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1. Introduction

The study of locations of zeroes of functions became popular among mathe-
maticians many years ago. This investigation contributes a lot to wide range of
theories and topics in Mathematics and Physics.

We start now giving some definitions and notations which will be used fur-
ther.

Definition 1. Let A be a set on the complex plane, and f(z) be a holomorphic function

defined on A. Then f(z) is said to be stable on A, or A-stable, if f(z) is nonzero for

all points in A.

When A = HR
n = {z ∈ Cn|<(zi) > 0, i = 1, 2, ..., n} in Definition 1, we call

f(z) to be Hurwitz stable. When A = HU
n = {z ∈ Cn|=(zi) > 0, i = 1, 2, ..., n}

in Definition 1, we call f(z) to be stable. We say f(z) has a half-plane property
if f(z) 6= 0 for all z ∈ Hn, where H is any half-plane of the complex plane.

The study of stable functions can be applied to matrix theory and theory of
graphs, see [1] and [5]. There are also connections with matroid theory in [4] as
well as with combinatorics and probability in [8]. Some importance in physics
can be noted including application to conformal field theory in [7], and the Lee-
Yang theory of phase transitions, see [3] and [2].

This paper shows results on the stability of polynomials in n-variables with
complex coefficients P ∈ C(z1, z2, ..., zn).

Definition 2. The set of indexes of variables {1, 2, ..., n} is called a ground set of P

and we denote it as E = E(P ). Usually, P =
∑

m∈S amz
m, where am ∈ C and

S is a collection of n-tuple vectors with elements of type m = (m1,m2, ...,mn) ∈

({0} ∪ Z+)n and zm =
∏
q∈E(P ) zq

mq . A polynomial P is called to be multiaffine if

each zk in P =
∑

m∈S amz
m has a degree at most 1. The support of the polynomial P

is supp(P ) = {m|m ∈ S, am 6= 0}.

We also consider polynomials stable on the unit ball. In this paper we inves-
tigate quadratic polynomials P (z, w) which are nonzero for all z, w ∈ C defined
by the inequality |z|2 + |w|2 < 1.

The plan of this paper is as follows: In Section 2 we give some background
information related to the polynomials stable on the right and upper half-planes.
In Section 3 we define matroids, delta-matroids and jump systems, and expand
the proof of the theorem that the support of a stable polynomial is a jump sys-
tem which was initially given by Branden, [4]. In Section 4 we discuss thre
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stability of quadratic polynomials and transformations done to identify con-
nections between the stability on the unit ball and half-planes. In Section 5 we
prove some properties of polynomials stable on the unit ball. In Section 6 we
conclude, and give possible directions for further research.

2. Stable and Hurwitz stable polynomials

Here we will give previous results on polynomials stable on right and upper
half-planes. First we will start with Hurwitz stable polynomials which are
nonzero on the product of the right half-planes. Some properties of such poly-
nomials are given in [5].

Using the following methods of constructions of new polynomials, we de-
fine:

(1) Let e ∈ E(P ) be arbitrary, we define P \e to be a polynomial obtained from
the P =

∑
m∈S amz

m by taking ze = 0. The new polynomial is called the deletion
of e from P .
(2) Let e ∈ E(P ) be arbitrary, then P /e = ∂P

∂ze
is called the contraction of e from P .

(3) Let A be arbitrary subset of E(P ), then P βA(z) =
∑

m∈S:me≤1, all e∈A amz
m is

called the multiaffine part of P .
(4) Let A be arbitrary subset of E(P ), then the process of making new polyno-
mial P#A(z) =

∑
m am

∏
e∈A ze

me mod 2
∏
e∈E\A ze

me is called folding mod 2.

The collection of new polynomials constructed above has the following prop-
erty:

Lemma 3. If polynomial P is Hurwitz stable and A is any subset of E(P ), then

each of P \e, P /e, P βA and P#A is Hurwitz stable.

As an example we can consider a polynomial

P (z1, z2) = a22z
2
1z

2
2+a21z

2
1z2+a12z1z

2
2+a20z

2
1+a02z

2
2+a11z1z2+a10z1+a01z2+a00.

If P (z1, z2) is Hurwitz stable, then, by Lemma 3, both

P \1 = a02z
2
2 + a01z2 + a00

and
P /1 = 2a22z1z

2
2 + 2a21z1z2 + a12z

2
2 + 2a20z1 + a11z2 + a10

are also Hurwitz stable.

Definition 4. A polynomial is real stable if it is stable and all coefficients are real.

Actually, we can imply the definition of real stability for any set A, just say-
ing that a polynomial with real coefficients is nonzero on the set A. (real stable
on A)
The theorems related to stable and real stable polynomials are proved in [4]:
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Theorem 5. Let P = H + iG 6= 0, where H,G ∈ R[z1, z2, ..., zn], and let zn+1 be

a new indeterminate. Then the followings are equivalent:

(a) P = H + iG is stable,

(b) H + zn+1G is real stable,

(c) All nonzero polynomials in the pencil {αH + βG : α, β ∈ R} are real stable

and
∂h

∂zj
(x) · g(x)− h(x) · ∂g

∂zj
(x) ≥ 0 : ∀1 ≤ j ≤ n, x ∈ Rn.

Let the operation ∆ij(f) be defined as:

∆ij(f) =
∂f

∂zi
· ∂f
∂zj
− ∂2f

∂zi∂zj
· f.

Theorem 6. Let P ∈ R[z1...zn] be multiaffine. Then the following are equivalent

(a) For all x ∈ Rn and 1 ≤ i, j ≤ n

∆ij(P )(x) ≥ 0,

(b) P is stable.

Corollary 7. Let P (z1, z2) = a11z1z2 + a10z1 + a01z2 + a00 ∈ R[z1, z2]. Then

P (z1, z2) is stable if and only if

∆12(f) =
∂f

∂z1
· ∂f
∂z2
− ∂2f

∂z1∂z2
· f

= (a11z2 + a10)(a11z1 + a01)− a11(a11z1z2 + a10z1 + a01z2 + a00)

= a10a01 − a11a00 ≥ 0.

3. Stability of polynomials and matroid theory

Definition 8. A matroid is a pair (E,M), where M is a collection of subsets of a

finite set E satisfying,

(1) M 6= ∅,

(2) for any B ∈M and A ⊆ B, A ∈M ,

(3) if A,B ∈M and |A| > |B|, then there exists x ∈ A\B such that B ∪ {x} ∈M ,

(4) let Γ be the set of maximal elements of M , then, for any A,B ∈ Γ and x ∈ A\B,

there is y ∈ B\A such that (A− {x}) ∪ {y} ∈ Γ.
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All elements ofM are called independent sets, and all elements of Γ are called
bases of the matroid.

Definition 9. A delta matroid is a pair (E,F ), where F is a collection of subsets of

a finite set E satisfying,

(1) F 6= ∅,

(2)
⋃
A∈F A = E,

(3) symmetric exchange axiom: ifA,B ∈ F and x ∈ A4B, then there exists y ∈ A4B

such that A4 {x, y} ∈ F .

Here A4B = (A ∪B)\(A ∩B) is the symmetric difference.
Notice that the set of bases of the matroid is a delta matroid.

Definition 10. Let α, β ∈ Zn. Define St(α, β) = {σ ∈ Zn : |σ| = 1, |α + σ − β| =

|α− β| − 1} as the set of steps from α to β, where |α| =
∑n

i=1 |αi|.

Two-step Axiom: Let F be a collection of points in Zn. If α, β ∈ F, σ ∈
St(α, β) and α+ σ /∈ F , then there is a τ ∈ St(α+ σ, β) such that α+ σ+ τ ∈ F .

Definition 11. A collection F of points in Zn is called a jump system if it satisfies

Two-step Axiom.

The connection between delta matroids and jump system can be defined by
the following statement from [6]:
A delta matroid is a collection of subsets of Vn = (1, 2, . . . , n) whose characteristic vec-
tors define a jump system.
Here, x = (x1, x2, . . . , xn) ∈ {0, 1}n is the characteristic vector of the set A ⊆ V
if it satisfies a ∈ A ⇐⇒ xa = 1.
For example, the set (1, 3, 5) ⊂ V5 has a characteristic vector (1, 0, 1, 0, 1) ⊂
{0, 1}5.
To show one of the relations of stable polynomials to matroid theory, we intro-
duce the theorem that the support of a stable polynomial is a jump system, see
[4].

Theorem 12. If P is a polynomial with half-plane property, then the support of

P is a jump system.

Proof. Given P (z) =
∑

m amz
m is a polynomial with the half-plane property

which is nonzero for some product of half-planes Hn ⊂ Cn. Each half-plane

can be presented as H = eiθz : <(z) > 0, and P (z) is stable on Hn if and only if

P (eiθz) is Hurwitz stable. Multiplication of coefficients by eiθ does not nullify

them, so supp(P (z)) = supp(P (eiθz)). Therefore, we can consider P (z) as Hur-

witz stable polynomial.

Let α, β ∈ supp(P ) for which the Two-step Axiom does not hold. Suppose
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αi > βi for some values i ∈ S ⊂ E(P ), and αj ≤ βj for j ∈ T ⊂ E(P ), such that

S 6= ∅ 6= T and S ∪ T = E(P ).

We say α ≤ β if α, β ∈ Rn and αk ≤ βk for all k = 1, 2, . . . , n.

Let’s introduce next function which changes the variables of polynomial P :

µ(z) : zi →


z−1
i ∀i ∈ S

zi ∀i ∈ T

and substitute it in polynomial P instead of z:

g(z) = zγP (µ(z)), where γ ∈ Z|E(P )|
+ is sufficiently large so that g(z) is a poly-

nomial.

Then, elements α and β of support of P considered above become α′ and β′

elements of support of g(z) respectively, and:



α′ =


γ − αi ∀i ∈ S

γ + αj ∀j ∈ T

β′ =


γ − βi ∀i ∈ S

γ + βj ∀j ∈ T

→


γ − αi < γ − βi ∀i ∈ S

γ + αj < γ + βj ∀j ∈ T
→ α′ ≤ β′.

Now, both zi and z−1
i have real parts of equal sign, so change of variables µ(z)

will preserve stability of function, thus P (µ(z)) is stable if and only if P (z) is

stable. Multiplication of P (µ(z)) by zγ will preserve stability also, so, finally,

stability of P (z) leads to stability of g(z) and vice versa. Therefore, without loss

of generalization, using transformation of (α, β) to (α′, β′), we can suppose that

Two-step Axiom is invalid for some α, β ∈ supp(P ) with α ≤ β.

Next, suppose that in polynomial P (z) =
∑

m amz
m the maximal degree of each

zi is ki, and k = (k1, k2. . . kn), thus:

P (
1

z
) =

∑
m

am(
1

z
)m → zkP (

1

z
) = zk

∑
m

am(
1

z
)m =

∑
m

amz
k−m.

We use the following operation for α = (α1, α2, . . . αn):

∂αP (z1, z2, . . . , zn) =
∂α1

∂zα1
1

...
∂αn

∂zαn
n
P (z1, z2, . . . , zn)
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. Hence, for the above polynomial we have:

Pβ(z) = ∂k−β
(
zkP (

1

z
)

)
=
∑
m

am
(k −m)!

(β −m)!
zβ−m

→ Pβ(
1

z
) =

∑
m

am
(k −m)!

(β −m)!
(
1

z
)β−m → zβPβ(

1

z
) =

∑
m

am
(k −m)!

(β −m)!
zm

→ Pα,β(z) = ∂α
(
zβPβ(

1

z
)

)
=
∑
m

am
(k −m)!

(β −m)!

m!

(m− α)!
zm−α

P(α, β)(z) is polynomial because during the transformations of P (z), only those

m with α ≤ m ≤ β remained. The coefficient of zm−α in the new polynomial

is am−α = am
(k−m)!
(β−m)!

m!
(m−α)! , which transforms the elements (α, β) ∈ supp(P ) →

(0, β − α) in supp(Pα,β(z)), and the last pair is considered as the boundary for

support of new polynomial.

From the above, if a polynomial P and its elements of support α, β(α ≤ β) con-

stitute a counterexample then so does a polynomial P(α, β) and its elements of

support 0, β − α. Thus, considering the minimal counterexample with respect

to |β − α|, we can suppose that α = 0 in P(α, β)(z) and write it as P (z) =∑
m amz

m ∈ C[z1, z2. . . zn] with positive maximal degree of each component zi,

supp(P ) ⊆ [0, β] and a0aβ 6= 0 which is the minimal counterexample with re-

spect to |β − α| = |β|.

Let e1, e2. . . en be the standard orthonormal basis of Rn. Without loss of gener-

ality, we may take σ = e1 in the Two-step Axiom. By our assumption, the axiom

is not valid for the above polynomial P (z), so e1, 2e1, e1 +e2...e1 +en /∈ supp(P ).

If there exists ε ∈ (e1, β)∩supp(P ) then P0,ε(z) is a smaller counterexample than

P (z) = P0,β(z), which contradicts to our assumption about minimal choice of

P (z). Therefore, for all γ ∈ Rn ∨ γ1 > 0, aγ = 0 unless γ = β.

Let 0 < µ ∈ R and r =
∑n

i=2 βi
β1

. The considered polynomialP (z) = P (z1, z2, . . . , zn)

is stable, and multiplication of variables by positive numbers does not affect

stability, so univariate polynomial P (µ−rz, µz...µz) is also stable. From the pre-

vious paragraph, aγ 6= 0 only for those γ ∈ Rn with γ1 = 0, so all terms of

P (µ−rz, µz...µz), except that with a0 and aβ , are multiplied by a positive power

of µ. Letting µ→ 0, we have that:

lim
µ→0

P (µ−rz, µz...µz) = a0 + aβz
|β|.
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We cannot have |β| ≤ 2, because this means e1 +ei ∈ supp(P ) which contradicts

our assumption, so |β| ≥ 3. But, then at least one of the roots of a0 + aβz
|β| = 0

will be in the half-plane with positive real part, which is contradiction. �

4. Stability on the unit ball

Let Ω ⊂ C2 be the unit ball |z|2 + |w|2 < 1 for z, w ∈ C, and let Ωr be used
to denote the collection of points (z, w) such that |z| < r and |w| <

√
1− r2.

It is easy to see that Ωr ⊂ Ω. We consider a quadratic polynomial P (z, w) =
az2 + bzw + cw2 + dz + fw + g, which is Ω-stable.

Lemma 13. Stability on Ω is equivalent to stability on H2
R under the mapping

z = 1−δ
1+δ r and w = 1−τ

1+τ

√
1− r2 for all |z| < r and |w| <

√
1− r2 for all r ∈ (0, 1).

Proof. |z| < r implies
∣∣1−δ

1+δ r
∣∣ < r, i.e

∣∣1−δ
1+δ

∣∣ < 1.
∣∣1−δ

1+δ

∣∣2 < 1 ⇒ <(δ) > 0.

Similarly, for |w| <
√

1− r2. �

Lemma 14. Stability on Ω is equivalent to stability on H2
U under the mapping

z = i−δ
i+δ r and w = i−τ

i+τ

√
1− r2 for all |z| < r and |w| <

√
1− r2 for all r ∈ (0, 1).

Proof. |z| < r implies
∣∣ i−δ
i+δ r

∣∣ < r, i.e
∣∣ i−δ
i+δ

∣∣ < 1.
∣∣ i−δ
i+δ

∣∣2 < 1⇒ =(δ) > 0. Similarly,

for |w| <
√

1− r2. �

Applying the transformations described in Lemma 13 to quadratic Ω-stable
polynomial P (z, w) = az2 + bzw+ cw2 + dz+ fw+ g we have that it converts to

Q(δ, τ) = c(2, 2)δ2τ2 + c(2, 1)δ2τ + c(1, 2)δτ2 + c(2, 0)δ2 + c(0, 2)τ2+

+c(1, 1)δτ + c(1, 0)δ + c(0, 1)τ + c(0, 0),

where coefficients are

c(2, 2) = ar2 + br
√

1− r2 + c(1− r2)− dr − f
√

1− r2 + g,
c(2, 1) = 2ar2 − 2c(1− r2)− 2dr + 2g,
c(1, 2) = −2ar2 + 2c(1− r2)− 2f

√
1− r2 + 2g,

c(2, 0) = ar2 − br
√

1− r2 + c(1− r2)− dr + f
√

1− r2 + g,
c(0, 2) = ar2 − br

√
1− r2 + c(1− r2) + dr − f

√
1− r2 + g,

c(1, 1) = −4ar2 − 4c(1− r2) + 4g,
c(1, 0) = −2ar2 + 2c(1− r2) + 2f

√
1− r2 + 2g,

c(0, 1) = 2ar2 − 2c(1− r2) + 2dr + 2g,
c(0, 0) = ar2 + br

√
1− r2 + c(1− r2) + dr + f

√
1− r2 + g.

Ω-stability of P (z, w) is equivalent to H2
R-stability of Q(δ, τ). Using Lemma

3 for Q(δ, τ), we have that the following polynomials are Hurwitz stable:

∂2Q

∂δ2
= 2c(2, 2)τ2 + 2c(2, 1)τ + 2c(2, 0)
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∂2Q

∂τ2
= 2c(2, 2)δ2 + 2c(1, 2)δ + 2c(0, 2)

Qδ=0 = c(0, 2)τ2 + c(0, 1)τ + c(0, 0)

Qτ=0 = c(2, 0)δ2 + c(1, 0)δ + c(0, 0)

The above four polynomials do not have roots in the right half-plane, so if
x1, x2 are roots of any of these polynomials then real part of (x1 +x2) is nonpos-
itive, i.e.:

<
(
−c(2, 1)

c(2, 2)

)
= <

(
− 2ar2 − 2c(1− r2)− 2dr + 2g

ar2 + br
√

1− r2 + c(1− r2)− dr − f
√

1− r2 + g

)
≤ 0

,

<
(
−c(1, 2)

c(2, 2)

)
= <

(
− −2ar2 + 2c(1− r2)− 2f

√
1− r2 + 2g

ar2 + br
√

1− r2 + c(1− r2)− dr − f
√

1− r2 + g

)
≤ 0,

<
(
−c(0, 1)

c(0, 2)

)
= <

(
− 2ar2 − 2c(1− r2) + 2dr + 2g

ar2 − br
√

1− r2 + c(1− r2) + dr − f
√

1− r2 + g

)
≤ 0

<
(
−c(1, 0)

c(2, 0)

)
= <

(
− −2ar2 + 2c(1− r2) + 2f

√
1− r2 + 2g

ar2 − br
√

1− r2 + c(1− r2)− dr + f
√

1− r2 + g

)
≤ 0.

These inequalities are consequences of transformation of stability, and become
true if the initial polynomial P (z, w) is stable on the unit ball. Another result
could be obtained by linear transformation of (z, w) satisfying |z|2 + |w|2 <
1 on the unit ball. For mapping (z, w) to (z′, w′) we use matrix ( m n

−n̄ m̄ ) with
|n|2 + |m|2 = 1 for any n,m ∈ C.

[
m n
−n̄ m̄

] [
z
w

]
=

[
mz + nw
−n̄z + m̄w

]
=

[
z′

w′

]

For new indeterminate (z′, w′) the inequality |z′|2 + |w′|2 < 1 holds.

From this point of consideration, the polynomial P (z, w) = az2+bzw+cw2+
dz + fw + g becomes

P (z′, w′) = (am2 − bmn̄+ cn̄2)z′2 + (2amn+ bmm̄− bnn̄− 2cn̄m̄)zw+

+(an2 + bnm̄+ cm̄2)w2 + (dm− fn̄)z + (dn+ fm̄)w + g

.
Further investigation of the obtained polynomial does not give us consid-

erable results; however, it could be regarded as one of the possible ways of
research in this area.
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5. Property of Ω-stability

Theorem 15. Let P (z1, z2) = a1z
2
1 +bz1z2 +a2z

2
2 +c1z1 +c2z2 +d be a polynomial

with real coefficients. Then the following are equivalent for i = 1, 2:

(1) ∂P
∂zi

is real stable on Ωr,

(2) |ci| ≥ 2ri|ai|+ |b|
√

1− r2
i , where r1 = r and r2 =

√
1− r2

Proof. Given P (z1, z2) = a1z
2
1 + bz1z2 + a2z

2
2 + c1z1 + c2z2 + d is real stable on Ω.

Further, we will write i and j assuming that (i, j) = (1, 2) or (i, j) = (2, 1).

∂P

∂zi
= 2aizi + bzj + ci.

Let r1 = r and r2 =
√

1− r2. Thus, r2
1 +r2

2 = 1 and r2
j = 1−r2

i . Suppose |zi| < ri

and |wj | < rj =
√

1− r2
i .

Next, changing variables: zi = i−δi
i+δi

ri we have that:

∂P

∂zi
(δ1, δ2) = 2ai

i− δi
i+ δi

ri + b
i− δj
i+ δj

rj + c =

= 2ai
i− δi
i+ δi

ri + b
i− δj
i+ δj

√
1− ri + ci =

=
a(1, 1)δiδj + ia(1, 0)δi + ia(0, 1)δj + a(0, 0)

(i+ δi)(i+ δj)
=

Q(δ1, δ2)

(i+ δi)(i+ δj)

The coefficients of polynomial Q(δ1δ2) are:

a(1, 1) = −2airi − b
√

1− r2
i + ci,

a(1, 0) = −2airi + b
√

1− r2
i + ci,

a(0, 1) = 2airi − b
√

1− r2
i + ci,

a(0, 0) = −2airi − b
√

1− r2
i − ci,

From the above, Q(δ1, δ2) = (a(1, 1)δiδj + a(0, 0)) + i(a(1, 0)δi + a(0, 1)δj).

From Lemma 14, it is known that zi = i−δi
i+δi

ri transforms Ω-stability of ∂P
∂z to

H2
U -stability of Q(δ, τ) (dividing by i+δ

i+τ does not affect stability).

So, Q(δ1, δ2) = (a(1, 1)δiδj + a(0, 0)) + i(a(1, 0)δi + a(0, 1)δj) is H2
U -stable.

LetQ(δ1, δ2) = h+ig, where h = a(1, 1)δiδj+a(0, 0) and g = a(1, 0)δi+a(0, 1)δj .

Obviously, h and g are polynomials with real coefficients.

From Theorem 5, we have that Q is H2
U -stable if only if γh+ βg is real stable

on H2
U for all γ, β ∈ R.
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f(δ1, δ2) = γh + βg = γa(1, 1)δiδj + βia(1, 0)δi + βia(0, 1)δj + γa(0, 0) is real

stable on H2
U because all coefficients are real.

From Theorem 6 and Corollary 7, f(δ1, δ2) is real stable if only if:

βa(1, 0) ·βa(0, 1)−γa(1, 1) ·γa(0, 0) ≥ 0 ⇐⇒ β2a(1, 0)a(0, 1) ≥ γ2a(1, 1)a(0, 0)

If both a(1, 0)a(0, 1) and a(1, 1)a(0, 0) are of one sign, then it is possible to find

such real γ and β that the inequality will fail. So, they have different signs, and

a(1, 0)a(0, 1) ≥ 0 ≥ a(1, 1)a(0, 0).

Also, from Theorem 5, we have that Q is H2
U -stable if only if

∂h

∂δi
(x) · g(x)− h(x) · ∂g

∂δi
(x) ≥ 0 ∀x ∈ R.

Applying this we have:

∂h

∂δi
· g − h · ∂g

∂δi
= a(1, 1)δj(δia(1, 0) + δja(0, 1))− (a(1, 1)δiδj + a(0, 0))a(1, 0) =

= a(1, 1)a(0, 1)δ2
j − a(0, 0)a(1, 0),

so:

∂h

∂δi
(x) · g(x)− h(x) · ∂g

∂δi
(x) = a(1, 1)a(0, 1)x2 − a(0, 0)a(1, 0) ≥ 0 ⇐⇒

⇐⇒ a(1, 1)a(0, 1)x2 ≥ a(0, 0)a(1, 0).

Before we obtained, that a(1, 0)a(0, 1) ≥ 0 ≥ a(1, 1)a(0, 0), which means that

there is odd number of negatives among these four coefficients, so one of the

a(1, 1)a(0, 1) and a(0, 0)a(1, 0) must be negative. By the positivity of square of

any real number,

a(1, 1)a(0, 1) ≥ 0 ≥ a(0, 0)a(1, 0).

Similarly, as in the above,

∂h

∂δj
(x) · g(x)− h(x) · ∂g

∂δj
(x) = a(1, 1)a(1, 0)x2 − a(0, 0)a(0, 1) ≥ 0 ⇐⇒

⇐⇒ a(1, 1)a(1, 0)x2 ≥ a(0, 0)a(0, 1)⇒ a(1, 1)a(1, 0) ≥ 0 ≥ a(0, 0)a(0, 1).
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Finally, we have three inequalities,


a(1, 0)a(0, 1) ≥ 0 ≥ a(1, 1)a(0, 0)

a(1, 1)a(0, 1) ≥ 0 ≥ a(0, 0)a(1, 0)

a(1, 1)a(1, 0) ≥ 0 ≥ a(0, 0)a(0, 1)

By simple calculations, this system leads to one of the following:

(i) a(1, 1), a(1, 0), a(0, 1) ≥ 0, and a(0, 0) ≤ 0;

(ii) a(1, 1), a(1, 0), a(0, 1) ≤ 0, and a(0, 0) ≥ 0.

Case (i):

a(1, 1) = −2airi − b
√

1− r2
i + ci ≥ 0,

a(1, 0) = −2airi + b
√

1− r2
i + ci ≥ 0,

a(0, 1) = 2airi − b
√

1− r2
i + ci ≥ 0,

a(0, 0) = −2airi − b
√

1− r2
i − ci ≤ 0 ⇐⇒ 2airi + b

√
1− r2

i + ci ≥ 0.

These four inequalities above are equivalent to ci± 2airi± b
√

1− r2
i ≥ 0 which

is always true if

ci − |2airi| − |b
√

1− r2
i | ≥ 0⇒ ci ≥ 2ri|ai|+ |b|

√
1− r2

i .

Obviously, there ci ≥ 0.

Case (ii): This case, similarly as Case (i), leads to the inequality ci ± 2airi ±

b
√

1− r2
i ≤ 0 which is always true if

ci + |2airi|+ |b
√

1− r2
i | ≤ 0⇒ −ci ≥ 2ri|ai|+ |b|

√
1− r2

i .

Obviously, there ci ≤ 0.

The combination of the two cases gives that ∂P
∂zi

is real stable on Ωr if and only

if

|ci| ≥ 2ri|ai|+ |b|
√

1− r2
i .

The converse can be proved by going up, where all statement are related to each

other in “if and only if” manner. �

Remark: Theorem 15 shows that derivative operator does not preserve sta-
bility of polynomials. The only condition for stability of the derivative of a
polynomial is condition (2) in Theorem 15. As an example, we can consider
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P (z1, z2) = z2
1 + z1z2 + z2

2 + 1000 ∈ Ω(z1, z2) which is clearly stable on Ω. How-
ever, we can check that the derivative of P (z1, z2) is not real stable on Ω because
the condition (2) of Theorem 15 does not hold.

Corollary 16. Let P (z1, z2) = a1z
2
1 +bz1z2 +a2z

2
2 +c1z1 +c2z2 +d be polynomial

with real coefficients. Then ∂P
∂zi

is real stable on Ω if and only if |ci| ≥
√

4a2
i + b2.

The statement of the Corollary 16 follows from Theorem 15 by looking for

the maximum value of f(ri) = 2ri|ai| + |b|
√

1− r2
i for ri ∈ [0, 1] that can be

found by simple calculus, searching critical points of the function and checking
behavior of each interval. If ci from the Theorem 15 is not less than max of f(ri)
then ∂P

∂zi
is stable on any Ωr, i.e. stable on the whole unit ball.

6. Conclusion and further research

In conclusion, the paper presented results of investigation of polynomials sta-
ble on the unit ball. Some statements were obtained and the theorem related
to partial derivatives was proved. In addition to this result, one might look for
other differential operators which do preserve stability on the unit ball. As a
further possible research objects, we advise to consider the ideas given in the
Section 4, through transformation of the variables. Moreover, other possible re-
search ideas may include following topics which we did not attempt yet:

(i) Ω-stability of quadratic polynomials of higher dimensions,

(ii) Ω-stability of polynomials of higher degrees,

(iii) Ω-stability of homogeneous polynomials.
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