
Multiple Point Compression on Elliptic
Curves

by

Adilet Otemissov

Nazarbayev University
2015

Certificate of Approval

This is to certify that the accompanying thesis by Adilet Otemissov has been accepted.

Francesco Sica, Ph.D.

Kira Adaricheva, Ph.D.

Nazarbayev University
April 20, 2015

ABSTRACT OF THESIS

MULTIPLE POINT COMPRESSION ON ELLIPTIC CURVES

The paper aims at developing new point compression algorithms which are

useful in mobile communication systems where Elliptic Curve Cryptography

is employed to achieve secure data storage and transmission. Compression

algorithms allow elliptic curve points to be represented in the form that bal-

ances the usage of memory and computational power. The two- and three-

point compression algorithms developed by Khabbazian, Gulliver and Bhar-

gava [4] are reviewed and extended to generic cases of four and five points.

The proposed methods use only basic operations (multiplication, division,

etc.) and avoids square root finding. In addition, a new two-point compres-

sion method which is heavy in compression phase and light in decompression

is developed.

Adilet Otemissov
Nazarbayev University
April 2015

i

Acknowledgments

I thank all who helped me with my Capstone Thesis. Special thanks to
Francesco Sica who provided a shorter proof of Theorem 1 which is presented
in this paper.

ii

Contents

1 Introduction 1

2 Elliptic Curves 2

3 Previous Work 6

3.1 Two-Point Compression Algorithm 6
3.2 Three-Point Compression Algorithm 7

4 New Point Compression Methods: n = 2, 4, 5 9

4.1 Alternative two-point compression algorithm 10
4.2 Elementary Symmetric Polynomials: lemma and theorem . . . 12
4.3 Four-Point Compression Algorithm 18
4.4 Five-Point Compression Algorithm 20

5 Conclusion 23

A Computational complexity: 4-point compression algorithm 25

B Computational complexity: 5-point compression algorithm 28

iii

1 Introduction

Cryptosystems based on elliptic curves are becoming more widespread nowa-

days. They are used in various communication systems for protecting and

securing information from a third party. Elliptic curve cryptography (ECC)

is based on the group structure of elliptic curves and its security stems from

the difficulty of solving the discrete logarithm problem. The main advantage

of elliptic curve cryptosystems compared to others is a small key size. For

example, ECC with 233-bit key size is as secure as RSA with 2048-bit key.

The table below compares the public key sizes of ECC and RSA given the

same security level [5].

Commensurable key sizes (bits)

ECC 163 233 283 409 571

RSA 1024 2048 3072 7680 15360

The small key size makes ECC applicable in mobile communication systems

which have limited computational power and memory [1, 2, 6]. Mobile de-

vices such as smart cards, RFID tags, handheld PCs and many others find

ECC as the best solution to secure data transmission.

Implementation of ECC usually requires transmission and storage of ellip-

tic curve points which may be limited in resource-constrained environments.

Therefore, point compression methods exist to represent elliptic curve points

1

in a way that finds a balance between the use of memory and computa-

tional power to ease transmission and storage. Previously, the work on the

compact representation of two and three elliptic curve points were done by

Khabbazian, Gulliver and Bhargava in [4]. This paper extends their work to

four and five points and suggest a new two-point compression algorithm. All

proposed algorithms only use basic operations such as multiplication, squar-

ing, etc. and avoid square root extractions (refer to Appendix A and B).

In Section 2, I provide definition and properties of an elliptic curve followed

by the previous work done by Khabbazian, Gulliver and Bhargava in the

following section. Section 4 introduces new two-, four- and five-point com-

pression algorithms and the work is concluded in Section 5.

2 Elliptic Curves

Before plunging into compression algorithms it is worth first to define what

elliptic curves are and mention their properties.

An elliptic curve E over a field F is defined as a genus 1 curve with F-rational

points. It can be written in the generalized Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

2

where ai’s are constants in F. In cryptography, the field F is usually consid-

ered to be a finite field Fp for some large prime p or F2n .

It can be shown that if the characteristic of the field Char(F) 6= 2, then (1)

can be reduced to the following form

y2 + xy = x3 + ax2 + b (2)

For the case Char(F) 6= 2, 3 Weierstrass equation simplifies to

y2 = x3 + ax+ b (3)

Elliptic curves are not allowed to have multiple roots. That is, they do not

have cusps and self-intersections and this restriction for the elliptic curve (3)

can be written as

4a3 + 27b2 6= 0

Furthermore, we define E(F) to be the set of elliptic curve points P = (x, y)

with a point at infinity (∞). Mathematically speaking,

E(F) = {∞} ∪ {(x, y) ∈ F
2 : y2 = x3 + ax+ b}

The infinity point(∞) is thought to be located both at the top and at the

bottom of y-axis. Hence, a line that connects any elliptic curve point (x1, y1)

3

and the point at infinity is a vertical line x = x1.

The set of elliptic curve points together with an addition operation form

an abelian group and the point at infinity (∞) serves as an identity element.

This property makes elliptic curves useful in cryptography. Let P = (x1, y1)

and Q = (x2, y2) be elliptic curve points. Addition between points P and Q

is performed and the resulting point R = (x3, y3) = P +Q is obtained in the

following way.

Char(F) = 2

P = Q

s = y1
x1

+ x1

x3 = s2 + s+ a

y3 = (x1 + x3)s+ y1 + x3

P 6= ±Q

s = y2+y1
x2+x1

x3 = s2 + s+ x1 + x2 + a

y3 = (x1 + x3)s+ y1 + x3

Char(F) 6= 2, 3

P = Q

s =
3x2

1
+a

2y1

x3 = s2 − 2x1

y3 = (x1 − x3)s− y1

P 6= ±Q

s = y2−y1
x2−x1

x3 = s2 − x1 − x2

y3 = (x1 − x3)s− y1

The addition operation is illustrated in the pictures below for the curve

y2 = x3 − 2x+ 2.

4

Case 1: P 6= ±Q

A line that connects points P and Q is drawn and its intersection with the

curve at a third point is reflected with respect to x-axis.

x

y y2 = x3 − 2x+ 2

R

−R

P

Q

Case 2: P = Q

A tangent line at a point P is drawn and its intersection with the curve at a

second point is reflected with respect to x-axis

x

y y2 = x3 − 2x+ 2

R

−R

P

5

3 Previous Work

Multiple point compression algorithms were first introduced by Khabbazian,

Gulliver, and Bhargava [4]. They developed compression methods for two

and three elliptic curve points. The general idea of their methods is to store

values of x-coordinates and an additional value of α = y1 + ... + yn. In

this section, Khabbazian, Gulliver, and Bhargava’s two- and three- point

compression algorithms are described for the case Char(F) 6= 2, 3.

3.1 Two-Point Compression Algorithm

Having an elliptic curve y2 = x3 + ax + b and elliptic curve points P1 =

(x1, y1), P2 = (x2, y2) the points can be represented in a compact way by three

field elements and one extra bit. The points are represented by (x1, x2, α =

y1 + y2) and extracted through the following decompression algorithm:

We have

y21 = x3

1 + ax1 + b

y22 = x3

2 + ax2 + b

Then,

y21 − y22 = (x1 − x2)(x
2
1 + x1x2 + x2

2 + a)

=
(x1 − x2)(3(x1 + x2)

2 + (x1 − x2)
2 + 4a)

4

6

On the other hand,

y21 − y22 = (y1 + y2)(y1 − y2) = α(y1 − y2)

Therefore, y1 and y2 can be derived by linear algebra

y1 =
α

2
+ (8α)−1(x1 − x2)(3(x1 + x2)

2 + (x1 − x2)
2 + 4a)

and

y2 = α− y1

The special case when y1 + y2 = 0 is treated differently. In this case, the

values (x1, x2, y1) are stored and y2 can be found simply by y2 = −y1. An

additional bit is required to distinguish between these two cases: 1 and 0 are

stored when α 6= 0 and α = 0, respectively.

The overall computational complexity of the decompression algorithm is

2M + 2S + I.

3.2 Three-Point Compression Algorithm

Khabbazian, Gulliver and Bhagarva also showed that three elliptic curve

points P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) can be decompressed

storing four field elements (x1, x2, x3, α = y1 + y2 + y3) and two extra bits.

In this case, the decompression algorithm works as follows:

7

Let β = α2 + y23 − y21 − y22. Then,

y3 = y3 +
(2y1y2)

2 − 4y21y
2
2

4αβ
= y3 +

(α2 + y23 − y21 − y22 − 2αy3)
2 − 4y21y

2
2

4αβ

=
(β − 2αy3)

2 + 4αβy3 − 4y21y
2
2

4αβ
=

β2 + 4α2y23 − 4y21y
2
2

4αβ

Note that y2i can be obtained from the elliptic curve equation y2i = xi(x
2
i +

a) + b. After y3 is found we obtain

y1 + y2 = α− y3

Then, y1 and y2 can be derived using the two-point decompression method

described in 3.1. The overall computational cost of the algorithm is I +

12M + 6S.

The above algorithm fails when β = 0 or α = 0 requiring special cases

to be considered separately. The treatment of special cases is summarised in

the table below:

8

Case Store Comments

y2i 6= y2j for i 6= j

and α = 0

(x1, x2, x3, y1 + y2) y1 and y2 are found using two-

point decompression algorithm,

y3 is calculated as y3 = −y1 − y2

y21 = y22 6= y23 (x1, x2, x3, y2 + y3, b1)

where b1 is a bit

y2 and y3 are found using two

- point decompression algorithm.

If y1 = y2 store b1 = 1, otherwise

set b1 = 0

y21 = y22 = y23 (x1, x2, x3, y1, b1, b2) If y1 = y2 store b1 = 1, otherwise

set b1 = 0. If y1 = y3 store b2 = 1,

otherwise set b2 = 0.

4 New Point CompressionMethods: n = 2, 4, 5

It is worth mentioning that if multiple point compression algorithms are not

employed, then elliptic curve points can be represented in two ways. The

first method (ordinary) suggests to store (x1, x2, ...xn) and extract values of

y-coordinates using the elliptic curve equation thereby performing n square

root operations. The second (trivial) stores all values of x and y coordinates:

(x1, x2, ...xn, y1, y2, ..., yn). The ordinary method requires twice less memory

than the second, but it is more computationally costly. The trivial method

does not perform any computations but demands large amount of memory.

9

In this case, multiple point compression algorithms offer a balanced approach

to point representation. Compared to the ordinary method, multiple point

compression algorithms require slightly more memory but are considerably

less computationally costly. However, when compared to the trivial method,

multiple point compression algorithms are more computationally complex

but demand considerably less amount of memory.

All the proposed algorithms in the following sections are developed for the

case Char(F) 6= 2, 3.

4.1 Alternative two-point compression algorithm

This section introduces a new two-point compression method different from

what was developed by Khabbazian, Gulliver, and Bhargava. The method’s

distinguishing feature is its computational complexity in the compression

phase while decompression stage requires only a few multiplications and

square operations.

Given points P1 = (x1, y1) and P2 = (x2, y2) and their representation by

(A =
x1 − x2

y1 − y2
, B = y1 − y2, x2, b), where b is an additional bit, values of x1, x2, y1,

and y2 can be obtained through the following computations:

x1 can easily be found by x1 = AB + x2. Then, y-coordinates are obtained

with the use of elliptic curve equations.

10

Since

y21 = x3

1 + ax1 + b

y22 = x3

2 + ax2 + b

We have the following

y21 − y22 = (x1 − x2)(x
2

1 + x1x2 + x2

2 + a)

Hence,

y1 + y2 =
x1 − x2

y1 − y2
((x1 + x2)

2 − x1x2 + a) = A((x1 + x2)
2 − x1x2 + a)

We also have y1 − y2 = B. Then,

y1 =
A((x1 + x2)

2 − x1x2 + a) +B

2

y2 = y1 − B

The computational cost of the compression phase is I, while decompression

phase requires only 3M and 1S. Compared to the previous two-point com-

pression method this algorithm is more costly in the compression stage while

being computationally cheaper in the decompression.

The algorithm fails, however, when y1−y2 = 0. In this case, values (x1, x2, y1)

11

are stored with an additional bit to differentiate between two cases. y2 is de-

compressed simply by y2 = y1.

4.2 Elementary Symmetric Polynomials: lemma and

theorem

A lemma and a theorem are introduced in this section which are essential

to developing four- and five-point compression algorithms. In the lemma,

an algebraic identity involving elementary symmetric polynomials is derived.

Then, the theorem establishes a relation between elementary symmetric poly-

nomials and their indepedent variables.

Recall the definition of elementary symmetric polynomials:

ek,m =































∑

1≤i1<i2...<ik≤m yi1yi2 ...yik if k ≤ m

1 if k = 0

0 if k > m

where k ∈ Z
∗ and m ∈ N.

Lemma 1.

k
∑

j=1

(−1)j+1ek+j,mek−j,m =
e2k,m − fk,m

2
for k ≤ m (4)

12

where ek,m is an elementary symmetric polynomial and fk,m is defined as

follows:

fk,m =































∑

1≤i1<i2...<ik≤m y2i1y
2
i2
...y2ik if k ≤ m

1 if k = 0

0 if k > m

Proof. The principle of mathematical induction is used on m to prove the

lemma.

Base case (m = 1):

k can only be equal 1. Hence, LHS of (4) is

1
∑

j=1

e1+j,1e1−j,1 = e2,1e0,1 = 0

On the other hand, RHS of (4) is

e21,1 − f1,1

2
=

y21 − y21
2

= 0

Therefore, equation (4) is true for m = 1.

Before starting inductive step, first, notice that the following equations

∑

1≤i1<...<ik≤m+1

yi1yi2...yik =
∑

1≤i1<...<ik≤m

yi1yi2...yik+
∑

1≤i1<...<ik−1≤m

yi1 ...yik−1
ym+1

13

∑

1≤i1<...<ik≤m+1

y2i1y
2

i2
...y2ik =

∑

1≤i1<...<ik≤m

y2i1y
2

i2
...y2ik+

∑

1≤i1<...<ik−1≤m

y2i1 ...y
2

ik−1
y2m+1

are true for 1 ≤ k ≤ m. The above equations are equivalent to

ek,m+1 = ek,m + ym+1ek−1,m for 1 ≤ k ≤ m (5)

fk,m+1 = fk,m + y2m+1fk−1,m for 1 ≤ k ≤ m (6)

(5) and (6) are also true for the case k = m+ 1 since, by definition, em+1,m

and fm+1,m are equal zero.

Inductive step:

Assume that (4) is true for all positive integers m ≤ n and for all k ≤ m.

We must show that the equation is true for n + 1 and for all k ≤ n + 1. In

other words, we must show that the following equation is true.

k
∑

j=1

(−1)j+1ek+j,n+1ek−j,n+1 =
e2k,n+1

− fk,n+1

2
(7)

Using equation (5), the LHS of the above equation becomes

14

k
∑

j=1

(−1)j+1ek+j,n+1ek−j,n+1 =

k−1
∑

j=1

(−1)j+1ek+j,n+1ek−j,n+1 + (−1)k+1e2k,n+1

=

k−1
∑

j=1

(−1)j+1(ek+j,n + yn+1ek+j−1,n)(ek−j,n + yn+1ek−j−1,n) + (−1)k+1e2k,n+1

=

k−1
∑

j=1

(−1)j+1ek+j,nek−j,n + yn+1

k−1
∑

j=1

(−1)j+1(ek+j−1,nek−j,n + ek+j,nek−j−1,n)

+y2n+1

k−1
∑

j=1

(−1)j+1ek−1+j,nek−1−j,n + (−1)k+1(e2k,n + yn+1e2k−1,n)

Consider the above sums separately. The following equations

k−1
∑

j=1

(−1)j+1ek+j,nek−j,n + (−1)k+1e2k,n =
k

∑

j=1

(−1)j+1ek+j,nek−j,n =
e2k,n − fk,n

2

(8)

y2n+1

k−1
∑

j=1

(−1)j+1ek−1+j,nek−1−j,n = y2n+1

e2k−1,n − fk−1,n

2
(9)

are true by inductive hypothesis. The remaining sum

yn+1

k−1
∑

j=1

(−1)j+1(ek+j−1,nek−j,n + ek+j,nek−j−1,n)

telescopes, leaving

yn+1(ek,nek−1,n + (−1)ke2k−1,n)

15

Therefore,

yn+1

k−1
∑

j=1

(−1)j+1(ek+j−1,nek−j,n+ek+j,nek−j−1,n)+(−1)k+1yn+1e2k−1,n = yn+1ek,nek−1,n

(10)

Combining equations (8),(9), and (10) we obtain

k
∑

j=1

(−1)j+1ek+j,n+1ek−j,n+1 =
e2k,n − fk,n

2
+ yn+1ek,nek−1,n + y2n+1

e2k−1,n − fk−1,n

2

=
(ek,n + yn+1ek−1,n)

2 − (fk,n + y2n+1fk−1,n)

2

=
e2k,n+1

− fk,n+1

2

This completes the inductive step.

The following theorem demonstrates how y-coordinates can be obtained

without square root operations when squares of y-coordinates and values of

elementary symmetric polynomials are known.

Theorem 1. Let ek,n be an elementary symmetric polynomial in variables

y1, ..., yn. Then for odd values of n:

yi =
en,n + y2i en−2,n + ... + yn−1

i e1,n

en−1,n + y2i en−3,n + ... + yn−3

i e2,n + yn−1

i

for i = 1, ..., n (11)

16

For even values of n:

yi =
en,n + y2i en−2,n + ...+ yn−2

i e2,n + yni
en−1,n + y2i en−3,n + ... + yn−2

i e1,n
for i = 1, ..., n (12)

Proof.

n
∏

i=1

(x+ yi) = xn + e1,nx
n−1 + e2,nx

n−2 + ... + en−1,nx+ en,n

Substituting x = −yi we have the following

0 = (−1)nyni + (−1)n−1e1,ny
n−1

i + ...− en−1,nyi + en,n

Then, for odd values of n it follows that

yi(y
n−1

i + yn−3

i e2,n + ...+ y2i en−3,n + en−1,n) = yn−1

i e1,n + ...+ y2i en−2,n + en,n

Hence,

yi =
en,n + y2i en−2,n + ...+ yn−1

i e1,n

en−1,n + y2i en−3,n + ...+ yn−3

i e2,n + yn−1

i

For even values of n:

yi(y
n−2

i e1,n + ... + y2i en−3,n + en−1,n) = yni + yn−2

i e2,n...+ y2i en−2,n + en,n

Thus,

yi =
en,n + y2i en−2,n + ...+ yn−2

i e2,n + yni
en−1,n + y2i en−3,n + ...+ yn−2

i e1,n

17

On the basis of Lemma 1 and Theorem 1 four- and five-point compression

algorithms are developed in the next sections.

4.3 Four-Point Compression Algorithm

A generic four-point compression algorithm can easily be derived with the

help of previously established theorem and lemma. In this case, points

P = (xi, yi) for i = 1, 2, 3, 4 are represented by (x1, x2, x3, x4, e1,4 = y1 +

y2 + y3 + y4). First, we find values of elementary symmetric polynomials

using Lemma 1 and then obtain the values of y-coordinates according to

Theorem 1.

For simplicity of notation let ei = ei,4 and fi = fi,4 for i = 1,2,3,4. Then,

from the lemma we have

e2 =
e21 − f1

2
(13)

e1e3 − e4 =
e22 − f2

2
(14)

e2e4 =
e23 − f3

2
(15)

Note that since y2i ’s are all known, fi’s can be easily found; therefore, from (13)

we can compute e2. Denote the RHS of (14) as A. Then, from the same equa-

18

tion we have

e3 =
A+ e4
a1

(16)

Next, substitute e3 in (15) by (16). We obtain the quadratic equation in e4

2e21e2e4 = A2 + 2Ae4 + e24 − e21f3 (17)

e24 is known because e24 = f4 = y21y
2
2y

2
3y

2
4. Hence,

e4 =
A2 + e24 − e21f3
2(e21e2 − A)

(18)

Next, substitute e4 in (16) by the above expression. This yields

e3 =
2e21e2A−A2 + e24 − e21f3

2e1(e
2
1e2 −A)

(19)

According to Theorem 1, we have

yi =
e4 + y2i e2 + y4i

e3 + y2i e1
, for i = 1, 2, 3, 4. (20)

Combining equations (18), (19) and (20) we obtain the following equation

for yi

yi =
e1(A

2 + e24 − e21f3 + 2(e21e2 − A)(y2i e2 + y4i))

2e21e2A− A2 + e24 − e21f3 + 2e21y
2
i (e

2
1e2 −A)

(21)

This method requires 55 multiplications, 11 square operations and 1 inver-

19

sion. For more detailed information on the computation of the number of

operations refer to Appendix A.

4.4 Five-Point Compression Algorithm

A five-point compression algorithm is developed in a similar fashion. Having

elliptic points P = (xi, yi) for i = 1, 2, 3, 4, 5 we store (x1, x2, x3, x4, x5, e1,5 =

y1 + y2 + y3 + y4 + y5).

Again, to simplify notation let ei = ei,5 and fi = fi,5 for i = 1, 2, 3, 4, 5.

According to Lemma 1 we have

e2 =
e21 − f1

2
(22)

e3e1 − e4 =
e22 − f2

2
(23)

e4e2 − e5e1 =
e23 − f3

2
(24)

e5e3 =
e24 − f4

2
(25)

Because e1 and f1 are known, e2 is easily found from (22). Let RHS of (23)

be denoted as A. Then, from (23) a linear combination between e3 and e4 is

established

e3 =
A+ e4
e1

(26)

20

Next, substituting the above expression into (24) it yields

e4e2 − e5e1 =
A2 + 2Ae4 + e24 − e21f3

2e21
(27)

From which we express e4 to plug it in (25)

e24 = e21(2e4e2 − 2e5e1 + f3)−A2 − 2Ae4 (28)

Combining (28), (26) and (25) we get

e5
A + e4
e1

=
e21(2e4e2 − 2e5e1 + f3)−A2 − 2Ae4 − f4

2
(29)

from which we can express e4 as follows

e4 =
e5(2e

4
1 + 2A) + e1(A

2 + f4 − f3e
2
1)

e1(2e21e2 − 2A)− 2e5
(30)

Denote

B = e1(2e
2
1e2 − 2A)

C = 2e41 + 2A

D = e1(A
2 + f4 − f3e

2
1)

Therefore,

e4 =
Ce5 +D

B − 2e5
(31)

21

Then, (26) becomes

e3 =
A+ (Ce5 +D)/(B − 2e5)

e1
=

A(B − 2e5) + Ce5 +D

e1(B − 2e5)
(32)

Combination of the above two equations and (25) gives us a quadratic equa-

tion in e5. Notice that e25 can be computed because e25 = y21y
2
2y

2
3y

2
4y

2
5.

e5e3 =
e24 − f4

2
⇒ e5

A(B − 2e5) + Ce5 +D

e1(B − 2e5)
=

((Ce5 +D)/(B − 2e5))
2 − f4

2

⇒ e5 =
−C2e1e

2
5 −D2e1 − 8ABe25 + 2BCe25 − 4De25 +B2e1f4 + 4e1f4e

2
5

−2AB2 − 8Ae25 − 2BD + 4Ce25 + 2CDe1 + 4Be1f4

Let

E = −C2e1e
2
5 −D2e1 − 8ABe25 + 2BCe25 − 4De25 +B2e1f4 + 4e1f4e

2
5

F = −2AB2 − 8Ae25 − 2BD + 4Ce25 + 2CDe1 + 4Be1f4

Then e5 = E/F and e4 becomes

e4 =
CE +DF

FD − 2E

Denote G = CE +DF and H = FD − 2E. From (26) we get

e3 =
AH +G

He1

22

According to Theorem 1, for n = 5 we have

yi =
e5 + y2i e3 + y4i e1
e4 + y2i e2 + y4i

for i = 1, 2, 3, 4, 5

Combining all the above expressions for e3, e4 and e5, we get the following

equation for yi

yi =
EHe1 + Fy2i (AH +G+ e21y

2
iH)

Fe1(G+ y2iH(e2 + y2i))
(33)

Five-point compression algorithm requires 116M + 12S + I operations to

extract all elliptic curve points. If each yi is calculated by the given equa-

tion (33) separately the algorithm would require five inversions. However,

there exists a method to obtain all y-coordinates using only one inversion

operation. This method and computation of the number of operations are

discussed in a greater detail in Appendix B.

5 Conclusion

The work done in this paper can be extended to six or higher number of

points. However, the development of the algorithm for six points with the

use of proposed lemma and theorem becomes harder but still possible. In

this contribution, the generalization to n points was made by X. Fan, A. Ote-

23

missov, F. Sica, and A. Sidorenko in [3] but it is only of theoretical interest

and the method suggested is not practical. There are still unanswered ques-

tions about the existence of practical algorithms which are computationally

heavy in compression phase and light in decompression for one elliptic curve

point when only one value is stored.

24

A Computational complexity: 4-point com-

pression algorithm

Calculations are all based on two basic assumptions:

1) Addition and subtraction operations are neglected

2) Multiplication by constants are not counted

According to (21), in order to find all yi’s algorithm requires four inversions.

Since inversions are computationally costly the number of inversions in the

algorithm should be minimized. As it was mentioned before, the algorithm

requires only one inversion.

Let

B = e1(A
2 + e24 − e21f3)

C = 2e1(e
2
1e2 − A)

D = 2e21e2A−A2 + e24 − e21f3

E = 2e21(e
2
1e2 − A)

Then,

yi =
B + C(e2y

2
i + y4i)

D + Ey2i

In order to avoid four inversions, express each yi in the following way

y1 =
(B + C(a2y

2
1 + y41))(D + Ey22)(D + Ey23)(D + Ey24)

(D + Ey21)(D + Ey22)(D + Ey23)(D + Ey24)
,

25

y2 =
(B + C(a2y

2
2 + y42))(D + Ey21)(D + Ey23)(D + Ey24)

(D + Ey21)(D + Ey22)(D + Ey23)(D + Ey24)
,

y3 =
(B + C(a2y

2
3 + y43))(D + Ey21)(D + Ey22)(D + Ey24)

(D + Ey21)(D + Ey22)(D + Ey23)(D + Ey24)
,

y4 =
(B + C(a2y

2
4 + y44))(D + Ey21)(D + Ey22)(D + Ey23)

(D + Ey21)(D + Ey22)(D + Ey23)(D + Ey24)
.

The common denominator in all four expressions suggest that only one in-

version is required. Calculations of multiplication, square and inversion op-

erations are performed in the table below.

Expression Operations Comments

y21, y
2
2, y

2
3, y

2
4 4S + 4M Since y2 = x(x2 + a) + b

f2 = y21y
2
2 +y21y

2
3 +y21y

2
4 +y22y

2
3 +

y22y
2
4 + y23y

2
4

6M Store

y21y
2
2, y

2
1y

2
3, y

2
1y

2
4, y

2
2y

2
3

f3 = y21y
2
2y

2
3 + y21y

2
2y

2
4 + y21y

2
3y

2
4 +

y22y
2
3y

2
4

4M Store y21y
2
2y

2
3

e24 = y21y
2
2y

2
3y

2
4 1M Multiplication of y21y

2
2y

2
3

by y24

y41, y
4
2, y

4
3, y

4
4 4S y2i ’s are squared

e21 1S e1 is squared

e2 0 only subtraction, addi-

tion and multiplication

by a constant

26

e22 1S

A 0 only subtraction, addi-

tion and multiplication

by a constant

A2 1S

B = e1(A
2 + e24 − e21f3) 2M

C = 2e1(e
2
1e2 −A) 2M

D = 2e21e2A−A2 + e24 − e21f3 3M

E = 2e21(e
2
1e2 −A) 2M

D + Ey21 1M

D + Ey22 1M

D + Ey23 1M

D + Ey24 1M

(D + Ey21)(D + Ey22)(D +

Ey23)(D + Ey24)

3M

((D + Ey21)(D + Ey22)(D +

Ey23)(D + Ey24))
−1

1I

B + C(e2y
2
1 + y41) 2M

B + C(e2y
2
2 + y42) 2M

B + C(e2y
2
3 + y43) 2M

B + C(e2y
2
4 + y44) 2M

Final computation of

y1, y2, y3, y4

4M · 4 =

16M

In total, the computational complexity of the algorithm is 55M + 11S + 1I.

For 256-bit elliptic curves the cost of square root operation and inversion,

on average, are equal (Square root ≈ I ≈ 127M + 254S) [3]. Therefore,

27

compared to the ordinary method, four-point compression is 70% faster re-

quiring 25% more memory. Compared to the trivial method, it saves 37.5%

of memory.

B Computational complexity: 5-point com-

pression algorithm

First, we describe the method to obtain y-coordinates with one inversion.

Recall equation (33)

yi =
EHe1 + Fy2i (AH +G+ e21y

2
iH)

Fe1(G+ y2iH(e2 + y2i))

Rewrite the above as follows

yi =
EHe1 + Fy2i (AH +G+ e21y

2
iH)

Fe1
∏

5

j=1
(G+ y2jH(e2 + y2j))

∏

j 6=i

(G+ y2jH(e2 + y2j)) (34)

This form brings down all yi’s to a common denominator.

As mentioned before, the algorithm requires 116 multiplications, 12 square

operations and 1 inversion. The counting process is summarised in the table

below.

28

Expression Cost Comments

y21, y
2
2, y

2
3, y

2
4, y

2
5 5S + 5M Since y2 = x(x2 + a) + b

f2 = y21y
2
2 + y21y

2
3 + · · ·+ y24y

2
5 10M Store y21y

2
2, y21y

2
3, y22y

2
3,

y24y
2
5

f3 = y21y
2
2y

2
3 + · · ·+ y23y

2
4y

2
5 10M Store

y21y
2
2y

2
3, y

2
1y

2
4y

2
5, y

2
2y

2
3y

2
4

f4 = y21y
2
2y

2
3y

2
4+y21y

2
2y

2
3y

2
5+ · · ·+

y22y
2
3y

2
4y

2
5

5M

f5 = e25 = y21y
2
2y

2
3y

2
4y

2
5 M

e21 S

e2 0 only subtraction, addi-

tion and multiplication

by a constant

e22 S

A 0 only subtraction, addi-

tion and multiplication

by a constant

B = 2e1(e
2
1e2 −A) 2M

e41 S

C = 2e41 + 2A 0

A2 S

D = (A2 + f4 − f3e
2
1) · e1 2M

B2 S

F = A(−2B2−8e25)+e1(2CD+

4Bf4) + 4Ce25 − 2BD

6M B2,e25 have been pre-

computed

29

E = e1(−C2e25 − D2 + B2f4 +

4f4e
2
5) + B(−8Ae25 + 2Ce25) −

4De25

8M+2S B2, e25 have been pre-

computed

H = FD − 2E M

G = CE +DF 2M

He21y
2
i , i = 1, 2, 3, 4, 5 2M · 5 =

10M

e21, y2i have been pre-

computed

Fy2i M ·5 = 5M

AH +G M

EHe1 2M

EHe1+Fy2i (AH +G+He21y
2
i),

i = 1, 2, 3, 4, 5

M ·5 = 5M

G+y2iH(e2+y2i), i = 1, 2, 3, 4, 5 2M · 5 =

10M

Fe1 M

Fe1
∏

5

j=1
(G+ y2jH(e2 + y2j)) 5M Common denominator

(Fe1
∏

5

j=1
(G+y2jH(e2+y2j)))

−1 I Inversion of the com-

mon denominator

Final computation of yi, i =

1, 2, 3, 4, 5

5M · 5 =

25M

See (34)

The total computational complexity of the algorithm is 116M + 12S + I.

This algorithm is faster by 72% but demands 20% more memory in contrast

with the ordinary method. On the other hand, it is more computationally

costly than the trivial method but saves 40% of memory.

30

References

[1] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B.
Moeller. Elliptic curve cryptography (ECC) cipher suites for trans-
port layer security (TLS). IETF Internet Draft, May 2006.
http://tools.ietf.org/html/rfc4492.

[2] M. Campagna and G. Zaverucha. A cryptographic suite for em-
bedded systems (suite E). IETF Internet Draft, October 2012.
http://tools.ietf.org/html/draft-campagna-suitee-04.

[3] X. Fan, A. Otemissov, F. Sica, and A. Sidorenko. Multiple compression
on elliptic curves. preprint.

[4] M. Khabbazian, T. A. Gulliver, and V. K. Bhargava. Double point com-
pression with applications to speeding up random point multiplication.
IEEE Trans. Computers, 56(3): 305-313, 2007.

[5] A. Lenstra and E. Verheul, Selecting Cryptographic Key Sizes, Journal
of Cryptology 14: 255-293, 2001. http://www.cryptosavvy.com/.

[6] T. Wollinger, J. Pelzl, C. Paar, G. Saldamli, and C. K. Koc. Elliptic
and hyper-elliptic curves on embedded µp. ACM Trans. on Embedded

Computing Systems, 3(3):509-533, August 2004.

31

