ĥ[n] ∈ C

N×M , s[n] ∈ C
M×1,

and w[n] ∈ C
N×1 denote the received signal, the esti-

mated channel matrix, the transmitted signal, and the additive

white Gaussian noise (AWGN), respectively. It holds that

w
d
= CN (0, N0IN ) with N0 denoting the AWGN variance

and s = [s1, . . . , smp
, s1, . . . , smc

]T with E[ssH] = IM . In

addition, Ĥ = [ĥ1, . . . , ĥmp
, ĥ1, . . . , ĥmc

], whereas ĥi
d
=

CN (0, βiIN ), for 1 ≤ i ≤ M , with βi � pi/(d
ωi
i ), where

pi, di, and ωi correspond to the signal power, normalized

estimated distance (with a reference distance equal to 1km)

from the receiver, and path-loss exponent of the ith transmitter

(secondary or primary), respectively.

A. Protocol Description

The following three main phases, that are periodically

alternating, constitute the mode of operation of the proposed

multi-user MIMO CR system: the training, data transmission,

and spectrum sensing phases.

During the training phase, all the involved nodes (i.e.,

primary and secondary transmitters) broadcast certain (orthog-

onal) pilot signals. The secondary receiver monitors the avail-

able spectrum resources in order to acquire the instantaneous

channel gains from all the active transmit nodes (both primary

and secondary). Meanwhile, all the secondary transmitters

also monitor the channel in order to acquire the channel

gains between the primary transmitters and themselves. This

occurs in order to appropriately modify their power, which

will be used for potential transmission in the subsequent data

transmission phase. It is assumed that the channel remains

constant during this phase. However, its status may change in

subsequent time instances.

After the training phase, the system enters the data phase,

where the secondary nodes stay inactive for one symbol

time duration. During this time period, the secondary re-

ceiver senses the spectrum so as to capture the presence

of a primary communication activity or not. In the former

case, no transmission activity is performed by the secondary

transmitters (lack of triggering from the secondary receiver in

this case is interpreted as a busy spectrum notification to all the

transmitters). This procedure is repeated in every subsequent

symbol time duration, until the receiver senses the spectrum

idle. In the latter case, the receiver broadcasts a certain probe

message in order to initiate the secondary transmission(s).

Hence, in the next symbol time instance, all active secondary

transmitters may simultaneously send their data streams. Upon

the overall signal reception, MMSE detection is performed

at the secondary receiver and all data streams are decoded

concurrently.

The spectrum sensing phase takes place after the removal of

all secondary signals from the received signal. This happens

within the same symbol time instance, where the receiver

monitors the remaining signal for the presence of a potential

primary activity. If the remaining signal is sensed idle (i.e.,

only the presence of noise), the same procedure keeps on (i.e.,

data transmission and spectrum sensing phases), until the next

training phase. If at least one primary signal is detected at

the remaining signal, then the receiver immediately broadcasts

another certain message in order to coarsely finalize all the

secondary transmissions.

B. Training Phase: Channel Estimation

To perform channel estimation during this phase, M orthog-

onal pilot sequences (i.e., unique spatial signal signatures) of

length M symbols are assigned to the primary and secondary

nodes. Then, the received pilot signal can be expressed as

Ytr[n] = Htr[n]Ψ+Wtr[n], (2)

where Ytr[n] ∈ C
N×M , Htr[n] ∈ C

N×M , Ψ ∈ C
M×M ,

and Wtr[n] ∈ C
N×M denote the received signal, the channel

matrix, the transmitted pilot signals, and AWGN, respectively,

all during the training phase. Also, the pilot signals are

normalized in order to E[ΨΨH] = IM .

The MMSE estimate of hi[n], 1 ≤ i ≤ M , is given by

[7, Eq. (10)] ĥi[n] = βi(N0 +
∑M

j=1 βj)
−1IN (

∑M
j=1 hj [n] +



wtr[n]), where wtr[n] is the AWGN at the ith channel during

the training phase. It is noteworthy that with MMSE channel

estimation, the channel estimate and the channel estimation er-

ror remain uncorrelated (this happens due to the orthogonality

principle [8]). In particular, we have that

ĥi[n] = hi[n] + h̃i[n], 1 ≤ i ≤ M, (3)

where hi
d
= CN (0, (βi − β̂i)IN ) is the true channel fading

of the ith transmitter (secondary or primary) and h̃i
d
=

CN (0, β̂iIN ) denotes its corresponding estimation error with

β̂i � β2
i /(
∑M

j=1 βj +N0) [7, Eq. (12)].

Except the channel estimation errors, the channel aging

effect occurs in several practical network setups. This is mainly

because of the rapid channel variations during consecutive

sample time instances, due to, e.g., user mobility and/or severe

fast fading conditions. The popular autoregressive (Jakes)

model of a certain order [9], based on the Gauss-Markov block

fading channel, can accurately capture the latter effect. More

specifically, it holds that

ĥi[n] = αM ĥi[n−M ] +

M−1∑
m=0

αmei[n−m], (4)

where α � J0(2πfDTs) with fD and Ts denoting the

maximum Doppler shift and the symbol sampling period,

respectively. Moreover, e′i �
∑M−1

m=0 αmei[n − m] stands

for the stationary Gaussian channel error vector due to the

time variation of the channel, which is uncorrelated with

hi[n − M ], while e′i
d
= CN (0, (1 − α2M )βiIN ). For the

sake of mathematical simplicity and without loss of generality,

we assume that the channel remains unchanged over the

time period of training phase, while it may change during

the subsequent data transmission phase. Thus, adopting the

autoregressive model of order one, (4) simplifies to

ĥi[n] = αĥi[n− 1] + ei[n]. (5)

Substituting (3) into (5) and dropping from now on the time

instance index n for ease of presentation (since all the involved

random vectors are mutually independent), we have that

ĥi = αhi + αh̃i + ei � gi + εi, (6)

where gi
d
= CN (0, (βi − β̂i)α

2IN ) and εi
d
= CN (0, α2β̂i +

(1 − α2)βi)IN ). It should be noted that the latter

signal model in (6) combines both the channel ag-

ing effect and the channel estimation error. Hence, by

defining G � [g1, . . . ,gmp ,g1, . . . ,gmc ] and E �
[ε1, . . . , εmp , ε1, . . . , εmc ], (1) can be reformulated as

y = Gs+Es+w. (7)

C. Data Transmission Phase: Signal Detection

Using the estimations of the channel gains of all transmit-

ted signals from the training phase, the secondary receiver

proceeds with the detection/decoding of the simultaneously

transmitted streams from the mc secondary transmitters. The

mean-squared error (MSE) of the ith received data stream

(1 ≤ i ≤ mc) is formed as

MSEi = E

[∣∣∣si − φH
i y
∣∣∣2] , (8)

where φi denotes the MSE-optimal weight vector.

Corollary 1: The weight vector φi that minimizes the MSE

of the ith received stream is given by

φi =
√
βi

(
C diag{βj}Mj=1C

H +N0IN
)−1

ci, (9)

where C ∈ C
N×M with C

d
= CN (0, IN ), and ci represents

its ith column vector.

Proof: The proof of (9) is relegated in Appendix A.

At the receiver, φH
i y provides the detection/decoding of the

ith transmitted stream, yielding

zi = φ
H
i y = φH

i gisi +
∑
j �=i

φH
i gjsj + φ

H
i Es+ φH

i w, (10)

where A � C diag{βj}Mj=1C
H +N0IN .

D. Spectrum Sensing

Let r ∈ C
N×1 represent the pre-processed received signal

after removing the mc secondary signals (i.e., after decoding

them and removing their impact from the overall received

signal). Then, starting from (7) yields

r = Gpsp +Epsp +w = Cp diag{
√
βi}mp

i=1sp +w, (11)

where Gp ∈ C
N×mp , Ep ∈ C

N×mp , Cp ∈ C
N×mp , and

sp ∈ C
mp×1 denote the true channel matrix, the estimation

error matrix, the equivalent (joint) channel matrix, and the

transmitted signals from the primary transmitters, respectively.

For the distribution of the elements of Cp it holds Cp
d
=

CN (0, IN ).
Using (11), the binary hypothesis test (energy detection

(ED) of primary activity) is formulated as

TED �
L−1∑
l=0

‖r(l)‖2
H1

≶
H0

λ, (12)

where L and λ denote the number of samples for the received

signal and the energy threshold, respectively, and

H0 : E[rrH] = N0IN , no signal is present

H1 : E[rrH] = any positive semi-definite matrix.

(13)

III. PERFORMANCE ANALYSIS

A. Detection Probability

We need to show that in the case of the H1 hypothesis, even

if only the weakest signal is present, TED > λ should hold.

The latter condition can be modeled as

rmin =
√
βmincminsmin +w, (14)

where rmin represents the remaining received signal, when

only the primary transmitter experiencing the weakest channel

gain (at the secondary receiver) is active. The transmitted



signal from the corresponding primary transmitter is defined as

smin with E[smins
H
min] = σ2

p. Also,
√
βmincmin satisfies that

βmin ‖cmin‖2 = min{βmin ‖cp,i‖2}mp

i=1, where cp,i represents

the ith column vector of Cp. Notice that a Gaussian vector is

isotropically distributed, i.e., it remains Gaussian distributed

even if its norm is under some constraint [10, Theorem 1.5.5].

Thus,
√
βmincmin

d
= CN (0, βminIN ) and βmin ‖cmin‖2 is the

minimum of mp non-identical χ2
2N RVs.

Lemma 1: A closed-form expression for the PDF of Y �
βmin ‖cmin‖2 is given by

fY(x) =

mp∑
s=1

N−1∑
t1=0
t1 �=ts

· · ·
N−1∑
tmp=0

tmp �=ts

β−t1
1 · · ·β−N

s · · ·β−tmp
mp

t1! · · · tmp
!Γ(N)

× x

∑mp

l=1
l �=s

tl+N−1

exp

(
−
(

mp∑
t=1

1
βt

)
x

)
. (15)

Proof: The CDF of Y stems as

Pr[Y < x] = 1−
(

mp∏
t=1

Pr[βt ‖ct‖2 > x]

)
. (16)

Using the standard complementary CDF of a χ2
2N RV into the

previous expression, yields

FY(x) = 1−
mp∏
t=1

Γ
(
N, x

βt

)
Γ(N)

. (17)

By differentiating (17), it holds that

fY(x) =

mp∑
s=1

xN−1 exp
(
− x

βs

)
Γ(N)βN

s

mp∏
t=1
t �=s

Γ
(
N, x

βt

)
Γ(N)

. (18)

Further, expanding Γ(·, ·) as a finite sum series according to

[5, Eq. (8.352.4)], (15) is obtained.

For our considered case of ED, the detection probability

conditioned on Y is given by [11, Eq. (63)]

Pr[TED|H1 > λ] = QNL

⎛
⎝
√

2Lσ2
pY

N0
,

√
λ

N0

⎞
⎠ . (19)

Corollary 2: The unconditional detection probability of the

considered system with N receive antennas and mp active

primary transmitters is obtained in a closed form as

Pd(λ) =

mp∑
s=1

N−1∑
t1=0
t1 �=ts

· · ·
N−1∑
tmp=0

tmp �=ts

β−t1
1 · · ·β−N

s · · ·β−tmp
mp

t1! · · · tmp
!Γ(N)

×F

⎛
⎜⎝mp∑

l=1
l �=s

tl +N,NL,

√
2Lσ2

p

N0
,

√
λ

N0
,

mp∑
t=1

1

βt

⎞
⎟⎠ , (20)

where

F (k,m, a, b, p) �
Γ(k)Γ(m, b2

2 )

pkΓ(m)
+

a2b2mΓ(k) exp
(
− b2

2

)
m!pk2m(a2 + 2p)

×
k−1∑
l=0

(
2p

a2 + 2p

)l

1F1

(
l + 1,m+ 1;

a2b2

2a2 + 4p

)
︸ ︷︷ ︸

T

. (21)

Proof: Starting from (19) and using the PDF expression

given by (15), integrals of the form [12, Eq. (1)] appear.

Then, using the analytical solution [12, Eq. (12)] and after

performing some straightforward manipulations, (20) arises.

B. False Alarm Probability and Threshold Design

The false alarm probability with the ED given by (12) is

defined as

Pf (λ) � Pr[TED|H0 > λ]. (22)

Under the H0 hypothesis, TED is the sum of the square ofs

NL independent and identically distributed Gaussian RVs with

zero mean and variance N0, i.e, TED
d
= N0χ

2
2NL. Hence, using

the standard complementary CDF of a chi-square RV, yields

Pf (λ) =
Γ
(
NL, λ

2N0

)
Γ(NL)

. (23)

By inspecting (23), it becomes apparent that the false alarm

probability is an offline operation, i.e., it is independent from

the instantaneous channel gain and the number of primary

signals. Thus, a convenient, yet effective strategy, to select the

optimum energy threshold is by using (23). Doing so, it holds

that

λ∗ = P−1
f (τ), (24)

where λ∗ represents the optimum energy threshold (on the

false alarm probability) for a predetermined target τ , while

P−1
f (·) denotes the inverse function of Pf (·), which can be

efficiently calculated by using well-known inverse algorithms,

e.g., [13]. In the sequel, the online detection probability can

be directly computed by calculating Pd(λ
∗) using (20).

IV. TRANSMISSION POWER OF SECONDARY NODES

We start by defining the transmission power of the sec-

ondary receiver in the case of the aforementioned signaling

process (see II-A). Recall that in the case when the receiver

senses the spectrum busy (idle) by a primary transmission,

upon an ongoing secondary communication, then it immedi-

ately informs the secondary nodes to terminate (initiate) their

transmissions using a certain probe message. In order not to

cause an additional co-channel interference to the potentially

active primary transmitter(s), the power used for this message

is appropriately upper bounded. Particularly, it is defined as

pR � min

{
pmax,

wth

QR

}
, (25)

where QR � E[maxi{‖gi‖2}mp

i=1] and wth denotes the outage

power threshold of the primary service with regards to the sec-

ondary transmission(s), which is assumed as a predetermined

parameter that is already known to all the secondary nodes.



Also, pmax denotes the maximum achievable (unconstrained)

power of the overall secondary system.

Corollary 3: The transmission power at the receiver for the

probe signal is expressed as

pR =

(
1

pmax
+

QR

wth

)−1

, (26)

where QR is given in closed form as

QR =

mp∑
i=1

mp∑
l=0

(−1)lbNR,i

l!Γ(N)

mp∑
n1=1

· · ·
mp∑
nl=1︸ ︷︷ ︸

n1 �=···�=nl···�=l

N−1∑
k1=0

· · ·
N−1∑
kl=0

×
(

l∏
t=1

bR,kt

kt!

)
Γ
(
N +

∑l
t=1 kt + 1

)
(
bR,i +

∑l
t=1 bR,nt

)N+
∑l

t=1 kt+1
.

(27)

In (27), bR,i � (βi− β̂i)α
2 is a certain parameter correspond-

ing to the link between the secondary receiver and the ith
primary transmitter (1 ≤ i ≤ mp).

Proof: The proof is provided in Appendix B.

The transmission power for all the secondary transmitters

can be obtained quite similarly. In particular, referring back

to the structure of Htr = [h1, . . . ,hmp
,h1, . . . ,hmc

] and

Ψ = [ψ1, . . . ,ψmp
,ψ1, . . . ,ψmc

] from (2), each secondary

transmitter sends its pilot in its corresponding symbol time

duration. Notice that the pilots from primary transmitters

are foregoing the ones of the secondary nodes. Hence, each

secondary transmitter can capture its channel response with

regards to every primary node, by monitoring the first mp

pilots during the training phase. Then, using MMSE channel

estimation (as explicitly described earlier), the jth transmission

power at the corresponding secondary node, pj , is determined

by

pj =

(
1

pmax
+

Qj

wth

)−1

, 1 ≤ j ≤ mc, (28)

where Qj is directly obtained from (27), but denoting the

jth secondary transmitter this time, instead of the secondary

receiver. In the remaining symbol time duration of the train-

ing phase, where the secondary pilot symbol transmissions

are sequentially established, {pj}mc
j=1 are used to inform the

secondary receiver about the corresponding channel states.

V. PERFORMANCE RESULTS AND DISCUSSION

We have numerically evaluated the performance expressions

presented in Section III and cross compared the obtained

results with equivalent ones obtained from Monte Carlo sim-

ulations. A perfect match between these evaluations and their

respective simulation results was exhibited and, hence, the ac-

curacy of the presented analysis was verified. Henceforth, for

notational simplicity and without loss of generality, we assume

a common path-loss exponent ωi = 4 ∀ i = 1, 2, . . . ,M ,

corresponding to a classical macro-cell urban environment [14,

Table 2.2], while we fix the probability of transmission for all

P
f
 λ

P
d
 
λ

N 

N 

L 

L 

L 

Fig. 1. Analytical ROC curve of the proposed approach for mp = 4 with
d1 = 0.31, d2 = 0.1, d3 = 0.15, and d4 = 0.2.

P
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 λ

P
d
 
λ

m
p
 

m
p
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 L m
p
 

Fig. 2. Analytical ROC curve of the proposed approach for N = 2, various
numbers of primary transmitters, and identical link distances with respect to
the secondary receiver, i.e., {di}mp

i=1 = 0.1.

the primary transmitters as P p
A = 0.5. Also, we set α = 0.1,

σ2
p = 1, and pmax = 20dBm, while all the primary nodes use

pmax for their transmissions.

By numerically evaluating (20), (23), and (24), Figs. 1

and 2 present the receive operating characteristics (ROC)

curves for the scenario of non-identical and identical statistics,

respectively. Obviously, the gap between the detection and

false alarm probabilities increases as the number of antennas at

the secondary receiver increase. This is further enhanced when

the available number of samples increases. In addition, the

presence of more primary transmitters degrades the detection

performance, since adding more unknown primary signals

increases their probability of being indistinguishable from

noise. This behavior is in agreement with that in [15, Fig. 7]. It

can be also seen from both figures that, the detection accuracy

is reduced for far-distanced links, and this happens due to the

unavoidable propagation attenuation on the received signals.

In fact, severe channel fading due to propagation losses results

to noise-like signals, hence, hardly indistinguishable.



APPENDIX

A. Derivation of (9)

Manipulating with (8) results in

MSEi = E

[(
si − φH

i y
)(

si − φH
i y
)H]

= 1 + φH
i Aφi − siy

Hφi − φH
i ysHi

= 1 +
(
φH

i − (gi + εi)
HA−1

)
A
(
φH

i − (gi + εi)
HA−1

)H
− (gi + εi)

HA−1(gi + εi), (A.1)

where A � E[yyH] = C diag{βj}Mj=1C
H+N0IN represents

the covariance matrix of the received signal. Since only the

second term of (A.1) depends on φi, the optimal solution that

minimizes MSEi is φi = A−1(gi + εi). Finally, noticing that

G+E = C diag{√βj}Mj=1, (9) can be easily extracted.

B. Derivation of (26) and (27)

Regarding the derivation of (26) and recalling the Rayleigh

fading environment, the PDF of the signal-to-noise ratio for

the probe message transmitted from the secondary receiver

becomes

fXR
(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N0 exp
(
− N0x

pmaxX̄R

)

pmaxX̄R
, QR < wth

pmax
,

N0QR exp
(
−N0QRx

wthX̄R

)

wthX̄R
, QR > wth

pmax
.

(B.1)

where XR and X̄R denote the instantaneous and average input

SNRs at the receiver. Hence, it yields that

FXR
(x) = 1− (1− FXR|pmax

(x)
) (

1− FXR| wth
QR

(x)
)

= 1− exp

⎛
⎝−

N0

(
1

pmax
+ QR

wth

)
x

X̄R

⎞
⎠ . (B.2)

By differentiating (B.2), the corresponding PDF follows the

classical exponential PDF with the yielded transmission power

pR as defined in (26).

Based on (7) and (11), we have that the actual channel

matrix for the primary nodes can be expressed as Gp =
Cp diag{

√
βi}mp

i=1−Ep. Although the instantaneous values of

E are not available, its distribution is known from (6), using

MMSE channel estimation. It easily follows that

Gp
d
= Cp diag

{√
(βi − β̂i)α2

}mp

i=1

. (B.3)

Thus, using the standard PDF/CDF expressions for chi-squared

RVs, the maximum squared column norm of Gp is distributed

as follows

fmaxi{‖gi‖2}mp
i=1

(x) =

mp∑
i=1

fbR,iχ2
2N

(x)

mp∏
l=1
l �=i

FbR,iχ2
2N

(x)

=

mp∑
i=1

xN−1 exp
(
− x

bR,i

)
bNR,iΓ(N)

×
mp∏
l=1
l �=i

⎛
⎜⎝1− exp

(
− x

bR,i

)N−1∑
k=0

(
x

bR,i

)k
k!

⎞
⎟⎠ . (B.4)

By utilizing the product expansion identities [16, Eq. (6)],

(B.4) becomes after some simple manipulations

fmaxi{‖gi‖2}mp
i=1

(x) =

mp∑
i=1

mp∑
l=0

(−1)lbNR,i

l!Γ(N)

×
mp∑

n1=1

· · ·
mp∑
nl=1︸ ︷︷ ︸

n1 �=···�=nl···�=l

N−1∑
k1=0

· · ·
N−1∑
kl=0

(
l∏

t=1

bR,kt

kt!

)

× exp

(
−
(
bR,i +

l∑
t=1

bR,nt

)
x

)
x
∑l

t=1 kt+N−1. (B.5)

Thereby, recognizing that Q =
∫∞
0

xfmaxi{‖gi‖2}mp
i=1

(x)dx
and utilizing [5, Eq. (3.381.4)], (27) is derived.
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