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Quantum uncertainty relation saturated by the eigenstates of the harmonic oscillator
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We rederive the Schrödinger-Robertson uncertainty principle for the position and momentum of a quantum
particle. Our derivation does not directly employ commutation relations, but works by reduction to an eigenvalue
problem related to the harmonic oscillator, which can then be further exploited to find a larger class of constrained
uncertainty relations. We derive an uncertainty relation under the constraint of a fixed degree of Gaussianity and
prove that, remarkably, it is saturated by all eigenstates of the harmonic oscillator. This goes beyond the common
knowledge that the (Gaussian) ground state of the harmonic oscillator saturates the uncertainty relation.
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The Heisenberg uncertainty principle [1] captures the dif-
ference between classical and quantum states, and sets a limit
on the precision of incompatible quantum measurements. It has
been introduced in the early days of quantum mechanics, but
its form has evolved with the understanding and formulation
of quantum physics throughout the years. The first rigorous
mathematical proof of Heisenberg’s uncertainty relation for
the canonical operators of position x̂ and momentum p̂

([x̂,p̂] = ih̄),

(〈x̂2〉 − 〈x̂〉2)(〈p̂2〉 − 〈p̂〉2) � h̄2/4, (1)

is due to Kennard [2] and Weyl [3], but only pure states were
considered there. The full proof was later derived following
different methodologies [4–6] (see Ref. [7] for more details),
while the properties of the states saturating this inequality were
also progressively unveiled.

The original uncertainty relation (1) only concerned the
operators x̂ and p̂, but it was generalized to any pair of
Hermitian operators by Schrödinger [8] and Robertson [9], in
the case of pure states. In the same works, the anticommutator
of x̂ and p̂ was also included in Eq. (1), yielding a stronger
uncertainty relation,

(〈x̂2〉 − 〈x̂〉2)(〈p̂2〉 − 〈p̂〉2)

− 1
4 (〈x̂p̂ + p̂x̂〉 − 2〈x̂〉〈p̂〉)2 � h̄2/4, (2)

that bears their name. The first proof of the Schrödinger-
Robertson (SR) uncertainty relation for position and momen-
tum, Eq. (2), in the general case including mixed states is
probably due to Moyal [5], and, for any pair of not necessarily
Hermitian operators, to Dodonov, Kurmyshev, and Man’ko
[10]. In this latter work, the states of minimum uncertainty or
minimizing states (MSs) for the SR inequality were identified
as the pure states with a Gaussian wave function. Such Gaus-
sian states are ubiquitous in physics as they play a major role,
for example, in quantum optics (e.g., coherent states of the light
field [11]), atomic physics (e.g., collective excitations of an
atomic ensemble [12]), optomechanics (e.g., nanomechanical
oscillators [13]), supraconductivity (e.g., superconducting LC
circuits [14]), etc.

In this Rapid Communication, we revisit the status of
Gaussian states in the context of uncertainty relations by
exhibiting a connection with the harmonic oscillator and
showing that, remarkably, all its eigenstates—not just its

ground state—appear as minimum uncertainty states. We
first rederive the SR inequality and corresponding MSs by
using a variational method and standard algebraic tools. This
derivation reveals the direct link between the quadratic order
of Eqs. (1) and (2) in x̂ and p̂ and the fact that we deal with
the quadratic Hamiltonian of a harmonic oscillator. Then, we
move on to find bounded uncertainty relations [15], which
give stronger bounds than Eq. (2) for states on which some
a priori information is known, such as their purity [7] or
entropy [16]. Specifically, we derive a Gaussianity-bounded
uncertainty relation, depending on the degree of Gaussianity
of the state as measured by a parameter g that we introduce.
We identify its corresponding set of MSs and find among them
all the eigenstates of the harmonic oscillator. This yields a
fundamental set of non-Gaussian minimum-uncertainty states,
going beyond the common knowledge on the Heisenberg
principle.

Although the uncertainty relations, being at the root
of quantum mechanics, have been investigated in various
situations, such as multidimensional [17,18] or mixed states
[7,16,19], our results imply that there is more to gain by
analyzing them under the perspective of the Gaussian character
of a state. Non-Gaussian states of light can now be handled in
the laboratory [20–25] and have been proven essential in the
field of continuous-variable quantum information [26–30], but
they remain hard to classify. Identifying states of minimum
uncertainty among them may lead to a better understanding
of the structure of the state space in infinite dimension and,
since the Heisenberg principle is at the heart of the limitations
on measurement precision [31], to further developments in
quantum metrology.

Unconstrained SR relation. We introduce our method as a
way to find the MS of the SR uncertainty relation. Consider
a quantum state characterized by its density operator ρ̂. Its
covariance matrix is defined as

γ =
( 〈x̂2〉 − 〈x̂〉2 1

2 〈x̂p̂ + p̂x̂〉 − 〈x̂〉〈p̂〉
1
2 〈x̂p̂ + p̂x̂〉 − 〈x̂〉〈p̂〉 〈p̂2〉 − 〈p̂〉2

)
,

(3)

where 〈·〉 = Tr(ρ̂ ·) stand for quantum expectation values in
state ρ̂. Hereafter, we define the uncertainty of the state ρ̂ as
the dimensionless variable

α = 2(det γ )1/2/h̄, (4)
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which is simply the square root of the left-hand side of
Eq. (2) divided by h̄/2. We write it with the determinant
of γ to emphasize that it remains invariant under any linear
canonical transformation in x̂ and p̂, that is, under any
operation modeled by a Hamiltonian that is quadratic in x̂

and p̂ (see the Supplemental Material [32]). This brings the
strong simplification that it is sufficient to confine our search
for MSs among states that satisfy the constraints

Tr(ρ̂x̂) = Tr(ρ̂p̂) = 0, (5)

Tr(ρ̂(x̂p̂ + p̂x̂)) = Tr(ρ̂(x̂2 − p̂2)) = 0, (6)

that is, whose mean values vanish and γ is proportional to the
identity. Under these conditions, Eq. (4) can be expressed as

α = Tr[ρ̂(1 + 2n̂)], (7)

where n̂ = (x̂2 + p̂2 − 1)/2 is the number operator for the
harmonic oscillator (from now on, we assume h̄ = 1 and take
the particle’s mass and angular frequency equal to one).

Now, let us proceed with the minimization of α under con-
straints (5) and (6) by using the Lagrange multipliers method.
For any density operator ρ̂, there is an eigenbasis {|�n〉}
such that ρ̂ = ∑

cn|�n〉〈�n| with 0 � cn � 1 and
∑

cn = 1.
It is more convenient to define the unnormalized vectors
|ψn〉 = √

cn|�n〉 and rewrite the state as ρ̂ = ∑
n |ψn〉〈ψn|,

while imposing the additional constraint

Tr(ρ̂) = 1. (8)

Then, choosing an orthonormal basis {|i〉} to decompose the
vectors |ψn〉 = ∑

ψi
n|i〉, we can reexpress the uncertainty (7)

and constraints (5), (6), and (8) as functions of the ψi
n’s.

We define the Lagrange multipliers λ′
k and consider the

“uncertainty” functional

α̃ = α + λ′
1 Tr(ρ̂) + λ′

2 Tr(ρ̂x̂) + λ′
3 Tr(ρ̂p̂)

+ λ′
4 Tr[ρ̂(x̂p̂ + p̂x̂)] + λ′

5 Tr[ρ̂(x̂2 − p̂2)], (9)

which implicitly depends on the complex amplitudes ψi
n’s.

Extremizing α̃ yields conditions on these amplitudes (see the
Supplemental Material [32]), which read as conditions on the
unnormalized eigenvectors |ψn〉 defining the minimizing state
ρ̂, namely,

[n̂ + 1/2 + λ1 + λ2x̂ + λ3p̂ + λ4(x̂p̂ + p̂x̂)

+ λ5(x̂2 − p̂2)]|ψn〉 = 0, (10)

where λk = 2λ′
k . Introducing the Hermitian operator

Ĥ = n̂ + 1
2 + λ2x̂ + λ3p̂ + λ4(x̂p̂ + p̂x̂) + λ5(x̂2 − p̂2),

(11)
we can rewrite Eq. (10) as Ĥ |ψn〉 = −λ1|ψn〉, ∀n, leading to
the necessary condition that the eigenvectors |ψn〉 defining the
MS must be degenerate eigenvectors of Ĥ corresponding all
to the same eigenvalue.

Thus, one should diagonalize Ĥ in order to proceed with
the identification of the MS. As explained in the Supplemental
Material [32], there exists a linear canonical transformation
in x and p that transforms Ĥ onto the Hamiltonian of the
harmonic oscillator, Ĥ0 = n̂ + 1/2. Obviously, this means that
Ĥ has the same eigenvalues as Ĥ0 and that its eigenvectors are
U |n〉, where |n〉 are the number states (eigenstates of Ĥ0)

and U is the Gaussian unitary corresponding to this canonical
transformation. Since Ĥ0 does not possess any degeneracy
in its spectrum, the same holds for Ĥ and therefore the
only possibility is that the MS is a pure state of the type
ρ̂ = U |n〉 〈n| U †. Among these states, we must keep those
satisfying constraints (5) and (6), which are the number
states |n〉, so that the state that minimizes the uncertainty
(7) is obviously the ground state |0〉. Of course, by plugging
ρ̂ = |0〉 〈0| into Eq. (7), we recover the lower bound of the SR
relation, h̄2/4. By acting with linear canonical transformations
on |0〉, we obtain all Gaussian pure states, which is the well-
known set of MSs for the SR uncertainty relation [32]. This
was a long detour to rederive Eq. (2), but this connection with
the harmonic oscillator turns out to be crucial in what follows.

Degree of Gaussianity. Our method works by reduction
to a constrained optimization problem (even for solving the
unconstrained SR inequality), so it can be simply adapted
to find the MS with an extra constraint on Gaussianity.
Several measures of non-Gaussianity have been used in
the literature [15,16,33–35], but we instead suggest using
a parameter g capturing the degree of Gaussianity, inspired
from our former work on non-Gaussian states with a positive
Wigner function [36,37]. Denoting as ρ̂G the Gaussian state
that has the same covariance matrix γ (and same mean values
〈x̂〉 and 〈p̂〉) as state ρ̂, we define the Gaussianity of ρ̂ as

g = Tr(ρ̂ρ̂G)/Tr
(
ρ̂2

G

)
. (12)

It is more appropriate for our purposes and also has merits on its
own. Its main properties are as follows (see the Supplemental
Material [32] for the proofs): (i) g is invariant under linear
canonical transformations in x and p; (ii) g is a bounded quan-
tity, that is, 2/e � g � 2, and g = 1 for Gaussian states (but the
converse is not true); and (iii) g provides a necessary criterion
for the strict positivity of the Wigner function of a state.

Let us briefly address possible experimental means for
a direct estimation of g without going through a full state
tomography procedure of ρ̂ (see the Supplemental Material
[32]). The trace overlap Tr (ρ̂ρ̂G) can be estimated by using
the eight-port homodyne detection scheme that is usually
employed to estimate the Q function of a state in quantum
optics by simultaneously measuring the x and p quadratures
of the two output modes of a balanced beam splitter [11].
If we inject the state ρ̂ together with ρ̂G (instead of the
vacuum state |0〉) in this beam splitter preceding the quadrature
measurements, then the value of the modified Q function
at the origin would read Q (0,0) = Tr (ρ̂ρ̂G). This method
for measuring g would, however, require first performing
homodyne measurements on ρ̂ in order to obtain its covariance
matrix γ and prepare the Gaussian state ρ̂G.

Gaussianity-bounded SR relation. Our optimization
method provides a necessary condition on the extremal
solutions since it relies on the Lagrange multipliers method,
so that concluding on a solution may become complicated
if the eigenvectors of Ĥ cannot be identified analytically.
Fortunately, finding an uncertainty relation under a fixed-g
constraint leads to an eigenvalue problem that is analytically
solvable. As before, we can confine our search on states
satisfying constraints (5) and (6) since neither α nor g change
under linear canonical transformations. For these states, the
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corresponding Gaussian state ρ̂G can be expressed simply as

ρ̂G = e−βn̂/N, (13)

where e−β = α−1
α+1 and N = (α + 1)/2. In addition, Tr(ρ̂2

G) =
1/α. Instead of minimizing the uncertainty α for a fixed
Gaussianity g, it is easier to fix α and search for states of
extremal g, or extremal overlap o = Tr(ρ̂e−βn̂). The variational
procedure for deriving the MS is completely analogous, but we
extremize o using a constraint on the uncertainty (7) in addition
to Eqs. (5), (6), and (8). Thus, the “overlap” functional is

õ = o + λ′
1 Tr(ρ̂) + λ′

2 Tr(ρ̂x̂) + λ′
3Tr(ρ̂p̂)

+ λ′
4 Tr[ρ̂(x̂p̂ + p̂x̂)] + λ′

5 Tr[ρ̂(x̂2 − p̂2)]

+ λ′
6 Tr[ρ̂(2n̂ + 1)], (14)

depending on six Lagrange multipliers λ′
k . The extremization

conditions on the unnormalized eigenvectors |ψn〉 of the
solution state can be written as

[e−βn̂ + 1/2 + λ1 + λ2x̂ + λ3p̂ + λ4 (x̂p̂ + p̂x̂)

+ λ5(x̂2 − p̂2) + λ6n̂]|ψn〉 = 0. (15)

where λk = 2λ′
k . By defining the Hermitian operator

Ĥ1 = e−βn̂ + λ2x̂ + λ3p̂ + λ4(x̂p̂ + p̂x̂)

+ λ5(x̂2 − p̂2) + λ6n̂, (16)

we conclude that |ψn〉 should be degenerate eigenvectors
of Ĥ1. It can be shown that, without loss of generality, we
can restrict ourselves to states |ψn〉 = ψn |n〉, with ψn being
complex amplitudes [32]. For these states, the constraints (5)
and (6) are satisfied, and Ĥ1 is replaced by

Ĥ2 = e−βn̂ + λ6n̂. (17)

The eigenvectors of Ĥ2 are the number states |n〉, but, unlike
for the harmonic oscillator, double degeneracies are possible if
λ6 < 0. As a result, we look for mixtures of two number states
ρ̂ = |ψn|2 |n〉 〈n| + |ψm|2 |m〉 〈m| satisfying the normalization
constraint |ψn|2 + |ψm|2 = 1 and uncertainty constraint

|ψn|2(2n + 1) + |ψm|2(2m + 1) = α (18)

that achieve the minimum or maximum

g = |ψn|2 2α(α − 1)n

(α + 1)n+1
+ |ψm|2 2α(α − 1)m

(α + 1)m+1
. (19)

By supervision, one can see that the minimum g (correspond-
ing to positive eigenvalues of Ĥ2) is achieved by mixtures of
two successive number states

ρ̂min = r |n〉 〈n| + (1 − r) |n + 1〉 〈n + 1| , (20)

with the parameters n and r ∈ [0,1[ depending on α. The
number states |n〉 are naturally included in the set for r = 0.
The maximum g (corresponding to negative eigenvalues of
Ĥ2) is achieved by mixtures

ρ̂max = r |0〉 〈0| + (1 − r) |n〉 〈n| , (21)

in the limit n → ∞, r → 1, while α = r + (1 − r)(2n + 1) is
kept finite.

In Fig. 1, we plot as a dashed line the two extremal values
of g for a fixed α as realized by the states of Eqs. (20) and
(21). The MSs (i.e., the states minimizing the uncertainty α

for a fixed degree of Gaussianity g) correspond only to some
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FIG. 1. (Color online) (a) Extremal values of the degree of
Gaussianity g for a fixed uncertainty α shown as a dashed (blue) line.
It is achieved by states ρ̂min for g � 1, and ρ̂max for g > 1. The line
connecting subsequent number states |n〉 and |n + 1〉 is realized by
mixtures of them. The Gaussianity-bounded SR relation corresponds
to the part of this extremal line shown as a solid (black) line. The
uncertainty α must have a value larger or equal to the solid line for
a given g. (b) Magnified view of (a), where the discontinuity of the
uncertainty relation becomes evident.

part of this line, which we show as a solid line. For g > 1,
the situation is simple and all states ρ̂max are MSs. For this
region, the minimum uncertainty as a function of g can be
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easily derived as

α � g

2 − g
, (22)

employing Eq. (21) (see [32]). In contrast, for
2
e

< g � 1, the minimum α for fixed g displays discontinuities.
In the interval

(n + 1)n+1 (3 + 2n)

(2 + n)2+n
< g � nn (1 + 2n)

(1 + n)1+n
, (23)

α is minimized by the states ρ̂min with the value of n satisfying
Eq. (23). In particular, we see that all number states |n〉 are
included in this set for specific values of g corresponding to
the upper bound of Eq. (23) for different n’s. Moreover, in
Fig. 1(b), we see that most of the MSs (solid line) consist
of these states |n〉 and their close neighborhood. Thus, as
advertised, we conclude that all eigenstates of the harmonic
oscillator are extremal in the sense that they exhibit the lowest
allowed uncertainty given their non-Gaussian character.

For other values of g in the interval 2
e

< g � 1, once the
value of n is identified from Eq. (23), one has to solve the
polynomial equation

4α
(α − 1)n

(α + 1)2+n
(1 + n) = g (24)

for α in order to find the dependence of the uncertainty α on
the Gaussianity g. For 3/4 < g � 1, which covers most of the
interesting region, the explicit expression [32] is

α � 2 + 2
√

1 − g − g

g
. (25)

In the Supplemental Material [32] we also show that in addition
to the states ρ̂min and ρ̂max, which are phase invariant, the set of
MSs comprises all states with a covariance matrix proportional
to the identity which can be transformed onto them by phase
averaging. Furthermore, all states connected to ρ̂min and ρ̂max

by linear canonical transformations are MSs as well, since the
uncertainty α and Gaussianity g are invariants of the group.

Conclusions. We have exhibited a variational method to de-
rive the Schrödinger-Robertson uncertainty relation by casting
it as an eigenvalue problem related to the harmonic oscillator.
It follows an “inverse path” to the common procedure where
the lower bound on the uncertainty is derived based on
commutators, and the MSs are then identified. Such an inverse
procedure was put forward by Dodonov and Man’ko for the
derivation of purity-bounded uncertainty relations [7,15], but it
appears that our method is more generally applicable because
it is based on the amplitudes of the eigenstates of the MSs
instead of its density matrix elements [32]. It is especially
useful when constraints are included that account for some
knowledge on the state.

In particular, we have found an uncertainty relation that is
bounded by the degree of Gaussianity g of the state. The state
with the overall lowest uncertainty α is of course the Gaussian
ground state |0〉 of the harmonic oscillator (g = 1), but we have
proven that the non-Gaussian states with the lowest uncertainty
α for a fixed g < 1 include as well mixtures of subsequent
number states |n〉 of the harmonic oscillator. Among these
MSs, the number states play a prominent role as they are the
only phase-invariant pure states. We have thus proven that
the number states are also extremal in this uncertainty-related
sense, thereby extending to all (non-Gaussian) eigenstates of
the harmonic oscillator the celebrated minimum-uncertainty
property of its (Gaussian) ground state. Given the considerable
attention that non-Gaussian states are attracting in continuous-
variable quantum information theory (see, e.g., Ref. [38]),
unveiling this extremality property of harmonic oscillator
states may contribute to further fundamental progress in the
field, especially in relation to quantum metrology.
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