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This presentation is based on:

(1) "Ordered direct implicational basis of a finite closure system"
joint work with J.B.Nation and R.Rand (ANR)
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Closure operators and lattices

Common knowledge about finite lattices and closure operators:

Closed sets of any closure operator φ : 2X → 2X on set X form a
lattice.
For any given (finite) lattice L there exist many pairs 〈X , φ〉 for
which L is the lattice of closed sets.
The set X of smallest cardinality for L has |Ji(L)| elements.
(Ji(L) is the set of join-irreducible elements of L)
One can reduce any given closure space 〈Y , ψ〉 to 〈X , φ〉, X ⊆ Y ,
without changing the lattice of closed sets L so that |X | = |Ji(L)|.
Such space 〈X , φ〉 is called standard for L.
Space 〈X , φ〉 is standard, when φ({x}), x ∈ X are exactly
join-irreducibles in lattice off closed sets.
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Closure operators and implications

Common knowledge about closure operators and implications:

Every set of implications B → A, A,B ∈ 2X , generates closure
operator on X .
Every closure operator φ on X could be defined by some set of
implications on X .
If 〈X , φ〉 is standard for its lattice of closed sets L, then
implications mean relation between join-irreducible elements:
B → A means that a ≤

∨
B, for every a ∈ A.

The problem of optimal representation of closure operator via
implications translates to problem of compact representation of a
lattice via relations of its join-irreducible elements.
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Closure spaces, lattices and implications

OD graph

OD-graph of a finite lattice: J.B.Nation, An approach to lattice varieties
of finite height, Alg. Univ. 1990

(I) partially ordered set of join irreducibles 〈Ji(L),≤〉;
(II) minimal join covers a ≤

∨
B, a ∈ Ji(L),B ⊆ Ji(L):

If b ∈ B, then a 6≤
∨
{b′ ∈ Ji(L) : b′ < b} ∨

∨
B \ b.

Note for the future use: D-relation on Ji(L) can be defined as
aDb iff b ∈ B, for some minimal join cover a ≤

∨
B.
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D-basis

D-basis

In Ordered direct implicational basis of a finite closure system
K.A.,J.B.Nation and R.Rand (ANR, 2013)

we defined the set of implications ΣD made out of OD-graph as a
D-basis of a finite closure system.
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D-basis

Canonical direct basis

K. Bertet, B. Monjardet, The multiple facets of the canonical direct
implicational basis, Theor. Comp. Science, 2010:

compare 5 implicational systems for general closure system
introduced independently in the literature
prove that they are the same, now called a canonical direct basis
ΣCD

the main feature: φ(Y ) = Y ∪ {a : (B → a) ∈ ΣCD and B ⊆ Y}
ΣCD is contained in any other basis with this property
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D-basis

Canonical direct and the D-basis

Essentially, ΣCD contains:
implications b → a, for join irreducibles a ≤ b
non-redundant covers: B → a, where a ≤

∨
B, but a 6≤

∨
B \ b.

The minimal covers in OD-graph are non-redundant. Hence:

ΣD ⊆ ΣCD.
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D-basis

Ordered direct basis

The D-basis has a new feature: it is ordered direct. φ(Y ) can be
computed by applying implications in particular order, in a single
iteration of the basis.
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D-basis

Example

Canonical direct basis ΣCD for 〈J(A12), φ〉 has 13 implications.
2→ 1,6→ 1,6→ 3,3→ 1,5→ 4,14→ 3,24→ 3,15→ 3,
23→ 6,15→ 6,25→ 6,24→ 5,24→ 6.

D-basis has 9 implications.
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5,24→ 6.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1
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D-basis

D-basis in representation of Galois lattice of a binary
table

Algorithm for obtaining the D-basis of the concept lattice of a binary
table:

K. Adaricheva, J.B. Nation, Discover of the strong association rules
in large binary table via hypergraph dualization, submission to
KDD-2014.
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D-basis

More questions

What other types of "efficient" bases one can obtain for a closure
system/finite lattice?
How effectively this can be done? What are the complexity of the
algorithms?

KA and J.B.Nation, On the implicational bases of closure systems with
the unique criticals, DAM, 2013 (AN)
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D-basis

“Efficient" bases

A basis Σ′ is non-redundant, if none of its implications can be
removed to get another basis.
A basis Σ′ is minimum, if it has the minimal number of implications
among all the set of implications for the same closure system.
A basis Σ′ = {Xi → Yi : i ≤ n} is called optimum, if number
s(Σ′) = |X1|+ · · ·+ |Xn|+ |Y1|+ · · ·+ |Yn| is smallest among all
sets of implications for the same closure system.
A basis is called right-side (left-side) optimum basis, if the number
|Y1|+ · · ·+ |Yn| (|X1|+ · · ·+ |Xn|) is smallest among all sets of
implications for the same closure system.
The right-side optimum basis is connected to the problem of the
shortest (i.e. with the minimal number of clauses)
CNF-representation of a (definite) Horn function, also, minimal
representations of the directed hypergraphs.
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CNF-representation of a (definite) Horn function, also, minimal
representations of the directed hypergraphs.
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D-basis

Relation between bases

Theorem ([D.Maier, 1983])
Optimum =⇒ minimum and left-side optimum =⇒ non-redundant.

A basis Σ′ is minimum, if it has the minimal number of implications
among all the set of implications for the same closure system.
A basis Σ′ = {Xi → Yi : i ≤ n} is called optimum, if number
s(Σ′) = |X1|+ · · ·+ |Xn|+ |Y1|+ · · ·+ |Yn| is smallest among all
sets of implications for the same closure system.
A basis is called left-side optimum basis, if the number
|X1|+ · · ·+ |Xn| is smallest among all sets of implications for the
same closure system.

Cleaning N1

Theorem ([AN, 2013])
Optimum =⇒ right-side optimum.
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D-basis

Optimum and right-side optimum bases

Theorem ([D.Maier, 1983])
The problem of finding an optimum basis of a finite closure system is
NP-complete.

Theorem ([G. Ausiello, A. D’Atri and D. Saccá, 1986])
The problem of finding a right-side optimum basis of a finite closure
system is NP-complete.

Follow up on Cleaning N1

Corollary ([AN, 2013])
Theorem 1 follows from Theorem 2.
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D-basis

What can be done?

Introduce new types of bases that are near-optimum but can be
found quickly.
Recognize subclasses of closure systems where the optimum
basis can be found quickly.
Combine both directions above.

Examples of the second direction:

P. Hammer and A. Kogan, Quasi-acyclic propositional Horn
knowledge bases: optimal compression, IEEE Transactions on
knowledge and data engineering, 1995
E. Boros, O. Čepek, A. Kogan and P. Kucěra, A subclass of Horn
CNFs optimally compressible in polynomial time, Annals of Math
and Artif. Intell., 2010
M. Wild, Optimal implicational bases for finite modular lattices,
Quaestiones Mathematicae, 2000
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CNFs optimally compressible in polynomial time, Annals of Math
and Artif. Intell., 2010
M. Wild, Optimal implicational bases for finite modular lattices,
Quaestiones Mathematicae, 2000

K.Adaricheva (Nazarbayev University) Efficient bases Dagstuhl-May 2014 17 / 37



D-basis

What can be done?

Introduce new types of bases that are near-optimum but can be
found quickly.
Recognize subclasses of closure systems where the optimum
basis can be found quickly.
Combine both directions above.

Examples of the second direction:

P. Hammer and A. Kogan, Quasi-acyclic propositional Horn
knowledge bases: optimal compression, IEEE Transactions on
knowledge and data engineering, 1995
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Canonical basis of Duquenne-Guigues

Canonical basis

J.L. Guigues, V. Duquenne, Familles minimales d’implications
informatives résultant d’une tables de données binares, Math. Sci.
Hum. 95 (1986), 5–18.

Defined quasi-closed and critical subsets of X for any given
closure system 〈X , φ〉.
Canonical basis ΣC is {A→ B : A is critical, B = φ(A) \ A}.
ΣC is a minimum basis among all the bases generating 〈X , φ〉.
Defined saturation closure operator σ associated with φ.
Every other basis relates to ΣC , via saturation operator σ.
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K -basis

K -basis: approximation of optimum

K -basis is inspired by minimal join representations of lattice
elements.
K -basis has the same number of implications as the canonical,
i.e. it is a minimum basis.
The size of K -basis is normally smaller than the size of the
canonical.
K -basis can be effectively obtained from the canonical.
K -basis establishes the connection between the canonical basis
and the D-relation on the set of join irreducibles of a lattice.
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K -basis

K -basis

Essential idea: given A→ B in ΣC produce A∗ → B∗ in the K -basis,
where A∗ ⊆ A gives a minimal join representation of element x =

∨
A,

and B∗ = max(B) ⊆ B.

x =
∨

A∗ is a minimal join representation of x , if for every a ∈ A∗,
x >

∨
{a′ : a′ < a} ∨

∨
A∗ \ a.
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K -basis

Comparison
1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure : A12

Canonical basis ΣC :
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5
s(ΣC) = 27
K -basis:
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5
s(ΣK ) = 20
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K -basis

Algorithmic aspect

Theorem ([A. Day, 1992])

Given any basis Σ′ of a finite closure system, it requires time O(s(Σ′)2)
to obtain the canonical basis of Duquenne-Guigues.

Theorem ( [AN, 2013])
A K -basis can be obtained from canonical basis ΣC of
Duquenne-Guigues in time O(s(ΣC)2).
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K -basis

K -basis

In general, the closure space may have more than one K -basis.

Definition
A closure system is called join semidistributive, if its closure lattice
Cl(X , φ) satisfies the property:
(SD∨) x ∨ y = x ∨ z → x ∨ y = x ∨ (y ∧ z).

Theorem ( [Jónsson and Kiefer, 1962])
Every element of a finite lattice has a unique minimal representation iff
the lattice is join semidistributive.

Corollary
Every semidistributive closure system has a unique K -basis.
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K -basis

Closure systems with the unique critical sets

Problem
Does there exist an effective algorithm to recognize that the closure
systems is join semidistributive, given its canonical basis?

Some larger class of closure systems is easy to recognize from the
canonical basis.

Definition
Closure system 〈X , φ〉 has unique criticals, or it is UC-system, if
φ(C1) = φ(C2), for some critical sets C1,C2, implies C1 = C2.
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K -basis

SD∨ is UC

Proposition
Every join semidistributive closure system is a UC-system.

Proof.
Suppose there are two implications C1 → B1 and C2 → B2 in ΣC with
φ(C1) = φ(C2). This means that in the closure lattice x =

∨
C1 =

∨
C2.

One can find minimal representations B1 ⊆ C1 and B2 ⊆ C2 for x , i.e.
x =

∨
B1 =

∨
B2. But B1 = B2, since x has a unique minimal

representation. Hence, σ(B1) = C1 = σ(B2) = C2, which is
needed.
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K -basis

Lattice description of UC

There exists a UC closure system whose closure lattice is not join
semidistributive.

Problem
Describe closure lattices of closure systems with the unique criticals.
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UC-closure systems

Join semidsitributive systems

Important subclasses of join semidsitributive closure systems:

In lattice theory: lower bounded lattices (closure systems without
D-cycles) (R.Freese, J.Jezek, J.B.Nation).

In combinatorics: convex geometries and anti-matroids
(P.Edelman and R. Jamison)

In theory of Boolean functions: quasi-acyclic systems (P.Hammer
and A.Kogan). This is a proper subclass of both: convex
geometries and systems without D-cycles.
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UC-closure systems

Systems without D-cycles

Lower bounded lattices, or lattices without D-cycles: can be defined
via D-relation on the set of join-irreducible elements (A.Day, 1979):
aDb iff a ≤

∨
B is a minimal cover and b ∈ B.

Note that this corresponds to implication B → a in the D-basis.

Theorem (AN12)
Let D∗ be a binary relation defined for any K -basis of the closure
system:
aD∗b iff B → A is in the K -basis, |B| > 1, a ∈ A and b ∈ B. Then

D∗ ⊆ D.
D ⊆ tr(D∗).
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Note that this corresponds to implication B → a in the D-basis.

Theorem (AN12)
Let D∗ be a binary relation defined for any K -basis of the closure
system:
aD∗b iff B → A is in the K -basis, |B| > 1, a ∈ A and b ∈ B. Then
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UC-closure systems

Systems without D-cycles

Corollary
Given the canonical basis ΣC of the closure system, there exists a
polynomial time algorithm in s(ΣC) that recognizes whether the system
is without D-cycles.
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Systems without D-cycles

Bases in systems without D-cycles

This basis was introduced for the systems without D-cycles in:
K.Adaricheva, J.B.Nation and R.Rand, Ordered direct basis of a finite
closure system,

E-basis:

_______ Canonical basis K − basis E − basis
|A| > 1 A→ B A∗ → B∗ A∗ → B∗∗

|A| = 1 a→ B a→ B∗ a→ B∗

B∗∗ ⊆ B∗

Proposition ([AN, 2013])
E-basis can be obtained from K -basis via polynomial time algorithm: if
b ∈ B∗1,B

∗
2, for two implications A∗1 → B∗1, A∗2 → B∗2 in the K -basis, and

φ(A∗1) ⊂ φ(A∗2), then b can be removed from B∗2.
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Systems without D-cycles

E-basis

Theorem ([AN, 2013])

The total right size |B1|+ · · ·+ |Bk | of all non-binary implications
Ai → Bi in E-basis attains the minimum among all possible bases for
the closure system.

Theorem ([ANR,2013])
The E-basis of a closure system without D-cycles is ordered direct.
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Systems without D-cycles

4 parts of the optimum basis: systems without
D-cycles

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable NP
________ ____________________ ____________________

a→ B A→ B
the right side NP tractable

Proposition ([AN, 2013])
Assume that the closure system is without D-cycles.
(1) Finding the optimum right-side in binary part of the basis is
NP-complete.
(2) Finding the optimum left-side in non-binary part of the basis is
NP-complete.
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Optimum bases in convex geometries

Convex geometry

KA, Optimum basis of a finite convex geometry, arxiv (2012)
A closure system 〈X , φ〉 is called a convex geometry, if φ(∅) = ∅, and
anti-exchange property holds:

For every A = φ(A), x , y 6∈ A, if x ∈ φ(A ∪ y), then y 6∈ φ(A ∪ x).

x ∈ A is called extreme point of A, if x 6∈ φ(A \ x). Ex(A) is a set of
extreme points of A.

Theorem
[P. Edelman and R. Jamison, 1985] A closure system 〈X , φ〉 is a
convex geometry iff every closed set A = φ(Ex(A)).

In particular, every convex geometry is join semidistributive.
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Optimum bases in convex geometries

4 parts of the optimum basis: convex geometries

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ B
the right side tractable ??

Proposition
Assume that the closure system is a convex geometry.
(1)[M.Wild, 1994] Finding the optimum left-side in non-binary part of
the basis is tractable. A = Ex(φ(A)).
(2) [A,2013] Finding the optimum right-side in binary part of the basis
is tractable. B = Ex(φ(a) \ a).
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Optimum bases in convex geometries

Optimum basis: convex geometries without D-cycles

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ B
the right side tractable tractable

Corollary ([A,2013])
If a closure system is a convex geometry without D-cycles, then
optimum basis can be obtained in polynomial time.

This class properly includes the quasi-acyclic closure systems defined
in [P. Hammer and A. Kogan, 1995] , which are also G-geometries in
[M.Wild, 1994].
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Optimum bases in convex geometries

Optimum basis for convex geometries

Problem
Can the optimum basis be found effectively, for every convex
geometry?
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Optimum bases in convex geometries

Conclusions

K -basis might not be an optimum basis, but it is always the
minimum basis whose size is smaller than or equal the size of the
canonical basis.
In semidistributive closure systems K -basis is unique and is a
good approximation of optimum basis.
If the closure system is without D-cycles, further refinement of the
K -basis can be effectively obtained, giving right-side optimum in
its non-binary part.
If a closure system is a convex geometry, then many subclasses
(without D-cycles, with n-Carusel rule etc) have tractable optimum
bases.
Thank you!
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