








fragment 5�-CCACCAAC-3�-p-PUAH (Fig. 4C), as expected
for NTH1 (Fig. 3A, lane 8). In this fragment the PUAH is the
hydrated form (-CH2CHOHCHOHCH2CHO, M � 117.0 Da)
of the aldehyde since its mass is 18 Da higher than the mass of
the �,�-unsaturated aldehyde (-CH2CHOHCH � CHCHO,
M � 99.0 Da) (30, 31). Again the G* base is missing from all of
these oligonucleotide fragments; furthermore the former T*
base is present in its intact form T in all 3�-downstream cleav-
age fragments.

The negative mass spectra of the products of APE1-catalyzed
incision of G*CT* duplexes exhibits a series of molecular ions
(Fig. 4D): 1) The cleavage fragment at m/z 2323.2 is 5�-CCAC-
CAAC generated by the cleavage adjacent to and on the 5�-side
of G*, as expected from Fig. 3A (lane 5). Two other fragments at
m/z 2034.4 and 1720.2, corresponding to the 7-mer oligonucle-
otides 5�-CCACCAA-3� and the 6-mer 5�-CCACCA-3�,
respectively, are attributed to degradation catalyzed by the
known 3�35� exonuclease activity of APE1 (32, 33). 2) The
APE1-cleavage fragments at m/z 2394.7 and 2314.9, assigned to
the 8-mer oligonucleotide 5�-p-CTACCACC-3� and its de-
phosphorylated form 5�-CTACCACC-3�, respectively, both
released from the cleavage of the strand on the 3�-side of G* in

the G*CT* duplexes. As in the case of 5�-upstream cleavage
fragments, these are shorter by one nucleotide than a 9-mer
with a G (or G*) at the 5�-end of the 3�-downstream cleavage
fragment (21, 22).

Taken together, these results suggest that all the DNA glyco-
sylases tested excise the guanine G* in G*CT* and G*T* cross-
links and then cleave the DNA strands on the 3�-side of the
apurinic site generated by the removal of G*, either via � or
�,�-elimination mechanisms (Fig. 1B). The AP endonucleases
tested, cleave the modified strands on the 5�-side of G* of the
G*T* and G*CT* cross-links and induce further degradation of
the cross-link with the release of the G* base that is missing
from the 3�-side cleavage fragments analyzed by mass spectro-
metric methods.

Discussion

The primary DNA base target of oxidizing agents, that prin-
cipally function via one electron transfer mechanisms, is gua-
nine (34), the most easily oxidizable nucleic acid base (35). Oxi-
datively modified guanines include a diverse group of different
single guanine base oxidation products and tandem lesions
such as intra- and interstrand crosslinks; the latter are more

FIGURE 3. Denaturing PAGE analysis of the cleavage patterns generated by DNA glycosylases/AP lyases (BER) and NIR-AP endonucleases (NIR) in
duplexes containing G*CT* and G*T* lesions. A and D, duplexes constructed from either 5�-32P-labeled 17 mer G*CT* (A), or G*T* (D) strands hybridized with
their natural complementary strands. B, size marker 8-mer oligonucleotide standards with 5�-[32P]-labeled 8-mer containing 3�-hydroxyl (3�-OH), or 3�-phos-
phoaldehyde (3�-PUA), or 3�-phosphate (3�-P) ends are shown in lanes 3, 5, and 7, respectively. These standards were derived from the parent 17-mer strands
containing uracil as described under “Experimental Procedures.” C and E, duplexes constructed from cordycepin 3�-32P-endlabeled 18 mer G*CT* (C) or G*T*
(E) strands hybridized with their complementary 17-mer complementary strands. DNA glycosylase activities were performed in BER�EDTA buffer containing
5 nM of 5�- or 3�-32P-labeled duplex and 50 nM of pure enzyme. Apn1 activity was measured in BER buffer containing 5 mM MgCl2. The NIR activity of APE1
protein was performed in NIR buffer containing 0.1 mM MgCl2. After 30 min of incubation at 37 °C, the enzymatic reactions were stopped, and the DNA was
purified before denaturing PAGE analysis. UT indicates untreated oligonucleotide. For details see “Experimental Procedures.”
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genotoxic than single oxidized bases (2). The tandem lesions
detected in cells include 8,5�-cyclo-2�-deoxypurine (36 –38),
guanine(C8)-thymine(5-methyl) (39), and guanine(C8)-cyto-
sine(C5) (40) IntraCLs. The repair of such oxidatively gener-
ated lesions is a crucial factor in maintaining genomic stability
during oxidative stress (20).

It is well established that the 8,5�-cyclo-2�-deoxypurine
lesions are not repaired by DNA glycosylase-mediated BER
mechanisms, but are excellent substrates of mammalian NER
(12, 13, 16, 41, 42) and prokaryotic NER repair pathways (43).
However, a limited amount of information is available about
IntraCLs that involve covalent bonds between two different
nucleotides on the same strand. It has been shown that the
G[8 –5m]C, G[8 –5mT] and G[8 –5m]C IntraCLs are substrates
of the prokaryotic UvrABC system (44, 45). Based on differ-
ences of levels of these lesions in NER-deficient and proficient
mammalian cells and tissues, it was concluded that the G[8 –
5m]T IntraCL is a substrate of NER in vivo (15). The G*CT* and
G*T* IntraCLs embedded in 135-mer DNA were found to be
excellent-to-modest NER substrates, respectively, in human
cell extracts as shown in Fig. 5 (17). In the same cell extract
incubation experiments, substantial amounts of 67-mer cleav-
age fragments, corresponding to cleavage at the sites of the
lesions, were also noted, but not further investigated (17).

Our in vitro biochemical studies suggest that all the DNA
glycosylases/AP lyases tested excise the guanine G* in G*CT*
and G*T* cross-links and then cleave the DNA strands on the
3�-side of the apurinic site resulting from the removal of G*, via
either � or �,�-elimination mechanisms (Fig. 1B). All of the
NIR-specific AP endonucleases tested, cleave the damaged
strands on the 5�-side of G* and appear to generate cordycepin-
labeled �9-mers with either phosphate or OH-groups at the
5�-ends, the latter exhibiting a mobility similar to that of a
10-mer with a phosphate residue at its 5�-end. However, the
MALDI-TOF/MS results are consistent with the 9-mer inter-
pretation. Nevertheless, incision at the 3�-side of a lesion by
NIR mechanisms is not supported by previous studies (21) (Fig.
1B), and we cannot exclude that the initially formed 3�-frag-
ment does contain a G* residue at its 5�-end and that AP endo-
nucleases induce further degradation of DNA with the loss of
the G* nucleotide to yield the observed 5�-p-CTACCCCACC
and 5�-CTACCACC fragments (Fig. 4D, peaks 9 and 10), under
conditions used to prepare samples for MALDI-TOF/MS
analysis.

It is interesting to note that the bifunctional DNA glycosy-
lases and AP endonucleases studied are capable of excising the
cross-linked G* in the G*T* and G*CT* duplexes, but not the
originally cross-linked T* according to the denaturing gel elec-

FIGURE 4. Negative MALDI-TOF mass spectra of the cleavage fragments generated by DNA repair proteins in the 17-mer G*CT* duplexes incubated
with NEIL1, NTH1, and APE1 proteins. Typically, 40 pmol of the lesion-containing oligonucleotide duplexes were incubated with either 100 nM NEIL1 and
NTH1 or 20 nM APE1 in the appropriate reaction buffer (100 �l) at 37 °C for 60 min. The products were desalted prior to the MALDI-TOF/MS measurements. The
experimental m/z values of the molecular ions, [M-H]� are consistent with those calculated from monoisotopic masses provided below in brackets; the doubly
charged ions, [M-2H]2� are marked as 1⁄2(m/z). A, control non-treated duplex; peak 1: 5�-CCACCAACG*CT*ACCACC (m/z 5023.9), peak 2: 5�-GGTGGTAGCGT-
TGGTGG (m/z 5349.9). B, duplex treated with NEIL1; peak 3: 5�-CCACCAAC-p (m/z 2401.4), peak 4: 5�-p-CTACCACC (m/z 2392.4). C, duplex treated with NTH1;
peak 5: 5�-CCACCAAC-3�-p-PUAH (hydrated form, m/z 2518.6). D, duplex treated with APE1; peak 6: 5�-CCACCAAC (m/z 2321.5); peak 7: 5�-CCACCAA (m/z
2032.4), peak 8: 5�-CCACCA (m/z 1720.2), peak 9: 5�-p-CTACCACC (m/z 2392.4), peak 10: 5�-CTACCACC (m/z 2313.6). For details see “Experimental Procedures.”
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trophoresis results (Fig. 3) and MALDI-TOF/MS analysis (Fig.
4). In contrast, denaturing gel electrophoresis showed that
the standard hot piperidine treatment cleaves 5�-CCA-
TCG*CT*ACC at G* and T* sites with the release of
5�-CCATCp and 5�-pACC fragments according to MALDI-
TOF/MS analysis (27). This is clear evidence that hot alkali is
unable to hydrolyze the G*[C8-N3]T* bond to form the intact T
that is generated by the bifunctional DNA glycosylases and AP
endonucleases (Figs. 3 and 4). The G*[C8-N3]T* bond is also
resistant to nuclease P1, which generates cross-linked dinucle-
otide d(G*-T*) and d(G*pT*) fragments after complete hydro-
lysis of the single-stranded DNA containing G*CT* and G*T*
IntraCL, respectively (10, 27). The phosphodiesterases 1 and 2
do not cleave the phosphodiester bonds between the cross-
linked nucleotides (Fig. 2), and the combined action of these
enzymes generates only d(G*pCpT*) and d(G*pT*) fragments
(10, 27).

The cross-linked guanine has two covalent N-C bonds, one is
the normal G*[N7-C1�] glycosydic bond, and the second
involves the C8 atom on the same imidazole ring linked to N3 of
thymine in G*T* or to the T on the 3�-side of C in G*CT*
duplexes (Fig. 1A). Based on our data we propose that the
bifunctional DNA glycosylases and AP endonucleases are able
to cleave both the G*[C8-N3]T* and the G*[N7-C1�] bonds.

To summarize, we have shown that the cleavage observed in
cell extracts at the sites of the G*T* and G*CT* intrastrand
lesions in double-stranded DNA (17) can be attributed to BER
mechanisms. It should be noted that in the same experiments

both G*CT* and G*T* lesions are also removed by NER mech-
anisms as shown in Fig. 5 (17). It is noteworthy that the higher
yield of NER products in the case of G*CT* is accompanied by a
lower yield of BER products (Fig. 5A). By contrast, the yield of
NER products is �5 times smaller in the case of G*T* while the
BER yield is significantly higher (Fig. 5B). This inverse correla-
tion between BER and NER product yields suggests that these
two processes may be competing with one another. The origins
of these effects are presently under investigation. It is remark-
able that both BER and NER can function in parallel in incising
the G*T* and G*CT* intrastrand cross-links in DNA in the
same human cell extract experiments (17). These observations
suggest that these two pathways may complement one another
in cellular environments.
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