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ENGAGEMENT RECOGNITION WITHIN ROBOT-ASSISTED

AUTISM THERAPY

Nazerke Rakhymbayeva

Abstract

Autism is a neurodevelopmental condition typically diagnosed in early childhood,

which is characterized by challenges in using language and understanding abstract

concepts, effective communication, and building social relationships.

The utilization of social robots in autism therapy represents a significant area

of research. An increasing number of studies explore the use of social robots as

mediators between therapists and children diagnosed with autism. Assessing a child’s

engagement can enhance the effectiveness of robot-assisted interventions while also

providing an objective metric for later analysis.

The thesis begins with a comprehensive multiple-session study involving 11 chil-

dren diagnosed with autism and Attention Deficit Hyperactivity Disorder (ADHD).

This study employs multi-purposeful robot activities designed to target various as-

pects of autism. The study yields both quantitative and qualitative findings based on

four behavioural measures that were obtained from video recordings of the sessions.

Statistical analysis reveals that adaptive therapy provides a longer engagement du-

ration as compared to non-adaptive therapy sessions. Engagement is a key element

in evaluating autism therapy sessions that are needed for acquiring knowledge and

practising new skills necessary for social and cognitive development.

With the aim to create an engagement recognition model, this research work also

involves the manual labelling of collected videos to generate a QAMQOR dataset.

This dataset comprises 194 therapy sessions, spanning over 48 hours of video record-

ings. Additionally, it includes demographic information for 34 children diagnosed

with ASD. It is important to note that videos of 23 children with autism were col-

lected from previous records. The QAMQOR dataset was evaluated using standard

machine learning and deep learning approaches. However, the development of an ac-
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curate engagement recognition model remains challenging due to the unique personal

characteristics of each individual with autism. In order to address this challenge and

improve recognition accuracy, this PhD work also explores a data-driven model us-

ing transfer learning techniques. Our study contributes to addressing the challenges

faced by machine learning in recognizing engagement among children with autism,

such as diverse engagement activities, multimodal raw data, and the resources and

time required for data collection.

This research work contributes to the growing field of using social robots in autism

therapy by illuminating an understanding of the importance of adaptive therapy

and providing valuable insights into engagement recognition. The findings serve as

a foundation for further advancements in personalized and effective robot-assisted

interventions for individuals with autism.
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Chapter 1

Introduction

This chapter introduces the motivation behind this thesis research, objectives, re-

search questions, hypotheses, challenges, and expected contributions.

1.1 What We Know About Autism

Autism Spectrum Disorder (ASD) is a condition that affects neurodevelopment and

is marked by persistent and significant deficits in interests, activities, or social com-

munication, as well as repetitive behaviours [1, 11]. Early signs of autism include a

lack of interest in other people and limited eye contact. This description is based on

the criteria set by the Centers for Disease Control and Prevention [1] and the Amer-

ican Psychiatric Association in 2013 [11]. However, the effects of autism can vary

widely between individuals. Like neurotypical children, children with autism have

unique strengths and weaknesses. For instance, they may struggle with basic social

communication and interaction, exhibit repetitive and restrictive behaviours, and be

oversensitive or undersensitive to sensory stimuli such as light, colours, sounds, tem-

peratures, pain, touch, tastes, or smells. Additionally, regulating emotions can be

challenging [14]. Despite these challenges, individuals with autism can demonstrate

exceptional focus and expertise in their hobbies and interests, which can translate

into academic and professional success in their fields of interest.

Autism is a condition that affects all human groups, regardless of their nationality,
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social class, or culture, and has been identified across all racial, ethnic, and social

demographic groups [132]. However, according to Maenner et al. [132], the incidence

of autism diagnosis is four times higher in boys than in girls. Also, ASD affects

approximately 26 in every 100 000 children globally [234]. However, tracking the

global prevalence of ASD is challenging, as it varies significantly from one country to

another, as shown in Figure 1-1 [234]. In Kazakhstan, for instance, the number of

diagnosed cases of autism in children has increased by a factor of eight over the past

eight years, as shown in Figure 1-2 [12].

Figure 1-1: Autism rates by country [234]

Diagnosing a child with ASD requires a multidisciplinary evaluation that involves

several doctors and specialists, including a paediatrician, psychologist, speech pathol-

ogist, psychiatrist, and occupational therapist [4]. However, assessing and rehabilitat-

ing children with autism can be challenging for even the most experienced specialists,

given the wide range of symptoms and the fact that autism affects each child differ-

ently [11, 14, 113, 134]. As Dr Stephen Shore, an autism advocate said, “If you’ve

met one person with autism, you’ve met one person with autism” [133]. Each child

with ASD sees and senses the environment in a unique way [131], and their responses

to social situations may differ depending on the severity of their condition, which is
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Figure 1-2: ASD prevalence in Kazakhstan: the number of identified cases

often classified as mild, moderate, or severe [11]. Therefore, therapy should include

different approaches tailored to each individual, such as behavioural, educational, psy-

chological, social-relational, developmental, and pharmacological therapies [93] (see

Table 1.1 for more information). These therapies aim to strengthen the improvement

of social, emotional and life skills. Given the variability of the autism spectrum, it is

critical to continue exploring ways to personalize therapy for each child and scale it

to provide the most effective outcomes.

Researchers across various fields are exploring different ways to work with chil-

dren diagnosed with ASD, including the use of technology. Golestan et al. [87]

conducted a comprehensive review of the types of technologies used for the diagnosis,

assessment, and rehabilitation of children with autism. They categorized technolo-

gies into two groups: software-based, which is focused on software development, and

hardware-based, which involves designing and using devices. The authors further di-

vided hardware-based technologies into two subgroups: robots and dedicated devices

[87]. Robots have been primarily used to address social and communication skill

difficulties, often mediating between children and therapists.
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Table 1.1: Types of therapy approaches for children diagnosed with ASD [93]

# Approaches Focus Examples
1 Behavioral changing behaviours by

understanding what hap-
pens before and after the
behaviour

Applied Behavioral Analysis (ABA),
Discrete Trial Training (DTT), Pivotal
Response Training (PRT)

2 Educational given in the classroom set-
tings

Treatment and Education of Autis-
tic and Related Communication-
Handicapped Children (TEACCH),
Emotional Regulation (SCERTS),
Social Communication

3 Psychological helping to cope with de-
pression, anxiety, and sim-
ilar mental health issues

Cognitive-Behavior Therapy (CBT)

4 Social-
Relational

improving social skills and
emotional bonds

Relationship Development Interven-
tion (RDI), Relationship-Based, De-
velopmental, Social Skills Groups, In-
dividual Differences, Social Stories

5 Develop-
mental

improving specific devel-
opmental skills

Speech and Early Start Denver Model,
Sensory Integration Therapy, Physical
Therapy, Language Therapy

6 Pharmaco-
logical

helping to manage high en-
ergy levels, inability to fo-
cus, or self-harming be-
haviour

Medications

1.2 Employing Social Robots in Autism Therapy

The use of robots in healthcare settings, particularly in therapy and pedagogical in-

terventions with children, is increasing. Social robots, with their tangible 3D presence

and being able to show complex behaviour while looking safer than human beings,

bridge a gap from the real to the virtual world and otherwise. One area which is

gaining significant interest from both researchers and the public is employing robots

in autism therapy [214, 215].

Research has shown that the use of robots is well-accepted and can lead to pro-

gressive improvements in communication complexity, based on an individual’s needs

and abilities. This innovative application of robots is especially promising as it has

the ability to get beyond some of the drawbacks of traditional therapeutic techniques.

With further research and development, robots could become an important tool in
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improving the quality of support for individuals with autism and other developmental

disorders.

Robots have shown promising results in robot-assisted therapy (RAT) for children

diagnosed with ASD [96, 151, 181, 205, 220, 238]. Studies have shown that robots

can positively impact various areas of development, including imitation skills [26, 68,

88, 199, 210], emotion recognition [46, 125, 157, 201], verbal and nonverbal commu-

nication [108, 112], eye contact [9, 34, 114], joint attention [9, 8, 121, 186, 189, 207],

simple activity sharing [153], self-initiated interaction [58], and behavioural response

[66] given various robot capabilities.

Figure 1-3: The publication year of the survey and systematic review papers

Several literature reviews discussed the use of social robots to assist people with

ASD (Figure 1-3). Diehl et al. [64] presented a comprehensive review of the clinical

use of robots up to March 2011, where they classified the utility of robots into four

categories:

• child’s perception of a robot (with no direct clinical application);

• the robot’s ability to extract the target behaviour in a child;

• the robot (as a teacher, agent or model) teaching the child to perform a specific

skill;

• the robot accommodating feedback and encouragement to the children.

These categories provide a framework for understanding the various ways that robots
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can assist in autism therapy, and highlight the importance of considering individual

needs and abilities when implementing RAT.

In the review by Scassellati et al. in 2012 [187], it is concluded that social robots

can serve as effective tools for therapy, serving two primary roles: a leader and a

mediator, and even acting as a proxy for children. Scassellati et al. [187] suggest that

one of the advantages of using robots in therapy is their consistency and predictability,

which can help foster a sense of tranquillity and trust in children. Additionally,

because robots do not experience emotional fatigue or disappointment, they may be

able to provide a stable and reliable source of support for children with autism in

a way that human therapists may not be able to. However, despite the potential

benefits of using social robots in therapy, the review also found that there is a dearth

of long-term studies exploring their efficacy, a need for more rigorous experimental

protocols and a dependence on the Wizard of Oz (WoZ) setup to control the behaviour

of the robots.

In addition, Cabibihan et al. [31] conducted a review in 2013 that provided a tech-

nical perspective on social robots used in ASD intervention. This review highlighted

three key aspects:

• Robot design attributes, which included autonomy, functionality, and embodi-

ment, were important considerations for the effective use of robots in therapy.

• The role of the robot in therapy sessions could vary depending on the spe-

cific goals of the intervention. Robots could serve as diagnostic agents, social

mediators, or peers, among other roles.

• The robot’s behaviour during therapy sessions was a critical factor in determin-

ing its effectiveness. The review emphasized the importance of robot behaviours

that foster engagement, communication, and social interaction with children di-

agnosed with ASD.

The review paper by Boucenna et al. in 2014 [27] explored the potential of in-

teractive communication technologies for children with autism. The authors found
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that interactive devices could be utilized in a number of ways, including evaluating

an action of the children towards the robot behaviours, detecting and responding to

a child’s behaviours, teaching and practising skills, and providing feedback on the

interaction. Despite the promise of these devices, the authors highlight the need for

further research on the development of autonomous robots with human-like abilities,

such as joint attention, interactive engagement, and imitation, to provide effective

therapies for early development in children with autism [27].

Pennisi et al. (2015) [151] reviewed the potential of social robots as mediators

and attractors for individuals with ASD with the aim of reducing repetitive and

stereotyped behaviours. The authors suggest that while social robots can be effective

in this regard, they may also act as distractors during some therapy sessions [151].

In 2016’s review paper, Begum et al. [17] investigated the current state of RAT

studies. The authors found that many studies had small sample sizes, did not use

standard research designs, and relied on custom-made therapies [17].

A more recent review by Damianidou et al. in 2020 [52] examined the employing

of social robots as behaviour-eliciting agents to develop social, communication and

interaction skills, such as verbal initiations, joint attention, eye contact, and ges-

ture production and recognition. The authors highlighted that social robots showed

promising results in helping children with ASD develop these skills [52].

Saleh et al. (2020) [181] presented a comprehensive review of studies that em-

ployed social robots for the diagnosis, rehabilitation, and education of children with

autism. The authors categorized the studies into ten groups based on their goals and

found that the NAO robot was frequently used in studies aimed at improving learning

skills [181].

In order to find out whether the robot is better than traditional methods, Salimi

et al. [182] conducted a systematic review in 2021. The authors highlighted that

the engagement of children rises with robots, but it might decrease when children

get used to it. Moreover, social robots were used to teach gesture production and

recognition and to help prepare individuals for a job [182].

A systematic review of studies that examined the effects of social robots on im-
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proving joint attention in children with ASD was conducted by Sani-Bozkurt et al.

(2021) [186]. Their review analyzed a total of 11 studies, which collectively involved

166 children with ASD. The results of the review showed that social robots have a

positive effect on improving joint attention in children with ASD. Specifically, the

studies found that the use of social robots led to increased joint attention behaviours

such as gaze following, pointing, and shared attention. The review also found that

the use of social robots during therapy sessions resulted in increased engagement and

motivation in children with ASD, as well as decreased levels of negative behaviours.

Raptopoulou et al. (2021) [160] reported a review of works that used social robots

to improve communication and social skills. Based on their analysis, most of the

studies used anthropomorphic robots. Also, many studies did not have a control

group and did not present follow-up sessions [160]. Similar to the findings of Begum

et al. [17], these studies also had a limited number of samples.

Bartl-Pokorny et al. [15] conducted a systematic literature review of RAT studies

in 2021, with a focus on emotion recognition and interaction skills. The authors

noted that many reviewed papers involved small sample sizes, and identified a gap in

research regarding factors that may affect child-robot interaction (CRI) [15].

Overall, several literature reviews have discussed the use of social robots for ther-

apy in individuals diagnosed with ASD. These reviews suggest that social robots can

be effective tools for therapy by providing consistency and predictability, accommo-

dating feedback and encouragement to children, and serving as leaders and mediators

[187]. However, more rigorous experimental protocols and long-term studies exploring

efficacy are needed, as well as the development of autonomous robots with human-like

abilities for effective early development therapies. Social robots were found to im-

prove interaction skills, reduce repetitive and stereotyped behaviours, enhance learn-

ing skills, and improve joint attention in children with ASD. However, studies with

a lack of standard research designs, custom-made therapies, small sample sizes, and

the potential for social robots to act as distractors during therapy sessions have been

identified as limitations. Overall, robots can be effective motivators and keep children

engaged, thereby improving targeted skills. However, it is important to emphasize
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that social robots are not intended to replace therapists.

More than 40 different robots have been utilized in RAT with the aim of improving

social and communication skills, eye gaze, imitation, and other targeted skills, as

reported in the above-mentioned review papers [15, 116]. For more information on

the types of robots and their capabilities used in autism therapy, please refer to

Section 2.2.

The use of social robots in ASD therapy and education is an area of study that is

still growing. However, more research is required to fully understand their efficacy and

to fully explore their possibilities in bigger and more thorough studies. The complex

and diverse needs of children diagnosed with ASD must be taken into consideration

in order to create social robot therapies that aimed to be successful. Measuring the

engagement of participants during therapy sessions can provide helpful information

for adapting robot behaviour and evaluating the effectiveness of therapy [47].

1.3 Definition of Engagement in HRI

Engagement is a crucial concept in human-robot interaction (HRI) because it refers

to the level of interest, attention, and emotional connection that users feel toward the

robot. However, the definition of engagement can be complex and multidimensional,

which may pose challenges for researchers new to this field.

From a psychological perspective, engagement refers to a continuous state of emo-

tional, cognitive, and behavioural activation in individuals [82]. Beyond this general

definition, engagement in HRI has been found to encompass various aspects of be-

haviour, emotion, and cognition [80, 228].

Behavioural engagement, for instance, relates to the extent of a user’s interaction

or involvement with the robot, including their willingness to participate in activities

or pursue goals [79, 203]. Emotional engagement, on the other hand, involves a user’s

affective reactions to the robot, such as their feelings of happiness, sadness, anxiety,

or boredom during the interaction [79, 203]. Lastly, cognitive engagement refers to

a user’s psychological commitment to the interaction, such as their use of learning
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strategies and self-regulation strategies [228]. Therefore, understanding the different

dimensions of engagement is essential in the development and evaluation of effective

HRI systems that promote positive user experiences and sustained interaction.

The article by Oertel et al. [143] provides an overview of engagement research

in HRI, covering various aspects such as task-based and social engagement. This

research can be classified into two categories: engagement as a process and engage-

ment as a state [143]. Engagement as a process refers to the multiple processes that

occur during an interaction, including starting, maintaining, and ending perceived

connections [198]. Engagement as a state can be characterized as either engaged or

not engaged [95].

Engagement in HRI is measured using both explicit and implicit measures [114].

Explicit measures, such as questionnaires, provide insight into participants’ interests

and interactions but have limitations, including relying on self-reporting and being af-

fected by social desirability bias. In contrast, implicit measures, such as performance

measures and neurophysiological/neuroimaging metrics [83], allow for the study of

perception, cognition, and behaviour during interactions and provide more accurate

data on cognitive processes without requiring participants to be aware of the proce-

dures of the experiment.

Oertel et al. [143] also differentiate studies based on whether they focus on the

perception of an engagement or the generation of engagement-relevant behaviours.

Researchers employ two approaches, rule-based [86, 162] and machine learning-based

[37, 185], to measure engagement. Rule-based approaches involve explicitly defin-

ing engagement-relevant behaviours, whereas machine learning-based approaches use

algorithms to identify relevant behaviours automatically. Machine learning-based ap-

proaches include reinforcement learning [178] and deep learning [7, 155].

Overall, the methodology for measuring engagement is crucial for quantification

and generalizability. However, annotating engagement is a challenging task due to

various definitions of engagement and the lack of a widely used scheme.
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1.4 Research Objectives

Recent advancements in computer vision research have enabled more accurate recog-

nition of engagement with the availability of large datasets. In therapy, the ability of

a robot to monitor a child’s level of engagement might be useful to provide adaptive

interventions.

There are some challenges associated with collecting and annotating data in this

field, including the time-consuming nature of video and/or audio recording of sessions

[176] and the need for expert knowledge and experience [126].

The literature review has highlighted the need for an adaptive approach that

caters to the individual needs and differences of children with diverse forms of ASD,

and that focuses on long-term engagement in rehabilitation interventions [43, 176].

Therefore, the goal of this PhD thesis is to provide an adaptive learning experience

in robot-assisted autism therapy (RAAT) for children with ASD and ADHD and

evaluate its effectiveness in improving cognitive and emotional well-being.

Next, we propose to take a data-driven approach to classify the engagement of chil-

dren with autism in interactions with social robots or other humans. This approach

has the potential to improve the robot’s autonomy. We will employ a transfer learning

approach by pre-training a model on a large CRI dataset to increase the QAMQOR

dataset’s engagement recognition accuracy. Moreover, to improve a trained model,

we aim to use the idea of transfer learning on one activity for classification in the

other activity data within the QAMQOR dataset.

1.5 Research Challenges

Engagement recognition of children with autism poses several challenges to machine

learning, which are currently being explored by researchers:

• Engagement activities can vary widely among children with ASD and ADHD,

as well as within the same child across different sessions. This heterogeneity

requires classifiers that can handle inter- and intra-subject variability.
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• The data consists of time series of spatial interactions, which may require in-

vestigating the temporal and spectral components in addition to the spatial

features.

• The image data can be noisy due to various factors such as low-quality video

frames, occlusions, and errors in feature extraction.

• Engagement is a multifaceted construct that involves multiple modalities, such

as facial expressions, body movements, eye contact, and speech intonation. The

raw data can have thousands of features per sample, making it challenging to

extract meaningful information and reduce the dimensionality.

• Data collection is a resource-intensive process that involves recruiting and con-

senting participants, setting up the experiment, and collecting and labelling the

data. It can be particularly challenging to obtain large and diverse datasets for

machine learning, especially when the samples are human subjects with ASD

and ADHD who may require special accommodations and ethical considera-

tions.

To address these challenges and to increase the reliability, effectiveness, and gen-

eralizability of engagement recognition models, we suggest investigating a number

of machine learning approaches and tactics, including multi-task learning, transfer

learning, and data augmentation.

1.6 Research Hypotheses

The following four hypotheses were formulated in order to test our assumptions about

the study.

H1: Increased scores of valence and engagement during interaction with the robot

across several sessions will be the result of the adaptive sessions using activities that

each child is familiar with in the multi-session study.

31



H2: Recognition of engagement would be more accurate if the model trains on

multimodal data compared to the single type of data.

H3: A model pre-trained on a similar available CRI dataset would improve the

engagement recognition accuracy of the QAMQOR dataset.

H4: We could transfer knowledge from one activity to another activity with similar

instances (face and body features) using the transfer learning approach for engage-

ment recognition.

1.7 Expected Contributions

This thesis makes significant contributions to various areas.

Contribution 1: In our long-term RAAT study with children with ASD and ADHD,

we explored the effectiveness of adaptive experiences tailored to their unique needs.

We observed significant behavioural improvements through sustained intervention en-

gagement. By this research adds to the literature on building an adaptive approach

based on ASD children’s needs and differences, focusing on the long-term commitment

to interventions.

Contribution 2: We created a multimodal QAMQOR dataset comprising 194 ses-

sions and over 48 hours of video, along with demographic information for each of the

34 children diagnosed with ASD. This dataset helps address the data scarcity issue

identified in the reviews by David et al. and Diehl et al., providing valuable resources

for problem-solving in this field.

Contribution 3: To enhance the accuracy of engagement recognition in the QAMQOR

dataset, we developed a data-driven model using transfer learning techniques. Our

study contributes to addressing the challenges faced by machine learning in recogniz-

ing engagement among children with autism, such as diverse engagement activities,
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multimodal raw data, and the resources and time required for data collection.

1.8 Thesis Structure

This thesis is organized into eight chapters, each with a specific focus.

• Chapter 1 introduces the problem of measuring engagement in children with

autism and outlines the importance and contribution of the research to the

fields of RAAT, social robotics, and CRI. It also provides descriptions of autism,

social robots, and engagement in HRI.

• Chapter 2 gives an overview of the engagement research in RAAT. It includes a

tentative definition of engagement, existing models of engagement recognition

of children, past and current RAAT projects, social robots used in RAT studies,

and available HRI datasets.

• Chapter 3 describes the activities (robot behaviours) implemented in the re-

search for children with autism.

• Chapter 4 presents the experimental study conducted for data collection, in-

cluding the design, settings, participants, measures, and procedure.

• Chapter 5 details the generation of the QAMQOR dataset, including infor-

mation on the participants, data pre-processing steps, feature extraction as a

measure of engagement, and the coding scheme.

• Chapter 6 provides the results of the QAMQOR dataset evaluation under differ-

ent conditions using standard machine learning and neural network algorithms

for engagement recognition.

• Chapter 7 focuses on the implementation of the transfer learning approach for

engagement recognition.

• Chapter 8 summarizes the research thesis by highlighting the main results, the

limitations of the research, and suggestions for future work.
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Chapter 2

Literature Review

This chapter explores existing research studies relevant to the thesis, which is con-

sisted of six sections. The chapter started by providing an overview of existing projects

related to RAAT. In the second section, we examine the various types of social robots

utilized in autism therapy. We also provide a detailed description of engagement in

RAAT in the third section. The fourth section focuses on works that concentrate

on existing models of engagement recognition during interactions in RAAT. In the

fifth section, we discuss existing long-term interaction studies with social robots in

the context of autism therapy. Lastly, we provide a comprehensive summary of some

existing HRI datasets, that researchers can use to train social robots, including gen-

eral descriptions of how they were collected and what features they have in the sixth

section.

2.1 RAAT Projects

Previous research has demonstrated that social robots can serve as a mediator in

conventional methods of behavioural interventions [18, 179, 235]. Many projects

worldwide have utilized social robots with the aim of improving a number of social

behaviours, including imitation, joint attention and eye contact. We present a com-

prehensive overview of various existing projects that were carried out with children

diagnosed with ASD, including their objectives, the solutions developed, the robots
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used, and the outcomes achieved.

2.1.1 AuRoRa Project

The AuRoRA (Autonomous Robotic Platform as a Remedial Tool for Children with

Autism) project investigated the use of robots for children with autism. The project,

initiated by Prof. K. Dautenhahn in 1998 [54], aimed to engage children diagnosed

with autism, facilitate tactile interaction, develop their communication skills (in-

cluding imitation and turn-taking), teach cause-and-effect, and recognize emotional

expressions and gestures.

The AuRoRa project explored the use of robots to engage children with autism,

enhance their communication skills, and promote social interactions. The project’s

use of humanoid robots like Robota [56, 171] and KASPAR [53, 168], as well as

various other robotic platforms (Labo-1 [231], Pekee [55], Aibo [78], and IROMEC

[74]) and interactive software [60], has demonstrated the potential of technology-based

interventions in supporting children with autism.

Before discussing the limitations, it is essential to acknowledge the strengths of the

AuRoRa project. The research’s multi-faceted approach, employing various robotic

platforms and interactive software, allows for a comprehensive exploration of different

interventions [57, 77, 223, 224, 225]. The development of the CRI model as a design

and assessment framework provided a structured approach to integrating robots as

social mediators in therapy [94, 167, 231]. Additionally, the creation of interactive

games and activities [169, 172, 230], along with learning algorithms [77], demonstrated

efforts to customize robot-assisted therapy to individual children’s needs [63, 170, 171].

The project’s guidelines for researchers and practitioners also contributed to shaping

best practices in RAAT [59].

Furthermore, the long-term research involving KASPAR and its positive impact

on social and communicative abilities in children with autism highlighted the potential

benefits of utilizing humanoid robots as therapeutic tools [53, 168]. The success of

the Theatrical Robot approach and the investigation of diverse evaluation methods

showcased the project’s commitment to innovative and evidence-based practices [171].
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However, a critical analysis of the project reveals some limitations and challenges

that need to be addressed for the advancement of RAAT:

• One of the main limitations of the AuRoRa project is the utilization of small

sample sizes in some studies [171, 226]. Limited participant numbers can un-

dermine the generalizability of the results and may not account for the diversity

within the autism spectrum.

• While the project showcased promising short-term outcomes, the long-term ef-

fectiveness of robot-assisted therapy remains uncertain.

• Autism is a spectrum disorder with significant individual variability.

• The impact of RAAT interventions can be influenced by cultural and social

factors.

• The lack of standardized assessment metrics makes it challenging to compare

the effectiveness of RAAT across different studies.

• While the project demonstrated success in controlled research environments,

integrating RAAT into real-world therapeutic settings can be complex.

Overall, this project has valuable contributions in RAAT and holds the potential

to transform how technology can be utilized to support individuals with autism.

2.1.2 IROMEC Project

The IROMEC (Interactive Robotic Social Mediators as Companions) project, span-

ning from 2006 to 2009, built upon the success of its predecessor, AuRoRa. The

IROMEC project involved collaboration between eight research partners from di-

verse fields such as information and communications technology, robotics, psychology,

and pedagogy, showcasing its multidisciplinary nature. The primary objective of the

project was to investigate how robotic toys, like IROMEC, could encourage children

with ASD to participate in various games, both individually and cooperatively [163].
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The IROMEC robot’s incorporation of various sensors and interactive features

allows for versatile and personalized gameplay, promoting cognitive, sensory, emo-

tional, and social development in children with ASD [218]. The interdisciplinary

nature of the IROMEC project was particularly commendable, as it demonstrated

how collaboration across diverse fields can lead to meaningful outcomes in special

education.

The games developed in this project have shown significant benefits in the areas

of interaction, cognitive and sensory development, emotional and social growth, and

even movement functions for children who have serious physical impairments [74, 218].

Despite the significant advancements made by the IROMEC project, several lim-

itations and challenges warrant attention for the future of RAAT:

• The development and implementation of sophisticated robotic platform IROMEC,

can be expensive, making them less accessible to many schools and families.

• There is a challenge in ensuring that the skills learned during robot-assisted

therapy can be generalized to real-world social interactions. Moreover, person-

alized and adaptive interventions may be necessary to cater to the diverse needs

of children with ASD.

• Longitudinal studies are essential to assess the lasting impact of robot-assisted

therapy.

• Acceptance of robots as therapeutic tools may vary among individuals with ASD

and their families.

Overall, the IROMEC project demonstrated a successful approach to employing

robots as mediators in autism therapy and education for children in the field of special

education. The project’s success can be attributed to effective collaboration between

various disciplines. Therefore, this project serves as an inspiring example of how

interdisciplinary collaboration drives innovation and achieves meaningful outcomes

for the development of abilities of children with ASD.
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2.1.3 BabyRobot Project

The European Union (EU) Horizon 2020 Programme supported the BabyRobot project

from 2016 to 2019, which aimed to advance the field of robotics and develop more

effective tools for improving HRI to benefit both children with autism and other

forms of diverse needs. The primary goal was to create robots that are able to track

and analyze children’s behaviours through audio-visual signals, thereby establishing

collaboration between consumers and healthcare application markets.

The BabyRobot project’s emphasis on modelling HRI through a three-step pro-

cess of sharing attention, establishing common ground, and forming shared goals

highlighted the importance of understanding and fostering effective communication

between robots and children [164]. The use of multiple robots and sensor technologies,

such as the Kinects, allowed for comprehensive data collection and analysis, enabling

the development of tailored games and scenarios for children with autism [156]. The

implementation of reinforcement learning and active exploration algorithms to en-

hance robot adaptability to changes in HRI demonstrated progress in creating more

dynamic and responsive robotic companions [222].

Additionally, the project’s efforts to improve the collaboration skills of the KAS-

PAR robot through intention reading and shared intentionality modules showcased

a step towards robots actively participating in collaborative activities with children

[236]. The creation of 11 new games and scenarios tailored to educational and ther-

apeutic needs further expanded the potential applications of robot-assisted interven-

tions for children with ASD.

While the BabyRobot project made significant contributions to the field of RAAT,

there are several limitations and challenges that need to be addressed in future:

• The project’s evaluation of the system’s effectiveness was based on a relatively

small sample size of 28 children aged from six to ten years old. It remains

uncertain whether the outcomes observed in this study can be generalized to

a broader range of children with autism of different ages and developmental
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levels.

• The project’s focus on short-term interactions and game-based scenarios leaves

questions about the long-term impact of robot-assisted interventions.

• The evaluation of the system was conducted with robots programmed to speak

the Greek language. Cultural and language differences may influence children’s

responses to robot interactions, highlighting the need for cross-cultural evalua-

tions.

Overall, the findings from this project can serve as a foundation for the develop-

ment of future technologies that can positively impact the field of special education.

2.1.4 DE-ENIGMA Project

The DE-ENIGMA1 project was designed to develop the social imagination skills of

children with autism by employing a comprehensive, context-sensitive, multimodal,

and naturalistic HRI approach. The project’s primary objectives were to develop and

implement effective solutions that would promote emotional, subjective, and social

well-being in children with autism, utilizing advanced robotic technology.

By utilizing the Zeno robot and advanced robotic technology, the project aimed

to promote emotional, subjective, and social well-being in children with autism [40].

The integration of personalized perception affect network (PPA-net) and multimodal

active learning techniques showcased innovative approaches to achieve meaningful

CRI [176]. While the project achieved its objectives and contributed to the field of

robot-assisted training, a critical analysis reveals certain limitations and areas for

future development.

The DE-ENIGMA project made significant advancements in HRI by employing a

three-layered structure, PPA-net, that incorporated contextual data and individual

characteristics of each child. A total of 128 children (62 British and 66 Serbian), aged

between 5 and 12 years, participated. The integration of audio-visual and autonomic
1https://de-enigma.eu/

39



physiological recordings in the multimodal model allowed accurate estimation of the

child’s moods during interactions. By achieving a 65% intra-class correlation for

engagement estimation of multimodal data, the project demonstrated progress in

developing sophisticated models to understand and respond to children’s emotional

states during interactions with the robot [176].

The project’s focus on fostering social and emotional abilities in children with

autism, such as recognizing emotions and facial expressions, addressed essential as-

pects of social development for these children. The creation of a multimodal dataset

accessible to academic researchers worldwide further contributed to the field by en-

abling future research and replication of the project’s findings.

Despite its successes, the DE-ENIGMA project has some limitations and areas

that warrant attention for future research:

• While the project involved 128 children in total, dividing them into human-

assisted and robot-assisted sessions might have resulted in relatively small sam-

ple sizes for each condition.

• The project’s design involved 4-5 sessions per child, which may be considered

short-term evaluations.

• While the project made significant progress in developing personalized learning

models, the challenge lies in determining how well these models can be gener-

alized to a broader population of children with autism.

Despite certain weaknesses and areas for future development, the DE-ENIGMA

project was primarily focused on constructing robot-assisted training rather than

creating a diagnostic tool. The training was created to foster social and emotional

abilities in children with ASD, such as recognizing emotions and facial expressions.

Through the use of advanced robotics and personalized learning strategies, the DE-

ENIGMA project achieved its objectives and demonstrated the potential for enhanced

learning and support for children with autism.
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2.1.5 DREAM Project

The DREAM2 (Development of Robot-Enhanced therapy for children with AutisM

spectrum disorders) project was conducted between 2014 and 2019 and funded by

EU. This project was focused to enhance joint attention, imitation and turn-taking

skills in children with autism.

The DREAM project made significant progress in developing a sensory system

capable of recording and interpreting the behaviour of children with autism. By

equipping the intelligent space environmental room with various sensors, such as

Microsoft Kinect and high-resolution cameras, researchers gathered extensive data

for signal analysis [32, 191]. The development of computational models to assess

children’s behaviour and infer their psychological disposition based on gaze, body

language, and speech demonstrated a sophisticated and innovative approach.

Additionally, the implementation of a semi-autonomous decision-making system

allowed the robot (NAO) to respond to the child’s behaviour and provide appropri-

ate feedback. The cognitive control architecture, consisting of multiple sub-systems,

allowed therapists to oversee multiple children and plan individualized interventions,

reducing the therapist’s workload and increasing the efficiency of the intervention

[33].

The development of a DREAM-lite version, consisting of only a tablet and a robot,

showcased an attempt to simplify the technical requirements and make the system

more accessible for real-life scenarios [135]. Testing this version with 67 children

diagnosed with autism during multiple sessions provided valuable insights into the

practical application of robot-enhanced therapy. The DREAM-lite version represents

a step towards bridging the gap between research and practical implementation in

real-world therapeutic settings.

Despite its advancements, the DREAM project has some limitations and consid-

erations to address:

2https://dream2020.github.io/DREAM/
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• The study focused on a specific set of skills (joint attention, imitation, and

turn-taking), which may limit the generalizability of the findings to other areas

of social and communicative development in children with autism.

• The project’s sample may have lacked diversity in terms of cultural backgrounds

and age groups, which could impact the applicability of the results to a broader

population.

• While the project made significant progress in developing personalized learning

models, the challenge lies in determining how well these models can be gener-

alized to a broader population of children with autism.

In conclusion, the DREAM project utilized supervised or shared autonomy, with

the therapist still controlling the robot’s actions. Consequently, three primary sub-

systems were developed within the robot software: one for detecting and interpreting

perceptual input, one for analyzing the behaviour of the child, and a third for man-

aging the behaviour of the robot.

2.1.6 MICHELANGELO Project

The MICHELANGELO project was funded under the EU Programme from 2011 to

2014. The aim of the project was to produce an affordable, patient-centred, home-

based intervention for autism therapy that requires less therapeutic involvement and

evaluation outside of the clinical setting [24].

One of the notable strengths of the MICHELANGELO project was the proposal

of affordable technological solutions for autism therapy in a home setting, e.g., GO-

LIAH [25]. By integrating different sensors [84] (RGB-D sensors, cameras, micro-

phones, wearable systems for electroencephalography (EEG) [39] and electrocardio-

gram (ECG)) integrated with humanoid robots [8, 27] to record the signals of the

children’s behaviour in the controlled environment [10]. This approach enabled con-

tinuous monitoring and data collection during interventions, facilitating the assess-

ment of therapy effectiveness.
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Additionally, the use of ICT-based solutions like virtual reality, serious games,

and robotics demonstrated a forward-looking approach to designing interactive and

engaging interventions for children with autism [8, 24, 27, 75]. The incorporation

of Diffusion Tensor Imaging and fMRI algorithms by therapists to monitor brain

connectivity during therapy was a notable advancement in using advanced imaging

techniques to assess therapy outcomes [24, 75].

The MICHELANGELO project’s focus on joint attention and imitation through

games aligned with the therapeutic needs of children with autism [8]. These core

social communication skills are often challenging for children with autism, and in-

terventions targeting these areas have the potential to make a significant impact on

their development.

Despite its advancements, the MICHELANGELO project has some limitations

and considerations to address:

• The project’s sample size, particularly the number of children with autism and

typically developed children, may be considered relatively small [8].

• Implementing therapy in a home setting can introduce additional challenges,

such as ensuring consistent and appropriate usage of the technological tools by

caregivers and children [25].

The MICHELANGELO project made advancements in developing technological

solutions for home-based autism therapy. Its focus on joint attention and imitation,

along with the use of ICT-based interventions and advanced imaging techniques,

demonstrated a forward-looking approach in autism research.

2.1.7 PicASSo Project

The PicASSo project started in 2014 in a collaboration between the Technical Uni-

versity Eindhoven, Karakter Centre for Child and Adolescent Psychiatry, and the

Radboud University Medical Center. This project aimed to examine the efficacy of
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employing the social robot NAO during parent-mediated Pivotal Response Treatment

(PRT) to decrease autism symptoms and improve social and communicative skills in

children (3-8 years old).

Strengths of the PicASSo project are as follows:

• The PicASSo project utilized a Randomized Controlled Trial (RCT) design,

which is considered a robust method for assessing the effectiveness of interven-

tions. The inclusion of three conditions allowed for comparison between therapy

as usual, parent-mediated PRT without NAO robot, and parent-mediated PRT

with NAO robot, enhancing the credibility of the findings [109].

• The use of NAO robot in PRT sessions created an engaging and interactive

environment for the children. The robot’s ability to respond and provide re-

wards when appropriate initiation was shown may have contributed to improved

initiation skills in the children [61].

• The project’s findings indicated that ASD symptoms decreased in the PRT

with robot condition, suggesting that employing robots with the PRT approach

might be effective in improving social and communicative skills in children with

autism [20, 204].

• The related study comparing the “mechanical bodily appearance” and “human-

ized bodily appearance” of the robot revealed that the latter elicited higher

interest, happiness, and affect scores in children. This finding highlights the

importance of robot design and appearance in influencing emotional responses

in children with autism during interactions [219].

Limitations and challenges of the PicASSo project:

• The PicASSo project was conducted in a specific setting and with specific age

groups. The generalizability of the findings to other populations or settings

should be considered cautiously.
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• The use of NAO robots and related technology may involve significant costs,

which could be a challenge in the wider implementation and scalability of the

approach.

Overall, the PicASSo project demonstrated promising results in employing NAO

robots with parent-mediated PRT to improve social and communicative skills in chil-

dren with autism. The RCT design and engaging robot interactions contributed to

the study’s credibility and positive outcomes.

2.1.8 Robotica-Autismo Project

Robótica-Autismo3 project conducted between 2009 and 2017 years by the University

of Minho and the Portuguese Association of Parents and Friends of Mentally Retarded

Citizens of Braga. The project’s goal was to help children with ASD improve their

emotion recognition and communication with others skills [51].

While the project demonstrated positive engagement and learning outcomes, a

critical analysis highlights some strengths and limitations to consider.

Strengths of the Robotica-Autismo project are as follows:

• The project employed various robots, such as Lego Mindstorms NXT and KAS-

PAR, to engage children with ASD and improve academic, cognitive, and socio-

emotional skills [49, 50, 200]. The practical application of robots in therapy and

intervention showcased their potential in supporting children’s development.

• The implementation of algorithms for detecting stereotyped behaviours, such as

hand-flapping, demonstrated the project’s focus on understanding and address-

ing specific challenges faced by children with autism [175].

• Through interactions with the KASPAR robot, children with autism could de-

velop body awareness and engage in appropriate tactile interactions [49]. This
3http://robotica-autismo.dei.uminho.pt/
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highlights the potential of robots in assisting children with sensory processing

challenges.

• The recent work using the ZECA (Zeno) robot to detect facial emotions and

teach emotion recognition and imitation skills showed promise in addressing

social communication deficits in children with ASD [201].

Limitations and challenges of the Robotica-Autismo project:

• Some studies within the project involved a relatively small number of partici-

pants, which might limit the generalizability of the findings [49, 50, 200].

• The project’s duration spanned several years, but there were limited long-term

follow-up evaluations to assess the sustainability of the improvements in chil-

dren’s skills.

• ASD is a spectrum with diverse characteristics and needs.

• Some studies did not have control groups, making it challenging to draw defini-

tive conclusions about the specific impact of robot-assisted interventions com-

pared to other approaches

Overall, the Robotica-Autismo project demonstrated that the robot successfully

engaged children who have been diagnosed with autism. Therefore they had positive

learning outcomes in developing socio-emotional skills [205].

2.1.9 SARACEN Project

The SARACEN (Socially Assistive Robots Autistic Children EducatioN) project

(2013-2015) focused to provide tools for assistance throughout therapy and early

diagnosis for children with ASD and designing interaction scenarios using the NAO

robot [146].

While the project explored important aspects of robot-assisted therapy, a critical

analysis highlights both its strengths and limitations. Strengths of the SARACEN

project are as follows:
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• The project focused on children diagnosed with high-functioning ASD, which

allowed for targeted interventions and addressed specific challenges faced by

this particular group of individuals [146].

• The structured therapy sessions with increasing difficulty levels (Easy, Medium,

and Hard) provided a systematic approach to engage the children with autism

and enhance their skills progressively.

• The development of robot algorithms for motion tracking, face scanning, child

detection, attention measurement, voice analysis, and emotion recognition show-

cased advancements in technology to capture and respond to the child’s be-

havioural responses effectively.

• The project reported improvements in attention and engagement of the chil-

dren with autism during the therapy sessions, suggesting the potential of robot-

assisted interventions to increase the child’s involvement in therapeutic activi-

ties.

Limitations and challenges of the SARACEN project:

• The project involved only three children with high-functioning ASD, which lim-

its the generalizability of the findings to a broader population [146].

• The average therapy session duration of 20 minutes might not be sufficient

to fully assess the long-term impact of the robot-assisted interventions on the

children’s skills and behaviours.

• While supervised sessions allowed for controlled interactions, they might not

fully reflect real-life scenarios where children interact with robots independently

or with less supervision.

• The project’s focus on the NAO robot and specific behavioural responses (at-

tention, voice, facial expression) might not encompass the full range of social

and communicative challenges faced by children with autism.
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Overall, the SARACEN project made valuable contributions to the field of robot-

assisted therapy. The focus on high-functioning ASD and the use of structured ther-

apy sessions with individualized support demonstrated the potential of robots as

effective tools to engage and support children with autism in therapeutic activities.

2.1.10 EMBOA Project

EMBOA4 (Affective loop in Socially Assistive Robotics as an intervention tool for

children with autism) project was supported by the EU Erasmus Plus Strategic Part-

nership for Higher Education Programme from 2019 to 2022.

While the project explored the potential of affective computing technologies in

RAAT, a critical analysis highlights its strengths and challenges.

Strengths of the EMBOA project are as follows:

• The project’s focus on combining emotion recognition technologies with social

robots addresses the crucial aspect of emotional understanding and communi-

cation in children with autism [15].

• The project utilized audio and video recordings, physiological signals (E4 wrist-

band), and eye gaze data (Gazepoint Eye Tracker) to create the EMBOA

dataset, allowing for a comprehensive analysis of children’s interactions with

the social robot [2, 122, 139].

• The project’s development of emotion recognition guidelines5 for robot-assisted

therapy provides valuable insights into effectively incorporating affective com-

puting technologies in interventions for children with autism.

• The project’s collaboration across four countries (North Macedonia, Poland,

Turkey, and the United Kingdom) showcases the significance of international

cooperation in advancing research and sharing resources [2].
4https://emboa.eu/
5ℎ𝑡𝑡𝑝𝑠 : //𝑒𝑚𝑏𝑜𝑎.𝑒𝑢/𝑤𝑝− 𝑐𝑜𝑛𝑡𝑒𝑛𝑡/𝑢𝑝𝑙𝑜𝑎𝑑𝑠/2022/10/𝐴𝐸𝑅−𝑅𝐼𝐴_𝑣1.2.𝑝𝑑𝑓
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• Making the EMBOA dataset6 publicly available allows researchers worldwide to

access and utilize the data, fostering further advancements in the field of social

robotics and autism therapy.

Limitations and challenges of the EMBOA project:

• The project involved 29 children diagnosed with ASD, which might limit the

generalizability of the findings to a broader population of children with autism

[2].

• The number of therapy sessions attended by the children (2-12 sessions) might

not provide sufficient insight into the long-term effects of robot-assisted inter-

ventions on social and communicative skills.

• The adoption of affective computing technologies and social robots in real-world

settings might face challenges related to interoperability, scalability, and cost-

effectiveness.

• Children with autism have diverse needs and preferences, which may require

highly individualized robot interactions, making it challenging to design a one-

size-fits-all approach.

Overall, the EMBOA project adds valuable insights to the growing body of re-

search exploring the potential of social robots as intervention tools for children with

ASD.

2.2 Social Robots for Children with ASD

Recent research indicates that children diagnosed with ASD readily accept social

robots, which positively impact the development and enhancement of imitation abil-

ities, joint attention, eye contact, behavioural responses, and repetitive and stereo-

typed behaviours [20, 151]. According to some reviews, children with ASD practice

life skills more efficiently with robots than with people [17, 64, 151]. Humanoid robots
6ℎ𝑡𝑡𝑝𝑠 : //𝑒𝑚𝑏𝑜𝑎.𝑒𝑢/𝑤𝑝− 𝑐𝑜𝑛𝑡𝑒𝑛𝑡/𝑢𝑝𝑙𝑜𝑎𝑑𝑠/2022/10/𝐸𝑀𝐵𝑂𝐴_𝑑𝑎𝑡𝑎𝑠𝑒𝑡.𝑝𝑑𝑓
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 2-1: Functional robots: a) IROMEC [218], b) Bubble Blowing [71], c) Lego
Mindstorms NXT [200], d) haptic device [147], e) Pekoppa [85], f) Roball [138], g)
QueBall [183], h) Keepon [119], i) TeoG [29]

can be used in therapy to teach and practice social skills in a non-judgmental envi-

ronment, which may help children with ASD feel less anxious and stressed. However,

humanoid robots are not replacements for human therapists or social interaction [187].

They are best used as a supplement to therapy, and should always be used under the

guidance of a trained therapist or medical professional.

A variety of robots are available in the research aimed to support and improve

the social skills and education of children diagnosed with ASD. Social robots can be

categorized in various ways, such as physical characteristics, the aim of use, and inter-

action capabilities. Most researchers classified social robots based on their morpho-

logical appearance into three groups: anthropomorphic, zoomorphic and functional

robots [151, 187, 237]. However, Kouroupa et al. [116] categorized the social robots

into four groups: humanoid, animaloid, and other that included a robotic arm and

a plant robot. Moreover, all researchers stated that there were some robots that

can be grouped as a union of two groups [151]. Bartl-Pokorny et al. [15] based on

their morphological characteristics grouped social robots into five categories: mobile

robots, animal, humanoid, ball-shaped robots, and others.
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Functional Robots. Certain robots are not created to resemble any biological

entities, including those that are humanoid or animal-like. These non-biomimetic

robots possess varying appearances depending on their purpose, but they typically

exhibit a simplistic design, user-friendly operation, and a toy-like aesthetic (Figure

2-1). They have different shapes and sizes, look like electrical devices and might not

be covered with fabric.

Zoomorphic Robots. are also called “animal-like” robots (Figure 2-2). They are

easy to interpret as they have an appropriate physical form. Most zoomorphic robots

are able to express basic social cues. However, they are simpler than anthropomorphic

robots. In the following paragraphs, some of the zoomorphic robots used in RAAT

are described.

(a) (b) (c)

(d) (e) (f)

Figure 2-2: Zoomorphic robots: a) Probo [221], b) Pleo [106], c) Paro [165], d) KiliRo
[21], e) Aibo [78], f) Zoomer [199]
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Humanoid Robots. The humanoid robot features arms, legs and a head that

mimic the human form (Figure 2-3). Some humanoid robots may possess facial at-

tributes such as eyes, mouth, and nose, while others may only model the upper body

starting from the waist. Equipping the robot with human-like facial characteris-

tics (mouth, eyes, nose, etc.) is capable to facilitate reciprocal focus shared by the

child with ASD and the robot. Humanoid robots can be programmed to show body

language and facial expressions that are easily interpretable and comprehensible for

children with ASD. They have shown potential in the therapy of ASD. According

to studies, they can help children with ASD significantly improve their social skills,

communication, joint attention, emotional regulation, and ability to recognize facial

expressions.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 2-3: Humanoid robots: a) FACE [154], b) Actroid-F [120], c) Bandit [70], d)
Infanoid [119], e) CommU [121], f) QTrobot [48], g) Tito [68], h) KASPAR [173], i)
ZENO [62]

Overall, social robots may offer a potential pathway for improving the social and

communication skills of children with ASD. Nonetheless, for social robots to be ef-

ficient in assisting children with ASD, they must be engaging. Engagement is fun-
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damental to interaction because it helps keep individuals invested and interested in

the interaction. For children with ASD, engagement can be particularly important

because it can help them stay focused and motivated during therapy sessions.

2.3 Long-term HRI Studies for Children with Autism

Designing a long-term interaction between a human and a robot is complicated and

requires significant time and resources from researchers in the field of HRI. Despite

the challenges, longitudinal studies can provide valuable insights into the dynamics

of HRI and how they change over time. In order to enable prolonged interaction, it is

crucial for the robot to maintain its learning function and durability over time [197].

Such long-term interactions are crucial for advancing the field and harnessing the

potential of robots in therapeutic and educational settings. Shibata [197] highlights

the significance of maintaining a robot’s learning function and durability over time to

enable prolonged interaction, and this notion forms the cornerstone of our research.

Long-term interactions between humans and robots are not merely about extend-

ing the duration of engagement but also involves creating an environment that fosters

a sense of continuity and predictability [141]. This sense of continuity is vital for

building effective relationships between humans and robots, especially in therapeutic

contexts. Baxter et al. [16] and other studies have demonstrated that establishing

a long-term relationship with a companionable robot can have a positive impact on

social bonding and overall well-being.

Weitlauf et al. [229] conducted a meta-analysis of traditional interaction-based

therapy and behavioural interventions and found that the duration of therapy can

vary from 3 to 16 weeks. Interestingly, their findings suggest that there is no clear

correlation between the number of intervention hours and therapy outcomes. How-

ever, it is worth noting that earlier interventions tend to yield better results. In some

cases, traditional therapies like Applied Behavior Analysis (ABA) and Intensive Be-

havioral Intervention (IBI) may extend beyond five years7, highlighting the need for
7https://www.autismspeaks.org/applied-behavior-analysis
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long-term therapeutic approaches.

A home environment is a common setting for long-term studies, as it provides a

naturalistic and comfortable space for participants. Baraka et al. [13] identified the

home as an example of this type of study. Pakkar et al. [145] and Clabaugh et al.

[44] leveraged this setting for their studies, involving socially assistive robotic (SAR)

systems for children with ASD. Their research underscores the potential for long-term

engagement and positive interactions with robots in the familiar surroundings of the

home.

Scassellati et al. [188] conducted a month-long study involving the Jibo robot,

demonstrating the adaptability and positive impact of robots on children’s emotional

and social development when integrated into daily routines. This study provides

further evidence of the feasibility and benefits of long-term interactions in home en-

vironments.

Francois et al. [78] explored the use of a dog-like Aibo robot in a UK school for

non-directive play therapy sessions. Up to 10 sessions of the studies were conducted

once every week. Their study highlights the importance of tailoring therapeutic in-

terventions to each child’s specific needs and capabilities. The results showed that

each child demonstrated unique progress in one of the three aspects: Affect, Reason-

ing and Play. The achieved results emphasize the value of personalized, long-term

approaches.

Robins et al. [170, 174] conducted longitudinal research involving humanoid robots

and explored the effects of prolonged exposure on children’s behaviours and engage-

ment. Their findings suggest that open interactions with robots can lead to noticeable

improvements in targeted behaviours, fostering positive outcomes over time.

Srinivasan et al.’s study [207] conducted a study that involved 36 children with

ASD, aged 5 to 12 with rhythm interventions using Rovio and NAO robots. Over

an eight-week period, spanning 32 sessions, these interventions were meticulously

monitored to evaluate their effects on maladaptive and repetitive behaviours, and

emotional states. The findings of the study showed a reduction in negative behaviours

within the rhythm group and a consistent increase in interest observed in both the
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robot and rhythm groups. These observations underscore the potential of movement-

and music-based activities in enhancing engagement and social interaction among

children with ASD.

In a parallel investigation, Huskens et al. [92] conducted a study in the Nether-

lands, targeting typically developing children and their siblings diagnosed with ASD.

The study aimed to assess the impact of a robot-mediated intervention rooted in

LEGO® Therapy. The results were striking, with improvements noted in collabo-

rative play behaviours. Notably, children with ASD exhibited heightened interaction

initiations, improved responsiveness to instructions, and increased engagement in

joint actions with their siblings. These findings underscore the potential of robotics

to facilitate cooperative play and social interaction among siblings with diverse needs.

Otterdijk et al. [144] carried out a study involving 25 children diagnosed with

autism in the Netherlands to assess the long-term impact of CRI using PRT with

a robot. The game-based PRT session lasted 15-20 minutes. Each child attended

a total of 20 sessions. As part of more extensive research [20, 115] (Section 2.1.7),

the investigators hypothesized that the children’s attention and engagement would

decrease over time, as prior studies indicated that children might lose interest and

disengage. Contrary to expectations, the results revealed that the children’s engage-

ment and attention towards the robot and the game remained stable. Moreover,

the children’s awareness and involvement with their parents during therapy exhibited

a linear increase over time; however, no such increase was observed concerning the

therapist.

Kozima et al. [118] engaged in extensive field observations of preschoolers with

and without developmental challenges over four years, documenting the interactions

between children and the Keepon robot. Their research challenged prevailing no-

tions about autism and highlighted the potential for robots to facilitate spontaneous

exchanges of mental states.

In conclusion, these studies not only provide valuable insights into the design and

performance of robotic technologies but also challenge our understanding of develop-

mental differences and social interactions. Additionally, the findings challenge widely
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held beliefs about autism and highlight the importance of understanding the needs

and motivations of individuals with developmental differences. Overall, long-term re-

search is essential for advancing the field of robotics and uncovering the full potential

of HRI.

2.4 Personalization in RAAT

There have been several studies that aim to personalize robots to enhance their effec-

tiveness in HRI. For instance, Andrist et al. [6] and Belpaeme et al. [19] investigated

the impact of changing a robot’s personality with different gaze behaviours or speech

recognition on users’ perceptions and the duration of their interaction with the robot.

The findings of these studies were significant in demonstrating the potential benefits

of designing methods for robots to adapt to their users’ personalities.

The study by Sung et al. [209] utilized the Roomba robot to evaluate the use of

a personalization toolkit for assessing progress over time by soliciting feedback. The

results of this work also confirmed that children were more engaged with personalized

robots. Moreover, some studies have focused on personalizing robots or therapy

sessions based on children’s interests, resulting in the development of a user model

and the adjustment of CRI [90].

Kennedy et al. [105] provided a valuable perspective on the utilization of a robot

that employed social behaviours, incorporating various gestures like personalization

(e.g., greeting the child using their name) and eye contact (e.g., directing its view

towards the touchscreen or the child). The robot adapted to a child’s learning re-

quirements to enhance performance. Complementing these previous works, Janssen

et al. [98] highlighted the importance of personalizing robots to foster children’s in-

terest in interacting with them, as the social behaviour of the robot can be helpful in

facilitating learning and motivation during appropriate occasions.
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2.5 Engagement is Fundamental to Interaction

Engagement is a crucial social skill that may raise social robots’ acceptance, effec-

tiveness, and usability. It is a common and important term across many disciplines.

Engagement is seen as a challenging term that accepts several definitions in the HRI

literature [47, 86].

Perski et al. [152] conceptualized engagement in terms of individual experiences

and behaviours targeting attention, interest, and affection. Based on their systematic

review, they developed: two artificial notions:‘Engagement as subjective experience’

and ’engagement as behaviour’. During a short interaction with a system, engage-

ment as a subjective experience manifests as a mental state characterized by focused

attention, intrinsic interest and enjoyment, a balance between difficulty and compe-

tence, and temporal decoupling. However, engagement as behaviour is the level of

commitment over a prolonged time, divided into active and passive. They identified

two measures of engagement: “subjective” and “objective.” Qualitative methods like

the think-aloud technique or interviewing are examples of subjective measurements.

The automatic tracking of usage patterns, such as the number of logins (time spent

online and the quantity and kind of content used during the intervention period),

cardiac activity, respiratory depth, electrodermal activity, and eye tracking can serve

as an objective metric in contrast. Overall, Perski et al. [152] defined engagement as

a dynamic process that varies both within and between people throughout time.

Engagement is a multidimensional construct that includes the following interde-

pendent components [79]:

• Behavioral engagement, which defines engagement or active participation in

educational activities.

• Emotional engagement, which defines a child’s curiosity towards the tasks

• Cognitive engagement, which defines a child’s willingness to learn new knowl-

edge and abilities.

In many studies, engagement has been conceptualized from the perspectives of
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technology, interaction, and education [239]. Education-wise, engagement is the main

variable that predicts positive student outcomes [129] and provides educators with

the possibility to alter their teaching strategies depending on learners’ needs [239].

Kelders et al. [104] in their systematic scoping review proposed a more compre-

hensive understanding of engagement. They identified engagement as a multi-faceted

construct with elements of behaviour, cognition, and emotion, yet more nuanced ques-

tions emerge when discussed separately. They categorized seven groups of engage-

ment types: transdisciplinary, digital, work, societal, health, customer, and student

engagement. Engagement is primarily viewed as a condition of being engaged with

something in all groups. However, the fact that nearly all groups also consider engage-

ment as a process. Sometimes it’s thought that identifying the state of engagement

itself is less significant than the process of being involved, sustaining engagement,

disengaging, and re-engaging [104].

Researchers, therapists, and teachers commonly employ behavioural observations,

self-assessment, and various technological tools to measure engagement levels in chil-

dren with ASD [67, 103]. However, these methods are not always effective in mea-

suring engagement levels for certain reasons. First, therapists may lack the expertise

required to apply these methods accurately due to their complexity. Second, studies

reviewed in Keen et al. [103] draw heavily on the effects of group size in the samples

and may be inadequate for measuring engagement in children with ASD, who require

a personalized approach. Anzalone et al. [7] and Salam et al. [180] have emphasized

the importance of engagement as a key variable in designing intelligent systems that

can adjust to the user’s level.

2.6 The Components of Engagement

According to Corrigan et al. [46], engagement has two components:

• cognitive - characterized by attention and focus,

• affective - expressed by enjoyment.
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The degree and quality of these elements encompass directedness, levels of atten-

tion, interest, engagement, and engagement quality. The term ‘directedness’ describes

how a user’s bodily components are momentarily aligned. Examples include how the

head, eyes, torso, and movement routes are oriented. The level of attention is calcu-

lated by the duration of eye gaze on a particular object or place. The level of interest

is closely related to the level of engagement and is based on the stored attention level.

Additionally, they identified three different engagement levels [46]:

• uninterested in the action space or scene;

• superficially interested in the action or scene;

• engaged in the interaction.

O’Brien et al. [142] have identified several attributes of human engagement, such

as affective appeal, sensory appeal, aesthetics, goal-directedness, attention, challenge,

motivation, perceived control, feedback, and meaningfulness. These attributes in-

dicate to what extent the interaction between an individual and a robot provides

quality-oriented experiences. Thus, engagement can be treated as a quality indicator

of HRI [198, 203]. This interaction can also be viewed from the theory of motivation,

in which engagement is characterized as the motivational construct. When an indi-

vidual feels enjoyment, puts effort, and shows commitment during a particular task,

these states imply a higher level of engagement. In autism therapy, children are often

exposed to a robot-mediated intervention to create a safer environment that allows

them to retain immersive and engaging social communication. Engagement is critical

for success when CRI is responsive and personalized to reach specific research goals.

As the field of HRI continues to develop, more researchers are studying engage-

ment using different cues [143]. However, there is no single definition to identify

engagement. All research works can be divided into two categories: those that con-

sider engagement as the state of being engaged or disengaged [95], and those that

take engagement as a process. For example, engagement is described by Sidner et

al. [198] as “the process by which interactors start, maintain, and end their perceived

connections to each other during an interaction.”
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Based on the interaction’s receiver, user engagement may also be categorized. The

user can interact with the agent, the work at hand, or the entire system (agent and

task together), for instance, in human-agent interactions. The first scenario is known

as social engagement, and the second is known as task engagement.

Researchers have noted that children with ASD often exhibit a low level of engage-

ment, which can limit their ability to acquire and practice social skills in the outside

world [111, 136]. Keen [103] has emphasized that environmental engagement is es-

pecially important for developing children’s learning abilities, as it involves engaging

with peers, parents, teachers, therapists, and other agents in their surroundings. Pre-

vious research has also established that high intensity of engagement plays a crucial

role in developing children’s learning abilities [136].

To summarize, engagement is fundamental to interaction because it is the mea-

sure of how invested or interested someone is in the interaction. It plays a crucial role

in various fields, such as education, psychology, and HRI, as it can affect learning,

motivation, and user experience. Recognizing engagement is important for various

reasons, including improving learning outcomes, detecting mental health problems,

and designing effective human-computer interfaces. Several models have been devel-

oped to recognize engagement, including physiological, behavioural, and self-report

models. These models use various indicators, such as heart rate, facial expressions,

and self-assessment, to measure engagement.

2.7 Models for Engagement Recognition

The concept of engagement is typically observed in various (non)verbal therapeutic

tasks that involve interacting with robots. These tasks may include imitating the

robot’s behaviour, turn-taking, and making eye contact with the robot. According to

studies by Lemaignan et al. [127] and Perski et al. [152], engagement signals are a

sense of togetherness or with-me-ness that can be measured during social interaction

and interactive tasks.

The recognition of engagement is crucial in advancing our understanding of com-
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plex multimodal interactions. Anzalone et al. [7] proposed a methodology for eval-

uating engagement between a human and a robot in a triadic interaction. This

methodology is based on dynamic social cues, such as joint attention, synchrony, and

imitation, and static social cues, such as the focus of attention and head/body pos-

ture stability. The authors highlighted that their approach, which uses an RGB-D

sensor and 2D histogram, is easy to use and does not require a marker-based sys-

tem. This enables them to measure engagement in a natural environment without

any restrictions or complexities.

In another study, Drejing et al. [67] proposed the use of the ADOS-G tool to

evaluate engagement. The tool was evaluated by a therapist and involved activities

such as imitation, turn-taking, and joint attention tasks. Participant ratings were

recorded using a 5-Likert scale for the smiley face system, while observer ratings

used an annotation program (ELAN) and a 5-Likert scale ranging from intense non-

compliance (0) to intense engagement (5).

Research by Tapus et al. [213], used video data of the interactions between NAO

robots and children with ASD to evaluate participants’ engagement. They utilized

Kinect sensor to track skeletons and three video cameras to capture the interactions.

The experiment involved four children from Romania aged between 2.8 and 6 years old

(M=4.2 years). During the dyadic and triadic interactions, the researchers measured

five variables: the amount of spontaneous and prompt initiations, the length of eye

contact and smiles, and the incidence of eye contact between two participants. The

study found that when the NAO robot changed the colour of its eyes, and kept

the children’s attention. Additionally, it was shown that at the beginning of the

interaction, the robot had a greater impact on the strength of good feelings. However,

the quantitative outcomes were inconsistent, and there was considerable variability

in responses to the NAO robot.

Poltorak et al. [155] employed Convolutional Neural Networks (CNNs) to evalu-

ate the quality of HRI by analyzing images and calculating the emotion-dependent

engagement metric, which could be categorized as engaged, neutral, or disengaged.

The robot’s learning algorithm required continuous adaptation and adjustments to
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ensure dynamic and effective interaction. The authors used several metrics to eval-

uate engagement, including visual cues [7] such as tracking eye gaze, head direction,

back posture, and facial expressions [69], as well as external sensors like pose estima-

tion, pressure sensing [65], or body motion tracking [190]. Additionally, they utilized

the concept of with-me-ness proposed by Lemaignan et al. [127] as another metric to

assess engagement.

The proposed method for assessing engagement using CNN was tested on a small

dataset of videos for seven emotions. However, these measures may not be entirely

reliable as they can vary with a person’s personality. To train the neural network,

three datasets of grayscale 48x48 images were used, and the learning algorithm re-

quired time and task-varying changes to perform dynamic and effective interaction.

The datasets used in this study comprised SFEW (Static Facial Expressions in the

Wild) with 1,766 images, FER (Facial Expression Recognition) containing 35,887 im-

ages, and TFD (Toronto Face Database) which includes 4,178 images. The training

process was prone to overfitting, which was reduced by adding a dropout layer to the

neural network, which rejects specific neurons during learning. The learning rate was

also changed from constant to annealing. The accuracy achieved by the model was

72.5%, which increased to 80% after optimising the results using the transfer learn-

ing technique. The model was trained on ImageNet-VGG-F (22 layers: 5CONV and

5FC) and retrained in the last layer using different techniques such as initialization,

learning, and testing.

To detect user engagement automatically, q 12 [148] conducted an experiment in a

real classroom environment in the UK with children aged 11-13 years old who played

geography-based learning activities on a touch table assisted by the NAO robot. They

used a Kinect sensor to extract lean body position, eye gaze, facial expressions, head

direction, and affective state using electro-dermal recordings from a Q Sensor. The

study’s objective was to employ a set of short tests to identify engagement markers,

including detecting lower and upper bounds of engagement within a task and fostering

social connections between the participant and the robot.

Using low-level optical flow-based characteristics, Rajagopalan et al. [158] created
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a way to assess a child’s level of engagement. Based on the discovered underlying

behavioural patterns of the child, they employed a two-stage underlying Conditional

Random Field (HCRF) framework and Support Vector Machines (SVM) model to

predict engagement. The Multimodal Dyadic Behaviour (MMDB) dataset, which

comprises more than 160 Rapid-ABC sessions of adult-child social interaction, was

used to assess the proposed model. According to a scale from 0 (easily engaged) to

2 (extremely difficult to engage), adults in this dataset judged how difficult it was to

keep the children interested in them. According to the study, the two-stage (HCRF +

SVM) method increased average engagement prediction accuracy by 3.3%, leading to

a value of 79.7%. Moreover, it should be noted that the current method can extract

low-level features such as keypoints more robustly than high-level features such as

hand gestures and head poses.

Kapoor and Picard’s proposed system [102] seeks to categorize children’s interest

levels in a learning task by integrating postural changes and facial expressions along

with information regarding the task of the learner. They proposed a recognition

system that categorizes emotional states connected to interest in children who are

attempting to solve a computer problem using a mixture of Gaussian Processes. In

order to do this, they gather nonverbal indications from a camera and a pressure-

sensing chair, such as facial characteristics, behaviours, and postures. Through their

proposed multisensor classification scheme, they achieved a recognition rate of 86%.

Tan et al. [211] suggested an automated engagement recognition system to mon-

itor the actions and effects of children with ASD. The 12 actions from the NTU

RGB+D dataset were used to assess their system [194]. To extract features, they

utilized OpenPose, which extracted 25 body features from the short videos. They

employed six standard machine learning algorithms, including Decision Tree, Logistic

Regression, Ridge Regression, Random Forest, Gradient Descent, and SVM, for clas-

sification. Based on their classification results, Random Forest achieved the highest

accuracy (99%), while Ridge Regression achieved the lowest accuracy (2.6%). How-

ever, it should be noted that the evaluation was conducted on a limited set of actions

and not on a specific engagement task or scenario. Therefore, the general use of
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the suggested strategy in additional cases and tasks requires further evaluation and

testing.

Alcorn et al. [3] investigated the perspectives of educators on employing NAO as

a tool for education for pupils diagnosed with autism. The study included 31 partici-

pants from special schools in England who highlighted the significance of engagement

and motivation in learning for children with autism. The educators highlighted that

for these children, it is crucial to feel comfortable, safe, and secure, and the pre-

dictability and consistency of the robot as compared to humans can be advantageous.

The visual consistency of the robot may also help children focus their attention on

learning. However, the educators emphasized that robots are not toys, and under-

standing the differences between humans and robots depends on the cognitive ability

and child’s age. The educators suggested that the robot should be personalized for

each child and adapted to their individual needs, but they also highlighted a po-

tential drawback that children with autism might not learn how to understand and

communicate with other people if they only interact with robots.

Hence, future work should incorporate stakeholders in the planning and execution

phases, such as educators, parents, and children with autism, to guarantee that the

efforts have a lasting and direct influence on those who require it the most [192].

The phase should start with a thorough joint examination of the presumed and an-

ticipated advantages of robots for children with autism while weighing these against

developmental, potential interpersonal, and resource-related costs.

In a multimodal setting, where data is generated from multiple input modalities

with different representations and structures, learning can be challenging due to noisy

and missing values [176]. To address this, the labelling approach can be applied. For

instance, Srivastava et al. [208] proposed an MDBM (Multimodal Deep Boltzmann

Machine) model that is composed of unimodal undirected pathways and put layers

of hidden units between modalities to provide scaffolding for the differences in their

statistical properties. Similarly, Rudovic et al. [178] proposed a multimodal active

learning approach to optimize data selection and personalize the target classifiers for

estimating engagement levels in children with autism during therapy. This involves
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two sequential processes: training classifiers using majority voting and learning for

active data selection using the reinforcement learning model’s Q-function. The pro-

posed approaches can improve engagement estimation and personalize the learning

process for children with autism. However, more research is required to investigate

their effectiveness in larger datasets and in real-world settings.

Considering the classification models, the trained multimodal engagement classi-

fiers may be suboptimal because of the notably different ways of engagement appear-

ances (head movements, facial expressions, body gestures, and positions) and their

dynamics across children diagnosed with autism. In addition to the above-mentioned

technical methods of engagement assessment of children during their interaction with

a robot, it is also crucial to point out the impact of personalization of the procedures

and therapies to suit the diverse needs of children with ASD and the typically de-

veloped ones. However, the achievement of personalization seems to face challenges,

and lack consensus on researchers’ parts [235].

The purpose of the current study is to develop an automatic recognition model of

engagement for children with ASD that is based on data collected from personalized

long-term robot-assisted therapy (RAT) in clinical settings with a humanoid robot

NAO. This approach differs from previous studies (Jain et al. [97] and Rudovic et

al. [176]) in its focus on long-term engagement assessment in clinical settings and its

integration into both educational and clinical settings for children with autism. The

study combines binary classification with multi-class classification problems, in order

to capture the diverse ways in which engagement manifests in different individuals

with ASD. The aim is to implement a model that can recognize user engagement in

a personalized and adaptive manner, considering the diverse requirements of children

with ASD.

Summing up, the studies mentioned above can be divided into two groups: de-

tection of current engagement signs and interaction events [41]; and prediction using

supervised models trained with data, such as task-based interaction, social, or physi-

ological features [185]. The existing studies inform the experts, therapists and educa-

tors about the feasibility of applying automatic methods of engagement recognition
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and offer advancements in the therapy of ASD in clinical settings. Yet, research still

faces methodological constraints in automatic data-driven engagement recognition.

2.8 HRI Datasets

While interest in social robots is rising that can learn social interaction, the lack of

publicly available HRI datasets is a major obstacle to progress in this field. Due to

privacy issues, most HRI datasets are not accessible to the general public, especially

for CRI. However, during our literature survey, we found several HRI datasets that

have been made available to the research community. Researchers can use these

datasets to train social robots to better interact with humans and improve the overall

user experience. However, it is crucial to handle these datasets with care and respect

for the privacy of the participants involved. Below we are providing a brief description

of the HRI datasets.

2.8.1 Keepon Pro-Active Dataset

The “Keepon Pro-Active” dataset was collected by a research team led by Dr. Hideki

Kozima from the National Institute of Information and Communications Technology

(NICT) in Japan [117]. The dataset comprises over 400 hours of video recordings of

interactions between preschoolers and Keepon. In particular, the researchers focused

on studying the interactions between Keepon and children with ASD, and those with

typical development. The dataset includes recordings of over 30 children (ages 2-4)

at a daycare facility over the course of 100 sessions, or 700 kid sessions overall, for

observations pertaining to autism [117, 118, 119]. The dataset includes video record-

ings from the robot’s cameras, as well as audio recordings of the interactions. The

researchers used these recordings to study how the children interacted with Keepon,

and how Keepon’s behaviour influenced the behaviour and emotions of the children.

The dataset is available for research purposes upon request. It has been used in a

number of studies exploring the use of robots for therapy and education for children

with ASD.
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2.8.2 DREAM Dataset

The DREAM dataset was introduced by Billing et al. [23]. It consists of more than

300 hours of video recordings with 61 children with autism (9 female, aged 3-6 years)

during two therapy conditions: with a robot (RET, n = 30) and with humans (SHT, n

= 31). Every therapy session was recorded via the same sensory therapy table. Three

high-resolution RGB cameras and two Kinect (RGB-D) cameras were installed on this

table. These cameras, along with sensor interpretation methods, were used to gather

data about the child’s verbal statements, movements, eye gaze, facial expressions,

and position.

Every intervention was split into 3-6 sections, adhering to a task script that out-

lined the task and directions provided to the child. A total of eight interventions

were recorded using two depth (Kinect) and three RGB cameras. This dataset was

collected during the DREAM project (see Section 2.1.5). However, only a subset of all

features was released publicly, including participants’ age, gender, autism diagnosis

(ADOS-G scores), therapy conditions (RET or SHT), date and time of recordings,

therapy task (Turn-taking, Joint attention, and Imitation), 3D recordings of head

position and orientation, body motion, and eye gaze characteristics. The authors

used the JSON file format for data representation, and a Cartesian coordinate sys-

tem was utilized to represent attributes of eye gaze, head gaze, and skeleton. Notably,

the dataset does not include facial expressions or direct measurements of the child’s

performance during therapy.

2.8.3 MDCA Dataset

Rudovic et al. [179] proposed the Multimodal Dataset of Children with Autism

(MDCA), which includes data from 35 children with autism (30 males and 5 females,

aged 3-13 years) from two cultures: Asian (17 Japanese); and Europian (19 Serbian).

The severity of the children’s behaviours was assessed by utilizing the Childhood

Autism Rating Scale (CARS). The children participated in only one short session,

lasting an average of 25 minutes, which aimed to study the relationship between the
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children’s task-oriented engagement and valence and arousal of affective engagement

was examined. The therapy was centred on a teaching method for emotion recog-

nition and expression by associating images of expressive human faces with NAO’s

behaviour.

A high-resolution camera with a microphone was used to record the interaction.

The engagement episode, from the initiation of a task until the subsequent engagement

level was achieved, was rated using a 0-5 Likert scale. Moreover, valence and arousal

were assessed using a 5-point ordinal scale, while the children’s facial expression was

measured using a 0-5 Likert scale. During coding, two coders achieved an agreement

of 92.4% for estimating engagement, 75.8% for valence, 67.4% for arousal, and 69.8%

for face expressivity.

2.8.4 MHHRI Dataset

The Multimodal Human-Human-Robot-Interactions (MHHRI) dataset [38] was col-

lected in a controlled study examining interactions between two people and a robot.

The participants asked each other personal questions while being recorded using two

dynamic cameras mounted on the participants’ heads, two biosensors and two static

Microsoft Kinect depth sensors. The physiological signals (electrodermal activity

(EDA), skin temperature, and 3-axis acceleration of the wrist) were recorded using

the Q Sensor by Affectiva.

The dataset consists of about 6 hours’ worth of multimodal recordings from 12

interaction sessions (7 sessions with an extroverted robot and 5 sessions with an intro-

verted robot) with 18 participants, predominantly graduate students and researchers,

including 9 females. Every session was approximately between 10 and 15 minutes.

The dataset also offers labels for personal characteristics and self-reported partner

engagement, which were obtained using two different types of surveys. Celiktutan et

al. [38] discovered that employing just first-person vision head motion signatures

(FPV-HMS) produced the greatest results for engagement (mean F-Score = 0.59)

and that individual characteristics improved performance for interaction.
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2.8.5 PInSoRo Dataset

The PInSoRo dataset was collected to study under-specified free-play interactions

between children and robots, with the aim of capturing behavioural tendencies in

everyday interactions. The dataset includes 45 hours of hand-coded interaction data

involving 45 child-child (42 female and 49 male) and 30 child-robot pairs (12 female

and 18 male) [128].

The dataset includes entire audio files, thoroughly calibrated video frames, struc-

tural characteristics, 3D records of the face, game engagements, and annotations of

social constructs. The data were collected using two short-range Intel RealSense

SR300 RGB-D cameras to record the children’s faces and audio, and a Microsoft

Kinect RGB camera to record the whole interaction setting. The dataset employed a

coding scheme that encompassed the level of task engagement (no play, adult-seeking,

goal-oriented, and aimless), the level of social engagement (solitary, associative, on-

looker, cooperative, and parallel), and the social attitude (pro-social, adversarial,

assertive, frustrated, passive, or bored). Audio features were extracted utilizing the

OpenSMILE toolkit with 33 ms-wide time windows, while the OpenPose library was

employed to obtain 70 facial landmarks, the 18 points of the upper-body skeleton,

and hand skeletons for each child. The dataset also contains in total of 17 action

units along with their respective confidence levels, which were got by utilizing the

OpenFace library [128].

By utilising the free-play sandbox task, the PInSoRo dataset attempted to provide

the following experimental baselines: an ‘asocial’ baseline for the condition where

children interacted with non-social robots and a ‘human-social interactions’ baseline

for the condition where children interacted with other children.

2.9 Concluding Remarks

Current research on using robots to intervene in ASD frequently lacks methodological

rigour, generalization of therapy [151], and insufficient understanding of how robots

can enhance established interventions [64]. Moreover, RAAT has a significant dif-
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ference in the number of sessions with relatively fewer long-term studies. There are

several studies have investigated the employment of social robots in various settings,

such as homes, educational environments, and hospital facilities, but there is a lack

of a universally accepted definition and measurement framework for engagement.

Studies have shown that engagement and positive affect can be generated when

children with autism interact with robots and such behaviour can even be generalized

to co-present humans [72, 107, 112, 152, 168, 188]. Remarkably, SARs can engage

children with ASD and hold their attention for longer than complex human-to-human

interactions. The range of tasks and behaviours, like attention, interest, and motiva-

tion, forms the foundation of engagement, and the key to promoting effective learning

progress lies in recognizing a child’s emotional state during an interaction.

Recognizing engagement in children with ASD is challenging because they may

not exhibit typical social cues. However, recent studies have demonstrated that social

robots can measure engagement in children with ASD by monitoring their gaze and

facial expressions and adjusting their behaviour accordingly. SAR, therefore, have the

potential to be a valuable tool for helping children with ASD develop social skills, but

they must be engaging. Recognizing engagement is fundamental to creating effective

interactions that can improve learning, motivation, and overall well-being.

Furthermore, HRI datasets demonstrate the prospective utility of leveraging user

interaction data to educate robots on social behaviours and assess the efficacy of

robots in human interaction scenarios. However, the lack of publicly available datasets

for CRI highlights the need for more efforts to create and share such datasets while

ensuring privacy and ethical concerns. The availability of such datasets aids in the

development of more effective interventions for children with ASD, utilizing social

robots as a therapeutic mediator, thus heralding advancements in the broader domain

of social robotics.
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Chapter 3

Multi-Purposeful Robot Activities for

RAAT

This chapter outlines the capabilities of the NAO robot and details 9 activity blocks

(“Dances,” “Songs,” “Action Song,” “Storytelling,” “Follow Me,” “Touch Me,” “Imi-

tations,” “Social Acts,” and “Emotions”) suitable for various forms of autism. The

goal is to offer individualized RAT that is tailored to the therapist’s knowledge and

judgment, ensuring that each child has a personalized and suitable experience.

3.1 Humanoid NAO Robot

The Aldebaran Robotics1 manufactured a medium child-sized humanoid robot known

as NAO for autism therapy [8, 196, 212, 216, 221]. NAO stands at a height of 58

cm and weighs 5 kg. The robot is made of plastic and contains a set of sensors

and features, including a sonar range finder, one inertial board, two cameras, two IR

emitters and receivers, two high-fidelity speakers, four directional microphones, eight

pressure sensors, nine tactile sensors (Figure 3-1) [206]. With 14 DOF in its upper

parts and 11 DoF in its lower limbs, NAO has a total of 25 DOF, providing it with

great mobility. NAO’s design and features make it an effective tool for individualized

and engaging autism therapy.
1https://www.aldebaran.com/en
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Figure 3-1: Overview of the NAO robot [206]
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The review by Amirova et al. [5] reports that NAO was mostly used in RAAT

in 33 studies published between 2009 and 2019 worldwide. NAO has been used for

both diagnostic and therapeutic purposes in children diagnosed with ASD. Based on

the review, NAO robots are mostly used for gesture and emotion recognition, im-

itation, display of emotions and performing verbal and nonverbal communications

during RAT interventions [5, 58, 196]. Therefore, the NAO robot helps children

with ASD to develop skills of social communication, understand facial expressions

and emotions, retain eye gaze, and improve joint attention [7]. Children with ASD

benefit from engagement with the robot during communication because of its ability

to attract attention [34]. The humanoid social robot makes two-way communication

easier, which may subsequently affect how well children interact. For example, in the

study by Fuglerud et al. [81] the NAO robot is used as a language teacher in autism

therapy. It should be noted that the quality of interaction assesses using timed feed-

back during HRI. Feedback from NAO robots typically takes the form of nodding,

hand gestures (similar to a high five), and attention-grabbing spoken answers. NAO

serves as a mediator for children who are diagnosed with autism to foster the growth

of interpersonal and communicative abilities [92, 195, 196]. Saleh et al. [181] showed

that the NAO robot provides therapeutic benefits including eye contact, engagement,

visual attention, augmented social interaction skills, and positive expressiveness. Al-

though several studies have noted that in addition to beneficial features, NAO has

also some limitations. For instance, NAO moves slower than children, cannot tilt its

head, makes a lot of noise, its eye gaze is unnatural, and it lacks the same social-

emotional signals similar to humans. Therefore, it might be suggested to speed up

the robot’s movement and perform more realistic and natural eye contact for future

research. In addition, researchers used the NAO robot because of its ability to use

sensors and microphones to collect data [73] and actuators to implement different

behaviours [184].

NAO features fundamental components that allow it to operate more naturally,

including touch sensors, built-in facial and speech recognition, a text-to-speech engine,

and a display of body and gestures posture. It also can communicate nonverbally
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via its motions and LCD eyes. It can be programmed to be autonomous, semi-

autonomous, or controlled by a human operator (WoZ). Researchers have found the

NAO robot to be easy to operate [58], and it can detect and recognize pre-learned

objects and faces. As a result, one of the most popular robotic platforms for autism

therapy is the NAO robot [15, 151, 187]. In our own RAAT study for children

diagnosed with autism, we also used the NAO robot.

3.2 ABA Principles

This thesis deployed a total of 24 robot activities that are based on Applied Behavior

Analysis (ABA) principles, which include positive reinforcement, Picture Exchange

Communication System (PECS), errorless teaching, and peer-mediated social skills

training [123].

3.2.1 Positive Reinforcement

Positive reinforcement is an essential component of many behaviour-based therapies,

including ABA. In our study, we used positive reinforcement almost in all activity

blocks to promote positive behaviours in children diagnosed with autism. Positive

reinforcement is based on the principle that behaviours that are followed by a positive

outcome are more likely to be repeated in the future. Therefore, by praising children

with rewards, we aimed to increase the likelihood that they would repeat the desired

behaviours during the study. “Well done,” “Keep up the good job,” and “Perfect” are

all examples of verbal praise. Nonverbal stimuli such as smiling, cheering, raising

arms and clapping hands were also used.

In addition to verbal praise and nonverbal stimuli, we also used tangible rewards

such as stickers. Stickers are a simple and effective way to reward children for their

positive behaviour. When the sessions ended, by offering a choice of stickers, we

allowed children to select the one that they preferred, which increased their motivation

to perform well.
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3.2.2 Picture Exchange Communication Systems

Picture Exchange Communication System (PECS) is an evidence-based communi-

cation system which can be effective in promoting communication in children with

ASD. The system is based on the idea that children with communication difficulties

may find it easier to understand and use visual symbols instead of spoken language.

The use of visual symbols in PECS allows children to express their needs, wants,

and emotions more easily and also helps to develop their social skills. By using

pictures to represent different emotions, children can learn to identify and label their

own emotions and the emotions of others, which is an important step in developing

emotional awareness and empathy.

In our study, we used PECS to encourage children to express emotions (“Emo-

tions”) and imitate (“Imitations”) the sound of gestures of the robot. By showing the

children images of emotions and asking them to match them with the appropriate

gesture or sound, we provided a fun and engaging way for them to learn. Also in the

“Storytelling” activity block, we used pictures to show the sequence of characters in

the “The Bun” tale.

By incorporating PECS into our interventions, we provided children with a struc-

tured and visual way to learn, which can be especially beneficial for children with

ASD who often have difficulty with abstract concepts and language. The use of vi-

sual symbols in PECS also provides a way for children to communicate independently,

which can be empowering and boost their self-esteem.

3.2.3 Errorless Teaching

Errorless teaching is an approach used in ABA therapy to minimize errors and maxi-

mize learning. This technique involves providing prompts and cues to ensure that the

learner completes the task successfully, without making any mistakes. The goal is to

provide a setting where the learner feels supported and confident, which ultimately

leads to increased success and positive outcomes.

In the study mentioned, errorless teaching was utilized for children to complete the
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tasks successfully. By providing prompts and cues, the researchers aimed to prevent

errors from occurring and increase the children’s confidence and success. For example,

when the child does not respond to the robot, a human therapist demonstrated the

way of touching the sensors on the robot’s arms and legs during the “Touch Me”

activity block. Parents also gave their children prompts to help them perform proper

behaviours.

Overall, the prompts and cues used in errorless teaching may include verbal

prompts, gestural prompts, physical prompts, or visual prompts, depending on the

individual’s needs and abilities. The prompts are gradually faded over time as the

learner becomes more proficient, ultimately leading to independent performance of

the task.

3.2.4 Peer-mediated Techniques

In traditional ABA therapy, peers are often used to help teach new skills and pro-

mote social interaction. However, in our study, we used a child-like NAO robot as

a substitute for human peers. The robot gave the children a fun and interesting op-

portunity to practice social interactions in a safe and supportive environment. By

using the robot as a model, we aimed to increase the children’s engagement and mo-

tivation to learn social and communicative behaviours. Throughout the intervention,

we incorporated a peer-mediated technique in which the child participants observed

the robot’s behaviour and subsequently imitated its actions, focusing on social acts

such as high-fives and hugs. The robot’s behaviour was predictable and consistent,

providing a low-anxiety and non-judgmental learning experience. By utilizing this

technique, we aimed to promote socialization and improve social skills in children

with autism.

Overall, the combination of positive reinforcement, PECS, errorless teaching, and

peer-mediated techniques provided a comprehensive approach to support the child’s

behaviour during the study. By utilizing a range of tools and strategies, we aimed to

maximize the children’s engagement, motivation, and success in learning new skills.
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3.3 Objectives of Activities

The International Classification of Functioning, Disability and Health for Children

and Youth (ICF-CY) has provided a thorough list of therapeutic and educational

goals [232]. In our study, we have implemented each activity with specific objectives

based on the ICF-CY classification, as shown in Figure 3-2. These objectives include:

• emotional and social development,

• interaction and communication development,

• sensory development,

• motor development,

• cognitive development.

Figure 3-2: Objectives of the activities
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3.3.1 Emotional and Social Development

Children diagnosed with ASD often struggle with social and emotional intelligence,

making social and emotional learning (SEL) a crucial aspect of their therapy [227].

SEL can reinforce emotional self-awareness and empathy in children with ASD, who

learn to express emotions and read others’ facial expressions from infancy and con-

tinue to develop affective skills as they grow. Affective technologies, such as social

robots, have shown promise in fostering social-emotional understanding and eliciting

different emotional responses in children with ASD [76]. The following functions can

be categorized as SEL:

• Emotional functions relate to the feeling and affective components of the mind’s

processes, including recognizing and expressing emotions.

• Experience of self and others involves developing awareness of one’s own identity,

body, position in the environment, and time, as well as understanding others’

perspectives.

• Engagement in play includes purposeful and sustained engagement in activities

with robots, either by oneself or with others.

• Community, social, and civic life involves engaging in aspects of community and

social life, such as participating in group activities and demonstrating appro-

priate social behaviours.

All robot activities are designed to develop and improve emotional functions,

promote engagement in activities, and facilitate social interactions by performing

different types of play scenarios. For example, the “Emotions” and “Social Acts”

activities aim to improve emotional recognition and empathy by asking children to

imitate the robot’s displayed emotions and movements. Meanwhile, the “Follow Me,”

“Touch Me” and “Imitations” activity encourages sustained engagement and social

interaction by involving cooperative play between the child and the robot.
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3.3.2 Interaction and Communication

Among all the symptoms of autism, the lack of communication and interpersonal skills

is the most evident. Children with ASD often struggle to navigate social relationships

and frequently rely on family members, such as mothers or siblings, for social inter-

action. Communication-driven activities are introduced to support the development

of verbal language and nonverbal cues to recognize and convey social cues, thereby

avoiding long-term and devastating effects. Peer-mediated interventions (PMI) are

common mechanisms used to support social skills development, reciprocal exchanges,

and relationships with peers [100].

Communication and interaction development include various functions, such as

voice and speech functions, which refer to the production of sounds and verbal com-

munication, including monosyllabic speech and non-speech sounds. Other functions

include communicating through gestures, symbols, and drawings to express thoughts

and needs, basic interpersonal interactions such as taking initiative, proximity, eye

gaze, and responding to others, and specific interpersonal relationships such as col-

laboration, awareness, empathy, and patience.

In all activities, the robot serves as a peer to motivate children to be more active

and social and to produce speech and non-speech sounds (see Figure 3-2). For ex-

ample, during the “Songs” and “Storytelling” activities, the child might repeat words

that the robot speaks, while during the “Imitations,” “Emotions,” and “Social Acts”

activities, non-speech sounds are presented for the child to repeat as well.

3.3.3 Sensory Development

Sensory development is crucial for children’s growth and can affect their percep-

tual functions, which include an understanding and interpretation of sensory inputs

like auditory, visual, olfactory, gustatory, visuospatial and tactile perceptions [232].

However, perceptual functions do not include other functions such as consciousness,

orientation, attention, memory, mental functions of language, seeing, hearing, and

vestibular functions.
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Research has shown that individuals with ASD often experience sensory abnormal-

ities that regardless of age or skill level, should be wide-ranging and multimodal [124].

As sensory deficits can precede and predict social and communication barriers in child-

hood [166], autism-focused activities aim to support sensory stimuli and processing

in various ways. Therefore, each robot activity in our study was designed to improve

sensory stimulation (Figure 3-2). For example, all activities aim to improve auditory

function by discriminating sounds, tones, and pitches. Additionally, the “Dances,”

“Action Song,” ‘Storytelling,” and “Social Acts” activities improve visuospatial per-

ceptions by distinguishing the relative positions of robots in their surroundings or

with respect to oneself. The “Songs,” “Follow Me,” and “Touch Me” activities aim to

improve tactile stimuli by encouraging children to touch the robot, while the “Imita-

tions” and “Emotions” activities are designed to develop visual stimuli by involving

pictures.

3.3.4 Motor Development

Motor difficulties are a challenge for children with ASD, affecting their physical devel-

opment. According to recent estimates, 87% of children with ASD experience some

form of motor difficulties, such as unusual movement, and difficulties with object ma-

nipulation and handwriting [22]. Traditional autism therapy typically includes occu-

pational and physical therapeutic support, such as movement therapies incorporating

different music types. The following functions are included in motor development:

• Body mobility involves getting into and out of different body positions and mov-

ing from one point to another, such as sitting, standing, squatting, or kneeling.

• Object mobility involves lifting and transporting objects from one place to an-

other.

• Fine hand use involves coordinating actions to handle, pick up, manipulate, and

release objects using one’s hands, fingers, and thumbs.

• Neuromusculoskeletal functions refer to the range and ease of joint movement,
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including the vertebral, elbow, ankle, wrist, shoulder, hip, knee, and small joints

of the hands and feet.

• Psychomotor functions involve control over both motor and psychological events

at the body level.

Music and dance-based activities have been considered and designed to address

social and motor skill difficulties. For example, “Imitations,” “Emotions,” and “So-

cial Acts” activities encourage a child to imitate robot movements and voice, while

“Follow Me” improves walking, joint attention, and neuromusculoskeletal functions.

Moreover, during “Imitations” and “Emotions” activities, children learn to hold and

move objects from one place to another.

3.3.5 Cognitive Development

Joseph et al. [99] demonstrate that there are variations in the intellectual abilities

of children with ASD, ranging from mild to severe mental impairments. Cognitive

development is a complex aspect of autism therapy because children may not develop

study skills due to varying levels of their autistic symptoms and learning conditions.

The following functions are classified as cognitive development:

• Global intellectual functions, which include clarity, continuity, awareness and

alertness of the wakeful state.

• Memory functions, which involve registering, storing, and retrieving information

as needed.

• Higher-level cognitive functions include complex, goal-directed behaviours.

• Thinking, which involves formulating and manipulating, goal-oriented or not

concepts and images.

• Decision-making, which involves making a choice, implementing it, and evalu-

ating the effects of the choice.
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• Imitation, which involves mimicking or copying the letters of an alphabet,

sounds, gestures or facial expressions.

• Attention, which involves concentrating for the needed amount of time on an

external or internal case.

• Energy and drive functions, which are the psychological and physiological mech-

anisms that cause one to persistently work toward satisfying requirements.

• Learning through action with objects, which involves symbolic and pretend play.

• Activity completion, which involves performing straightforward or complex, co-

ordinated actions relating to the conceptual and practical aspects of a single

activity.

In general, cognitive development involves gradually incorporating lower-order

(e.g., memorization) and higher-order thinking (e.g., understanding) skills through

mindful, thought-based, and multi-dimensional tasks. For example, higher-level cog-

nitive functions are developed in activities such as “Emotions” (when the robot asks,

a child looks at pointed images and replicates shown emotions) “Social Acts” (where a

child repeats actions and sounds when the robot asks), and “Touch Me” (where a child

should press the required sensor). These activities include complex, goal-directed be-

havioural functions. Additionally, the “Touch Me” activity aims to improve decision-

making by choosing which robot’s sensor to press and evaluating the effects of the

made choice. When a correct sensor is pressed, the robot praises and applauds the

child, otherwise, it remains quiet.

3.4 Activity Blocks

All robot activities are grouped into nine blocks. Two activities were downloaded

from GitHub and the “Thai Chi” dance activity behaviour was downloaded from

the Aldebaran Store. All of these activities were adapted to local languages. The

remaining behaviours were designed and implemented at the HRI Lab at Nazarbayev

82



University (NU) using an iterative interaction design process [184]. The video of the

activity demonstrations can be seen at this link: bit.ly/rat-nu.

3.4.1 “Dances” Activity Block

Figure 3-3: Activity diagram for “Dances”

The “Dances” activity block aims to promote emotional well-being and active

movement in children by encouraging them to listen to music and dance with a robot.

This activity block includes a selection of popular dances, including “Macarena,”

“Gangnam,” and “Tai Chi,” each of which is synchronized with a specific song and

designed to accommodate a range of body movements. To initiate a dance, children

should touch the tactile sensors located on various parts of the robot’s body. The

interaction flow for this activity block is illustrated in Figure 3-3. By engaging in this

activity, children enjoy the benefits of music and movement while developing their

perceptual functions (visuospatial, auditory perceptions) (see Table 3-2).

3.4.2 “Songs” Activity Block

The primary aim of the “Songs” activity block is to enhance children’s emotional

well-being through music, which led to an expansion in the number of songs available

from three to twelve. These include “Tanya,” “Helper,” “Wash Your Hands,” “Painter,”

“Red Apricot,” “Spider,” “Heroes,” “Clock,” “Clock,” “Spider,” “Beautiful,” “Mothers,”
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Figure 3-4: Activity diagram for “Songs”
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“Fixers,” “Maria,” and “Mother.” In order to move the robot in time with the song’s

rhythm, a straightforward choreography was created. The music therapist provided

these rhythms with different tempos and paces. Some songs were tailored specifically

for Kazakh or Russian-speaking children, while others were appropriate for both

groups. Tactile sensors located on the robot’s head, arms, and feet initiate the playing

of these songs, each lasting for approximately one to two minutes. The interaction

flow for this activity block is presented in Figure 3-4. By providing a diverse range

of songs and choreography, this activity promotes children’s cognitive, sensory and

motor development in a fun and interactive way (see Table 3-2).

3.4.3 “Action Song” Activity Block

Figure 3-5: Activity diagram for “Action Song”

The “Action Song” activity incorporates the popular song “Clap Your Hands,”

which encourages children to clap, tap their feet, and shout “hooray” along with the

music. The robot demonstrates these movements in sync with the music and en-

courages children to join in and participate. The activity lasts for approximately 1.5
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minutes, providing a brief but engaging experience for children. The interaction flow

for this activity block is presented in Figure 3-5. This activity helps to enhance chil-

dren’s verbal and nonverbal skills, perceptual functions, some cognitive development

and psychomotor functions in a fun and interactive way (see Table 3-2).

3.4.4 “Storytelling” Activity Block

Figure 3-6: Activity diagram for “Storytelling”

In order to enhance children’s concentration and imagination skills, we imple-

mented a “Storytelling” activity block. “The Cockerel” fairy tale was added to this

block, which already includes “The Bun” and “The Turnip.” As the story is told,

the robot moves its body parts in sync with the narrative, providing a more engag-

ing and interactive experience for children. The storytelling incorporates animated

movements and sounds to further enhance the experience. Moreover, it is supported

in two languages. Each story lasts for approximately 1.30-2 minutes, providing a

brief but captivating experience for children. The interaction flow for this activity

block is presented in Figure 3-6. By incorporating storytelling and movement, this

activity promotes children’s cognitive and imaginative skills in an entertaining and

stimulating way (see Table 3-2).
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3.4.5 “Follow Me” Activity Block

The “Follow Me” activity begins with the robot explaining that it has recently been

developed and needs to learn how to walk. The robot then asks a child to assist by

holding its hand and helping it to walk in the right direction. The child’s goal is to

guide the robot and help it practice its new skill, while also preventing it from falling

over. To stop the robot, the child simply releases its hand. [184]. The interaction flow

for this activity block is presented in Figure 3-7. This activity promotes children’s

social and motor skills by encouraging them to work collaboratively with the robot

and practice important physical coordination skills in a fun and engaging way.

Figure 3-7: Activity diagram for “Follow Me”

3.4.6 “Touch Me” Activity Block

Children with autism may learn various body parts by touching sensors on the robot

in the “Touch Me” activity. The robot uses basic instructions like “stroke the blue spot
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Figure 3-8: Activity diagram for “Touch Me”

on my right hand,” “tap my blue toes on my left foot,” and “pat on my head” to direct

the children to touch various body parts one at a time. The robot replies with praise

and applause when the child properly recognizes and touches the requested body.

The robot stays stationary if the child touches the wrong section of its body. The

interaction flow for this activity is presented in Figure 3-8. By incorporating touch

and verbal cues, this activity promotes children’s sensory and language development

in a playful and interactive way (see Table 3-2).

3.4.7 “Imitations” Activity Block

The robot behaviour was implemented to demonstrate nonverbal and verbal be-

haviours to enhance imitation skills.

Previously, two activities were created: the “Animals”, which included four ani-
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Figure 3-9: Activity diagram for “Imitations”

mated movements of animals such as gorilla, mouse, horse, and elephant; the “Trans-

ports”, which comprised four animations of transports (boat, car, aeroplane, and

motorcycle). To further promote imitation skills, a new “Sports” activity was added,

consisting of popular sports like basketball, football, archery, and hockey. Through

gestures, movements, and sounds, the robot imitated each sport and encouraged

children to replicate the actions. To maintain joint attention, a printed image was

presented with each animation. The duration of this activity was halted via the

script. The interaction flow for this activity is shown in Figure 3-9. With this type

of behaviour, the robot can provide children with engaging opportunities to improve

imitation skills in a fun and interactive way (see Table 3-2).
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Figure 3-10: Activity diagram for “Social Acts”

3.4.8 “Social Acts” Activity Block

The “Social Acts” activity is designed to help children practice social skills, including

turn-taking, imitation, and nonverbal communication. The activity consists of a col-

lection of easy-to-understand nonverbal cues, such as handshakes, high-fives, yawning,

peace signs, and other gestures, such as clapping, kissing, etc. To engage children,

the robot introduces each action with a situation-based explanation, such as “I yawn

when I feel sleepy” or “I clap when I feel happy.” The robot asks the child to repeat

each move with their parents and therapist after showing it. And waits for 10 seconds

for the child to respond. The activity lasts for 4 minutes and includes 13 different

nonverbal communicative actions. The interaction flow for this activity is presented

in Figure 3-10. This activity promotes children’s almost all social and motor skills by

encouraging them to repeat and imitate the robot behaviours in a fun and engaging
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way (see Table 3-2).

3.4.9 “Emotions” Activity Block

Figure 3-11: Activity diagram for “Emotions”

The “Emotions” activity aims to better promote children’s emotional health by

helping them recognize affective states and develop joint attention skills. The activity

consists of the robot performing five emotions - interested, happy, bored, sad, and
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surprised - with the corresponding sound for each of them. Additionally, the activity

includes printed photos for each emotion, with two pictures portraying a child showing

a particular emotion and the situation that caused it. For example, the robot might

point to a picture and say, “This child is bored when he waits for a bus for a long

time,” and then perform the bored emotion with action by placing its hand on the

head. The interaction flow for this activity is presented in Figure 3-11. This activity

promotes children’s several types of development, such as sensory, cognitive, social

and emotional, motor and interaction by encouraging them to work collaboratively

with the robot in a fun and engaging way (see Table 3-2).

3.5 Classifications of Activities

Three classifications of play to categorise our activities were adopted: by Piaget

(1945), Garvey (1990) and the US National Institute of Play [30] (Figure 3-12). The

activities were then grouped into nine activity blocks: “Action Song,” “Dances,” “Emo-

tions,” “Follow Me,” “Imitations,” “Social Acts,” “Songs,” “Storytelling,” and “Touch

Me.”

Piaget’s (1945) classification of play consists of three categories:

1. play with rules,

2. practice play, which involves visual, tactile, and listening skills,

3. symbolic play, which includes imaginative, make believe activities, and the uti-

lization of absent objects.

Garvey (1990) suggested classifying play behaviours into the following four types:

1. play with objects,

2. play with language, which includes rhymes, sounds, words, noises, etc.,

3. play with motion and interaction, which includes movements like jumping, run-

ning, laughing, etc.,
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Figure 3-12: Activities categorization by type of play
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4. play with social materials, which involves skills such as pretending and make

believe.

The US National Institute of Play identifies seven patterns of play:

1. comprised of body play (early rhythmic speech and physical movements),

2. social play (engaging in activities with others),

3. attunement play (joint attention),

4. object play,

5. creative play (the process of generating new ideas and fantasy play),

6. pretend play and imaginative (make-believe activities),

7. storytelling (listening to and narrating stories).

As depicted in Figure 3-12, all activities designed in our study incorporated con-

tinuous attunement, social practice, and play with motion, regardless of their level of

social mediation. We created activities with diverse levels of social mediation, cor-

responding to varying levels of behaviour expression. The complexity of the social

skills that needed to be practised was indicated by the social mediation levels, which

ranged from straightforward repetition to expressing in a complex way of creativity

and autonomy. For example, the “Dances” activity had the lowest social interaction

complexity, while the “Storytelling” and “Songs” activities represented medium-level

social practices. To address social and physical skills and improve emotional skills

and we developed dance and music-based activity behaviours. Higher-level cognitive

skills were developed in activities like “Emotions,” “Social Acts,” and “Touch Me”

(where a child needs to locate and touch body parts). These activities all included

complex goal-oriented behavioural tasks.

These activities promoted emotional and social abilities such as intentional object

engagement, empathy, and emotional perception. Children were expected to follow

the rules when participating in the “Touch Me” game, which focused on decision-

making (which robot sensor to press) and analyzing choices made (when a correct
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answer was given, the robot congratulated and applauded; otherwise, it remained

silent). All robot behaviours included tactile sensory stimulation, which was specifi-

cally designed to improve certain cognitive processes linked to identifying and inter-

preting sensory stimuli, such as auditory, visuospatial, visual, and tactile functions.

A child interacted with things and used tangible materials, including printed images,

during the “Emotions” and “Imitations” activity blocks. Moreover, the high-level me-

diation blocks encouraged creativity, allowing children to try out new behaviours and

pick up knowledge from watching the robot.

3.6 Concluding Remarks

This chapter discusses multi-purposeful robot activities that aim to help children with

ASD overcome their social, emotional, and motor challenges. These robot activities

are based on the ABA principles, which is an evidence-based approach to autism

therapy.

Based on the degree to which the robot mediates social interactions between the

child and others, these activities are grouped according to their social mediation levels.

Therapists and caregivers may select the robot activities that are most appropriate for

each child’s unique needs and skills by being aware of the various robot activity groups

and their levels of social mediation. This method enables a personalized therapeutic

strategy that may produce better results for children diagnosed with ASD.
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Chapter 4

A Long-Term RAAT

In the study described in this chapter, 11 children with ASD and co-occurring Atten-

tion Deficit Hyperactivity Disorder (ADHD) were involved. Each child engaged in a

number of therapy sessions with the NAO robot that included a range of activities

designed to address each child’s unique requirements. To gain a thorough under-

standing of the children’s responses, we employed both qualitative and quantitative

analyses, using observations, questionnaires, and video recordings of the interactions.

We examined a number of behavioural measures using video recordings, including eye

gaze and engagement duration, valence and engagement scores. These measures were

extracted from the recordings to provide data on the behaviour of the children during

the interventions.

4.1 Ethical Approvals

The Ethics committees of NU and the Republican Children’s Rehabilitation Center

(RCRC) in Kazakhstan provided their approval to conduct this research. This study

followed a previously proposed methodology [184].

The experiments were carried out at the RCRC, which is a leading facility in

Kazakhstan that provides rehabilitation services to children with various disabilities,

including ASD and ADHD. The center has 365 beds and employs specialists from

various fields, including medicine, psychology, pedagogy, social adaptation, art, music
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therapy, and physiotherapy. During the 21-day therapy program, children with their

parents or caregivers were admitted to the RCRC to receive traditional autism therapy

methods.

On the first day of the program, doctors conducted diagnostic assessments of the

children to determine their needs and requirements.

The setting of the RCRC provided a rare opportunity to conduct a long-term

study with a substantial number of participants. Although parents were not required

to attend the therapy sessions, they were encouraged to participate and observe their

children. This approach ensured that parents observed the therapy process, which

allowed us to conduct interviews with them on their child’s progress.

4.2 Recruitment

On the same day, the participating children arrived at the Rehabilitation Center with

their parents. The first few days were allotted for them to adjust to the hospital’s

environment. After this period, a meeting was organized for all parents and their

children at the hospital venue. The aim of this meeting was to explain the therapy

procedure and introduce the NAO robot, which lasted approximately two hours. It

was divided into three parts:

1. In the first part, an overview of the study was provided, which included the

purpose, data collection process, potential benefits and risks, intervention pro-

cedures, and other related information.

2. In the second part, informed consent forms were sent to the parents.

3. Finally, questions from parents regarding the study were answered.

Parents were given time to read the consent forms on their own. Some parents

signed the forms immediately after the meeting, while others returned them the next

day.

Furthermore, the contact numbers of the parents were collected to create a group

chat. The purpose of this chat was to keep parents informed about scheduling and
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for further correspondence. All parents agreed to be included in the group chat. It

is important to note that all parents were familiar with each other before the study

and had a good relationship.

4.3 Participants

Eleven children (1 girl, 10 boys) between ages 4 and 11 years old, which were diagnosed

with ASD participated in the long-term study. Three out of eleven children were

verbal. Seven out of the eleven children had a co-occurring diagnosis of ADHD.

When the study was conducted, the children’s average age was 6.1 years with SD =

2.7. Every child interacted with the NAO robot at least seven sessions on separate

days and each session on average lasted for 15 minutes [159].

Table 4.1: The number of sessions attended, demographic information and personal
characteristics of each child, such as whether they were verbal or nonverbal, ASD
form, ADOS-2 scores, and co-existing ADHD.

ID Sessions Gender Age Verbal ASD form ADOS-2 ADHD
C1 10 M 5 - Moderate 6 -
C2 9 M 10 ✓ Severe 9 ✓
C3 9 M 7 - Severe 9 ✓
C4 8 M 5 - Severe 8 ✓
C5 8 M 5 - Severe 8 ✓
C6 8 M 5 - Moderate 6 ✓
C7 8 M 5 - Moderate 7 ✓
C8 7 M 10 ✓ Severe 9 -
C9 7 M 6 - Severe 8 -
C10 7 F 5 - Moderate 5 ✓
C11 7 M 4 ✓ Moderate 5 -

When the children came to the RCRC, a therapist with approximately seven years

of experience conducted an ADOS-2 scoring test to evaluate their communication,

play skills and social interaction. The ADOS-2 test [130] is designed to analyze the

behaviour of the child during different play scenarios, tasks, and interactions in a

sequential manner, with comparative points assessing the severity of autism-related

symptoms. A score of 3-4 represents a mild form, 5-7 a moderate form, and 8-10 a

severe form [130]. Among the eleven participants, five had a moderate form of autism,
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while six had a severe form. The average ADOS-2 test score for all participants was

7.3 (SD = 1.6), indicating moderate to severe autism. Additionally, eight children

were nonverbal and only able to speak a few words. To keep the participants’ privacy,

child IDs were assigned. Table 4.1 displays the participant characteristics as provided

by therapists and parents, along with the number of sessions attended.

4.4 Setup

As can be seen in Figure 4-1, therapy sessions were held in a little, empty room with

sports mats covering the walls and floor. In order to promote eye contact and free

mobility, the NAO robot and the child were both placed on the ground.

The components of the hardware were kept minimal: two NAO robots, a local

Wi-Fi router, two cameras, and two PCs, one for a camera to record the interaction

and another to control the robots. One recording camera was put close to the child

on the mat, while the other was set on the wall to record the whole room. A Wi-Fi

router provided wireless connectivity for the robot. The researcher controlled the

session by running programs while seated behind the mats at a computer.

The setup was designed to be straightforward and unintrusive, prioritizing the

creation of a comfortable and natural environment for the child to engage with the

robot.

4.5 Procedure

Each child was offered to engage in up to 10 sessions of RAAT. The planned duration

for each session was 15-20 minutes; however, sessions could be stopped if a child

lost interest or wished to leave the room. Each child’s attendance at sessions varied

depending on personal factors, such as a child falling asleep or engaging in other

activities, leading to missed sessions.

The NAO robot introduced itself at the start of each session by saying, “Hello, my

name is Nao. Today, we will have fun together, dance, and play. Let’s start!?”
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Figure 4-1: Experimental setup of RAAT

Since all the robot activities were new to the children, the therapist asked them

and their parents (in cases where a child was nonverbal) which one they would like

to start with. Considering their remarks and the overall characteristics of each child

(such as their receptivity to noises), the therapist chose one of the simpler activities

like “Touch Me,” “Songs,” or “Storytelling” for the first session.

During the RAAT sessions, the human therapist selected activities for the robot

based on the child’s responses to previous activities.

The therapist then instructed the researcher through a command-line interface

on which activity to start. According to the child’s success on each particular task

and interaction with the robot during the session, activities were gradually added.

For example, if the robot performed activities like “Dances,” “Storytelling,” “Songs,”

and “Touch Me” in the first session, a second song and storytelling activity would

be added in the second session. To better understand the unique requirements and

preferences of every child, new activities were added to each session. After the third

session, the type of activity blocks and their chronological sequence were changed

in accordance with the child’s level of participation and observed preferences. Some

children disliked certain activities, while others preferred specific ones. With every
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child, it was impossible to keep the same interaction flow due to the variety of ASD and

ADHD conditions. As a result, the activities’ sequence was based on the therapist’s

and the parent’s observations.

Following the final session, we conducted interviews with the parents of our par-

ticipants to comprehend the impact of RAAT on their children. We posed questions

that centred on the most pertinent aspects of the therapy. We refrained from asking

questions related to the child’s personal preferences.

4.6 Type of Sessions

As mentioned earlier, the therapist customized each session based on the children’s

behaviour and response to the robot activities in order to enhance their engagement

and, consequently, maximize the therapeutic benefits. However, some sessions intro-

duced new activities. To strike a balance between familiarity and novelty, all sessions

were categorized into two conditions: familiar and unfamiliar sessions. A session was

classified as familiar if it primarily consisted of previously experienced activities. On

the other hand, if a session largely contained new activities, it was considered an

unfamiliar one. As a result, the labelling of all initial sessions was unfamiliar, the

labelling changed for the following sessions for each child based on the proportion of

familiar to unfamiliar activities.

To establish familiarity with an activity, the therapist monitored the child’s past

interactions with the robot and evaluated if the child had experienced the particular

activity before. Additionally, the therapist observed the child’s responses to familiar

and unfamiliar activities in order to personalize future sessions.

4.7 Video Coding and Measures

The videos were recorded using a webcam that had a built-in microphone. To en-

sure the reliability of the coding, two independent researchers coded 50% of the video

recordings using the ELAN software (Figure 4-2). To determine the inter-coder agree-
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ment, 20% of the data was cross-coded, resulting in an agreement score of 82.6%.

Figure 4-2: The screenshot of labelling videos using ELAN software

To assign engagement and valence scores, we adapted a coding strategy similar

to previous works by Kim et al. [107] and Rudovic et al. [179] with combining 0

and 1 scores to 1. As a result, the engagement was rated on a 1-5 Likert scale,

with 1 representing the child being evasive and 5 for engagement (see Section 5.4).

Similar to the Rudovic et al. [179] we used task-driven coding of engagement, i.e.

starting with the target task, e.g., the therapist asking the child to repeat movements

and sounds after the NAO robot (“Imitations” activity block), until the child shows

different behaviours corresponding to another scoring of the engagement level. Each

activity has its own goal of demonstrating how the child can show their engaging

behaviours. For example, listening to and looking at the robot while “Dances”, “Songs”

or “Storytelling” activity blocks, repeating movements and sounds after the robot

during “Imitations” and “Emotions” activity blocks, touching the required robot’s

body parts when it was asked during “Touch Me” activity, and singing and dancing

with the robot while “Dances” and “Songs” activity blocks. The detailed annotation

of each activity is presented in Table 4.2.
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Table 4.2: Coding of engagement measurement for each activity block

Activity

block

Label

1 - Non-

compliance

Label 2

- Indiffe-

rence

Label 3 -

Low en-

gagement

Label 4 -

Mid en-

gagement

Label 5 -

High en-

gagement

Dances The child

is unwilling

to dance,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

repeats

dance

movements

only when

the ther-

apist asks

more than

three times.

The child re-

peats dance

movements

only when

the thera-

pist asks 2-3

times.

The child re-

peats dance

movements

when the

therapist

or parent

dances with

the robot.

The child

dances with

the robot.

Songs The child

is unwilling

to listen

to a song,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

repeats

dance

movements

or songs

only when

the ther-

apist asks

more than

three times.

The child re-

peats dance

movements

or songs

only when

the thera-

pist asks 2-3

times.

The child re-

peats a song

and dance

movements

when the

therapist

or parents

repeat it

after the

robot.

The child

sings and

dances with

the robot.

Table 4.2: Coding of engagement measurement for each activity block (cont.)
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Activity

block

Label

1 - Non-

compliance

Label 2 -

Indiffer-

ence

Label 3 -

Low en-

gagement

Label 4 -

Mid en-

gagement

Label 5 -

High en-

gagement

Action

Song

The child

is unwilling

to listen

to a song,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

repeats ac-

tions from

the song

only when

the ther-

apist asks

more than

three times.

The child

repeats ac-

tions from

the song

only when

the thera-

pist asks 2-3

times.

The child

repeats an

action from

the song

when the

therapist

or parents

demonstrate

it with the

robot.

The child

demon-

strates

actions

from the

song with

the robot.

Story-

telling

The child

is unwilling

to listen

to a tale,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

listens to

a tale only

when the

therapist

asks more

than three

times.

The child

listens to

a tale only

when the

therapist

asks 2-3

times.

The child

listens to a

tale when

the therapist

or parents

point to

the robot

to get their

attention.

The child

listens to a

tale and/or

repeats

the robot’s

movements.

Table 4.2: Coding of engagement measurement for each activity block (cont.)
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Activity

block

Label

1 - Non-

compliance

Label 2 -

Indiffer-

ence

Label 3 -

Low en-

gagement

Label 4 -

Mid en-

gagement

Label 5 -

High en-

gagement

Follow

Me

The child

is unwilling

to hold the

robot’s hand

and walk,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

holds the

robot’s

hand only

when the

therapist

asks more

than three

times.

The child

holds the

robot’s hand

and walks

only when

the thera-

pist asks 2-3

times.

The child

holds the

robot’s hand

and walks

with the

help of the

therapist or

parents.

The child

holds the

robot’s

hand and

walks.

Touch

Me

The child

is unwilling

to touch

the robot’s

body part,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

touches the

requested

robot’s

body part

only when

the ther-

apist asks

more than

three times.

The child

touches the

requested

robot’s body

part only

when the

therapist

asks 2-3

times.

The child

touches the

robot’s body

part with

the help of

a parent or

after being

pointed

to by the

therapist.

The child

touches the

requested

robot’s

body part.

Table 4.2: Coding of engagement measurement for each activity block (cont.)
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Activity

block

Label

1 - Non-

compliance

Label 2 -

Indiffer-

ence

Label 3 -

Low en-

gagement

Label 4 -

Mid en-

gagement

Label 5 -

High en-

gagement

Imita-

tions

The child

is unwilling

to listen to

the robot,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

repeats

movements

and/or

sounds only

when the

therapist

asks more

than three

times.

The child

repeats

movements

and/or

sounds only

when the

therapist

asks 2-3

times.

The child

repeats

movements

and/or

sounds with

the help of

the ther-

apist or

parent, like

demonstrat-

ing with the

robot.

The child

repeats

movements

and/or

sounds after

the robot’s

demonstra-

tions.

Social

Acts

The child

is unwilling

to watch

the robot,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

repeats

movements

only when

the ther-

apist asks

more than

three times.

The child

repeats

movements

only when

the thera-

pist asks 2-3

times.

The child

repeats

movements

when the

therapist

or parents

demonstrate

them with

the robot.

The child

repeats

movements

after the

robot’s

demonstra-

tions.

Table 4.2: Coding of engagement measurement for each activity block (cont.)
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Activity

block

Label

1 - Non-

compliance

Label 2 -

Indiffer-

ence

Label 3 -

Low en-

gagement

Label 4 -

Mid en-

gagement

Label 5 -

High en-

gagement

Emo-

tions

The child

is unwilling

to watch

the robot’s

emotions,

not paying

attention to

the robot,

and not re-

acting to the

therapist.

The child

repeats

emotions

only when

the ther-

apist asks

more than

three times.

The child

repeats emo-

tions only

when the

therapist

asks 2-3

times.

The child

repeats emo-

tions when

the therapist

or parents

demonstrate

them with

the robot.

The child

repeats

emotions

after the

robot’s

demonstra-

tions.

Table 4.2: Coding of engagement measurement for each activity block (cont.)

After the engagement episodes were coded in the videos, each episode was further

coded in terms of valence. Likewise,Valence was rated on a 1-5 Likert scale, with 1

denoting the child expressing negative emotions and 5 signifying positive emotions:

1 - clear signs of experiencing negative emotions like crying, being unhappy, angry,

visibly upset, showing dissatisfaction, frightened; 2 - displaying feelings of sadness or

boredom; 3 - remaining neutral; 4 - showing interest; and 5 - exhibiting happiness

or excitement. For example, the episodes were coded with high negative valence (1)

in cases when the child was crying, screaming, or showing fear or anxiety during

the activities. Also, the valence score was assigned to 2, when the child was bored

and disengaged during the interaction with the NAO robot. When the child did not

show any negative or positive emotions, that episode was coded as 3. Furthermore,

the valence score was assigned to 4, when the child showed interest, like curiosity,

smiling, and paying close attention to the robot. The very positive valence (5) was

107



coded when the child was happy and engaged in the interaction with the NAO robot.

Overall, we coded four measurements: 𝑆𝑛𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡, 𝑆𝑛𝑉 𝑎𝑙𝑒𝑛𝑐𝑒, 𝑆𝑛𝐸𝑦𝑒𝐺𝑎𝑧𝑒𝑇 𝑖𝑚𝑒,

and 𝑆𝑛𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑇 𝑖𝑚𝑒. While 𝑆𝑛𝐸𝑦𝑒𝐺𝑎𝑧𝑒𝑇 𝑖𝑚𝑒 and 𝑆𝑛𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑇 𝑖𝑚𝑒 were

computed as percentages related to the whole length of the session (for example, en-

gagement time of 4 minutes out of a 10-minute session resulting in a value of 10%),

engagement and valence scores were coded in relation to the timing of activities. For

sessions 1 through n, all measurements contained n variables. As in one session child

showed different labels of engagement and valence scores, we calculated the mean of

these measurements.

There were two different types of sessions during the intervention: familiar and

unfamiliar. We calculated the average of all data for both known and unfamiliar

sessions individually, indicating the mean scores for each session type, in order to

assess the efficacy of the therapy.

4.8 Results

We performed a series of one-way repeated measures ANOVA (RM ANOVA) with a

Greenhouse-Geisser correction (GGC) on data from 11 participating children to look

at possible variations in valence and engagement scores, engagement duration, and

eye gaze time across sessions. We compared within-subject changes between different

sessions using statistical methods.

4.8.1 Comparison Between Sessions

We tested H1 by comparing the measurements of all children across sessions to deter-

mine if there were any significant differences during the therapy. The measurements

included 𝑆𝑛𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡, 𝑆𝑛𝑉 𝑎𝑙𝑒𝑛𝑐𝑒, 𝑆𝑛𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑇 𝑖𝑚𝑒, and 𝑆𝑛𝐸𝑦𝑒𝐺𝑎𝑧𝑒𝑇 𝑖𝑚𝑒.

The findings showed that there was no statistically significant variation between the

children’s engagement levels between sessions: 𝐹 (6, 60) = 3.0, 𝑝 = 0.05.

We can observe from Table 4.3, that engagement and valence scores, as well as

engagement and eye gaze duration, varied throughout the course of the 10 sessions.
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Table 4.3: For each session, the mean values for scores of engagement and valence, as
well as the durations of engagement and eye gaze

Measurement s1 s2 s3 s4 s5
Engagement score 2.82± 0.63 3.24± 0.82 2.86± 0.65 3.12± 0.67 3.34± 0.67

Valence score 3.21± 0.41 3.36± 0.43 3.34± 0.53 3.45± 0.45 3.35± 0.42

Engagement Time 56.57± 26.3 59.69± 24.41 58.02± 22.83 69.25± 21.58 75.64± 20.69

Eye Gaze Time 53.83± 21.17 70.72± 18.53 69.08± 18.87 70.3± 18.98 69.7± 10.49

Measurement s6 s7 s8 s9 s10
Engagement score 2.93± 0.56 2.82± 0.66 2.93± 0.86 3.1± 0.83 3.53± 0.41

Valence score 3.31± 0.27 3.38± 0.42 3.48± 0.54 3.34± 0.47 3.58± 0.26

Engagement Time 66.4± 17.78 59.9± 20.88 73.13± 24.03 75.88± 19.54 78.38± 20.14

Eye Gaze Time 68.3± 18.46 42.56± 12.79 71.24± 25.56 73.8± 19.66 79.4± 12.28

However, compared to the first session, there was a modest rise in these values in

the last session. This implies that over long-term study, children with autism can be

engaged to communicate with robots.

4.8.2 Familiar vs Unfamiliar

In order to assess Hypothesis 1, we conducted RM ANOVA using a GGC on a sample

of 11 children. The findings revealed statistically significant differences in the dura-

tion of engagement as detailed below: the mean engagement score during unknown

sessions was notably lower (2.94±0.22) in comparison to known sessions (3.11±0.24):

𝐹 (1.507, 10.546) = 4.678, 𝑝 = 0.043; the average engagement length in unfamiliar ses-

sions was significantly reduced (69.98 ± 10.1) when compared to familiar sessions

(70.87 ± 8.51): 𝐹 (2.384, 16.689) = 3.446, 𝑝 = 0.049; the mean eye gaze duration for

unfamiliar sessions was considerably lower (65.57± 8.84) relative to familiar sessions

(75.2± 6.82): 𝐹 (2.087, 14.609) = 5.232, 𝑝 = 0.018. Figure 4-3 visually displays these

results for familiar and unfamiliar sessions.

4.8.3 Observations

Over the last few sessions, there has been a noticeable shift in the activities that

each child enjoys the most. For instance, C11 showed a preference for “Touch Me”
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Figure 4-3: For each child in every session, scores of engagement and valence, as well
as the duration of engagement and eye gaze. Circles denote familiar sessions, while
crosses (x) indicate unfamiliar ones. Each child is represented by a distinct colour.

and “Storytelling,” while not being as fond of “Songs” and “Dances.” Similarly, C2

did not enjoy song and dance activities as much as “Storytelling,” “Emotions,” and

“Imitations.” However, C2 did not have a strong preference for “Touch Me” compared

to C11.

Below, we provide more detailed observations of each child.

C1: This five-year-old boy attended ten sessions and played various activities with

the robot, as listed in Figure 4.4. Initially, C1 was hesitant to touch the robot, but

after watching it dance for five minutes, he became more comfortable and started to

interact with the tactile sensors to initiate the “Songs” activity. C1 quickly learned

which body parts to press for the “Clock” dance, launching it 14 times during his first

session and 47 times throughout the experiment. He also enjoyed the “Spider” activity

(six times) and the “Mother” activity (three times). C1 actively engaged in the dance

movements and imitated the robot with the help of the researcher. It is important to

note that C1 is nonverbal but managed to say his first words, “Tick-Tack,” during the
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third session and “NAO” during the seventh session. Personalizing the therapy for

C1 involved selecting imitation activities such as “Dances,” “Transports,” “Emotions,”

and “Animals,” while the “Storytelling” activity didn’t hold his attention for long.

Table 4.4: Activity blocks played for child C1

Session Activity blocks and their frequencies
S1 Songs(x23)
S2 Songs(x3), TouchMe(x1)
S3 TouchMe(x1), Songs(x10), Imitations(x1)
S4 Songs(x12), Imitations(x1)
S5 Imitations(x2), Songs(x4), Storytelling(x1)
S6 Songs(x7), Emotions(x1)
S7 Emotions(x1), Imitations(x1), Songs(x7)
S8 Imitations(x2), Emotions(x1), Songs(x7)
S9 Emotions(x2), Storytelling(x1), Imitations(x1), Songs(x4)
S10 Emotions(x2), Imitations(x1), Songs(x9)

C2: This ten-year-old boy attended nine sessions, and the list of attended sessions

and activities played with the robot are presented in Figure 4.5. C2 has been diag-

nosed with both ASD and ADHD. Initially, C2 was scared of the new environment,

and the robot didn’t catch his attention. However, during the second session, he

responded well to the “Storytelling” activity and repeated the robot’s actions during

the stories. After that, he greeted the robot and remembered its name. Personaliz-

ing the therapy for C2 involved starting the sessions with the “Storytelling” activity

blocks. During the nine sessions, this activity was played 16 times. He began engag-

ing in task-based activities with the robot during the third session. He learned the

sounds of animals and transports and started matching them with images during the

“Imitations” activity block. His favourite animal was a mouse, and his least favourite

was a horse. During the fourth session, he said goodbye to the robot, “See you again,

bye!” Moreover, he learned five emotions during the “Emotions” activity and pointed

to the corresponding pictures when the NAO robot started talking. However, as he

was sensitive to sounds, the “Songs” activity was only played five times for C2.
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Table 4.5: Activity blocks played for child C2

Session Activity blocks and their frequencies
S1 Songs(x2)
S2 Storytelling(x1), TouchMe(x1), Imitations(x1)
S3 Storytelling(x3), Imitations(x2)
S4 Storytelling(x2), Imitations(x2), Songs(x1), Emotions(x1)
S5 Storytelling(x2), Imitations(x2), Emotions(x1), Songs(x1)
S6 Storytelling(x3), Imitations(x2), Emotions(x1)
S7 Storytelling(x2), Imitations(x2), TouchMe(x1), Songs(x1), Emotions(x1)
S8 Storytelling(x2), Emotions(x1)
S9 Storytelling(x1), Emotions(x2), Imitations(x2)

C3: This seven-year-old boy attended nine sessions, and the list of attended sessions

and activities played with the robot are presented in Figure 4.6. C3 was diagnosed

with both ASD and ADHD. On his first day, C3 was slightly afraid of the robot.

However, during his second session, he enjoyed watching the robot dance more than

interacting with it and following its instructions. He only engaged in task-based

activities with the prompt of his mother. However, the “Emotions” activity never

interested C3. In the last three sessions, he showed a willingness to dance “Gangnam

Style.”

Table 4.6: Activity blocks played for child C3

Session Activity blocks and their frequencies
S1 Storytelling(x2), Songs(x7)
S2 Storytelling(x2), Touch Me(x1), Songs(x4)
S3 Touch Me(x1), Dances(x1), Songs(x3), Imitations(x1)
S4 Touch Me(x1), Storytelling(x1), Dances(x3), Imitations(x1)
S5 Storytelling(x1), Songs(x3), Dances(x3), Imitations(x1)
S6 Storytelling(x1), Dances(x3), Touch Me(x1), Songs(x4)
S7 Touch Me(x1), Imitations(x1), Songs(x2), Storytelling(x1), Dances(x2)
S8 Emotions(x1), Songs(x4), Dances(x1)
S9 Emotions(x1), Songs(x6), Dances(x1)

C4: This five-year-old boy attended eight sessions and is diagnosed with both ASD

and ADHD. Figure 4.7 shows the list of activities played with the robot during his

sessions. At first, the robot seemed like a toy to C4, and he interacted with it by

moving its arms and legs and trying to lift it. However, he quickly became distracted
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during task-based activities. During the “Dances” and “Songs” activities, C4 would

cover his ears and sometimes scream, but he would calm down when the robot stopped

and sat down. On one occasion, C4 showed aggressive behaviour towards the robot

by trying to push it over.

Despite these challenges, C4 did show some preferences for certain activities. Dur-

ing his last two sessions, he enjoyed watching the “Heroes” and “Painter” dances. It

may be worth exploring other dance activities or finding ways to make the task-based

activities more engaging for C4 in future sessions.

Table 4.7: Activity blocks played for child C4

Session Activity blocks and their frequencies
S1 Songs(x1), Touch Me(x2), Imitations(x1), Dances(x1)
S2 Touch Me(x1), Imitations(x1), Dances(x1)
S3 Touch Me(x1), Songs(x2), Storytelling(x1)
S4 Imitations(x1), Touch Me(x1), Songs(x2), Storytelling(x1)
S5 Touch Me(x1), Emotions(x1), Songs(x2), Storytelling(x1)
S6 Imitations(x2), Songs(x3)
S7 Storytelling(x1), Songs(x4), Imitations(x1)
S8 Emotions(x1), Songs(x8), Storytelling(x1)

C5: This five-year-old boy attended eight sessions, and the list of attended sessions

and activities played with the robot are presented in Figure 4.8. The child is diagnosed

both with ASD and ADHD. During the first session, C5 did not interact with the robot

and played task-based games only with his mother’s help. However, in the second

session, he smiled when the robot danced and showed interest in touching it. With

his mother’s support, C5 engaged in task-based activities such as “Transports” and

“Emotions” and was able to match the pictures of vehicles and facial expressions with

sounds. By the fifth session, C5 started to follow the robot’s instructions and imitate

its movements during the Dance with Me” activity. He also showed improvement in

his attention span and was able to complete longer activities such as Storytelling” with

minimal support from his mother. Overall, the therapy showed promise in improving

C5’s social and cognitive skills.
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Table 4.8: Activity blocks played for child C5

Session Activity blocks and their frequencies
S1 Imitations(x1), Songs(x1)
S2 Songs(x4), Touch Me(x1), Dances(x2), Imitations(x1)
S3 Imitations(x1), Storytelling(x1), Songs(x1), Touch Me(x1)
S4 Imitations(x1), Touch Me(x1), Songs(x6)
S5 Touch Me(x1), Imitations(x1), Songs(x5)
S6 Touch Me(x1), Songs(x4), Imitations(x1), Storytelling(x1)
S7 Emotions(x1), Songs(x4), Touch Me(x1)
S8 Songs(x10)

C6: This is a male child, aged five years, who attended eight sessions. The list of

attended sessions with played activities with the robot is presented in Figure 4.9.

The child is diagnosed with both ASD and ADHD. During the therapy sessions, the

child showed more interest in touching the robot rather than interacting with and

following the robot’s instructions. However, he seemed to lose interest in the robot

during the last three sessions and became distracted by the objects in the room.

Despite this, he showed curiosity in investigating the robot by moving its head and

fingers. C6 also tried showing pictures to the robot by bringing paper close to its

eyes. Additionally, C6 also tried to engage the robot by showing pictures to it. He

kept close to his mother during the sessions but still enjoyed watching the “Fixers”

and “Painter” songs.

Table 4.9: Activity blocks played for child C6

Session Activity blocks and their frequencies
S1 Songs(x8), Storytelling(x1)
S2 Emotions(x1), Imitations(x1), Dances(x1), Touch Me(x1)
S3 Touch Me(x1), Songs(x2), Storytelling(x1), Imitations(x1)
S4 Touch Me(x1), Storytelling(x1), Songs(x2), Dances(x1)
S5 Songs(x10), Imitations(x1)
S6 Songs(x5), Touch Me(x1)
S7 Songs(x4), Storytelling(x1), Imitations(x1), Touch Me(x1)
S8 Songs(x8)

C7: The participant, in this case, is a five-year-old boy diagnosed with both ASD

and ADHD who attended eight therapy sessions. Figure 4.10 presents the list of
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attended sessions with the activities played with the robot. During all sessions, C7

was very quiet and did not actively engage in task-based activities with the robot.

However, he showed an interest in exploring the robot by touching and moving its

arms and fingers and pressing its chest button. The child enjoyed watching the robot

dance and listening to storytelling activities. He even danced with the robot during

the “Mother” song with the prompt of the parent. Additionally, from the fourth

session, C7 showed an interest in playing the “Animals” and “Transports” activities

with the robot.

Table 4.10: Activity blocks played for child C7

Session Activity blocks and their frequencies
S1 Storytelling(x2), Touch Me(x1), Imitations(x1), Songs(x3)
S2 Songs(x4), Imitations(x1), Storytelling(x1)
S3 Storytelling(x1), Imitations(x2)
S4 Imitations(x2), Songs(x7), Storytelling(x1)
S5 Imitations(x2)
S6 Imitations(x1), Songs(x8), Touch Me(x2), Storytelling(x1)
S7 Imitations(x2), Emotions(x1), Songs(x7)
S8 Emotions(x1), Songs(x8)

C8: This is a male child, aged ten years, who attended seven sessions. The list of

attended sessions with played activities with the robot is presented in Figure 4.11.

This child demonstrated an immediate interest in the robot and showed good engage-

ment with the activities. According to the video recording, he spent an average of

12 minutes without being distracted during each session. He listened attentively and

responded positively to the robot’s emotions. Starting from the third session, the

child actively participated in all activities and enjoyed recalling emotions learnt in

the previous sessions. He did not show much interest in playing the “Songs” activity

block, but enjoyed listening to the “Storytelling” and even repeated words after the

robot. He also used pictures while listening to fairy tales, which was unique compared

to other children. From the third session, he started to request the robot to play the

“Gangnam Style” song from the beginning of each session and was delighted to dance

with the robot. At the end of each session, he gave a high five to the robot, indicating
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a positive attitude towards the robot.

Table 4.11: Activity blocks played for child C8

Session Activity blocks and their frequencies
S1 Songs(x8), Storytelling(x1)
S2 Touch Me(x1), Imitations(x1), Storytelling(x1), Dances(x1)
S3 Emotions(x1), Dances(x1), Storytelling(x1)
S4 Storytelling(x2), Touch Me(x1), Dances(x1)
S5 Imitations(x1), Storytelling(x3), Songs(x3), Dances(x1)
S6 TouchMe(x1), Storytelling(x2), Emotions(x1), Dances(x1), Songs(x4)
S7 Wash Your Hands(x2), Emotions(x1), Dances(x2), Storytelling(x1)

C9: This six-year-old boy attended seven sessions, as listed in Figure 4.12. He

demonstrated immediate compliance with the robot and repeated actions after it with

his mother’s help. The child actively played “Touch Me” and correctly recognised all

body parts. Additionally, he showed enjoyment when the robot danced and liked

touching its head, hands, fingers, and back. He accurately matched all emotions with

pictures of situations and participated actively in all activities, with his favourite

being the “Mother” song. The child remained patient during delays due to technical

issues but would scream when he got bored. Overall, he was quiet and attentive

during the sessions.

Table 4.12: Activity blocks played for child C9

Session Activity blocks and their frequencies
S1 Storytelling(x1), Songs(x3)
S2 Touch Me(x1), Emotions(x1), Songs(x3), Dances(x1)
S3 Imitations(x2), Songs(x5)
S4 Touch Me(x1), Storytelling(x1), Songs(x7), Dances(x1)
S5 Touch Me(x1), Songs(x11)
S6 Emotions(x2), Songs(x9)
S7 Emotions(x1), Songs(x12), Imitations(x1)

C10: This five-year-old girl attended seven sessions. The list of attended sessions

with played activities with the robot is presented in Figure 4.13. The child is diag-

nosed both with ASD and ADHD. She almost does not speak, her extremely rare
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speech is monosyllabic, but she understands instructions and performs them. She re-

sponds to her name after calling her two or three times. During the therapy sessions,

the child showed a great interest in the robot and its activities. She seemed to enjoy

listening to the robot’s voice and music and was able to follow simple instructions

given by the robot, such as raising her hands, clapping, or dancing.

During the first few sessions, the child seemed a bit shy and reserved, but she

gradually started to show more engagement with the robot. She liked to touch the

robot and explore its different features, such as buttons and sensors. She also enjoyed

playing with the ball pool and other toys in the therapy room.

Table 4.13: Activity blocks played for child C10

Session Activity blocks and their frequencies
S1 Dances(x3)
S2 Dances(x6), Touch Me(x3)
S3 Dances(x9), Songs(x5)
S4 Dances(x5), Touch Me(x3)
S5 Dances(x2), Songs(x5)
S6 Songs(x9), Dances(x4), Storytelling(x1)
S7 Songs(x5), Storytelling(x2)

C11: This four-year-old boy child attended seven therapy sessions, and the list

of activities he engaged in with the robot is presented in Figure 4.14. The child

has difficulties responding to his name immediately and maintaining eye contact for

a long time. His speech is limited to simple sentences, although he can describe

actions in pictures. During the sessions, C11 struggled with sitting in one place

for an extended period and demonstrated undesirable behaviour such as screaming,

shouting, or asking questions such as “Why?” “What for?” or “How so?”. Despite

these challenges, the child showed some progress during the therapy sessions. He was

able to engage in various activities with the robot, such as playing the “Animals”

and “Transports” games, and he seemed to enjoy dancing with the robot during the

“Mother” song. However, he still struggled to maintain attention and focus during

the sessions.
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Table 4.14: Activity blocks played for child C11

Session Activity blocks and their frequencies
S1 Dances(x3), Touch Me(x3)
S2 Touch Me(x1)
S3 Touch Me(x4), Storytelling(x2), Songs(x1)
S4 Touch Me(x3), Storytelling(x2)
S5 Touch Me(x4), Storytelling(x4), Songs(x3), Dances(x2)
S6 Touch Me(x2), Storytelling(x1)
S7 Storytelling(x2), Touch Me(x3), Imitations(x4)

4.9 Interviews: Feedback and Recommendations

In total, two therapists and five parents provided their feedback and recommendations

to enhance robot behaviours during RAAT. It is important to note that four parents

(P1, P4, P5, and P7) were unable to offer suggestions for improvement. Additionally,

the audio recordings of P10 and P11 were saved in the wrong format and could not

be accessed.

Although the parents expressed satisfaction with the therapy overall, they recom-

mended that the robot exhibit more active behaviour. For example, P2 suggested

increasing the robot’s interactivity to make it more engaging: “There should be more

live communication. Only children interested in the robot interact with it” (P2). Par-

ent, P3, suggested implementing object recognition and more dynamic behaviours for

the robot, such as kicking a ball and using children’s names.

P8 suggested adding more rhymes and melodies for verbal children who can repeat

after the robot. A recommendation from P6 was to create more mentally stimulat-

ing and educational activities, like using visual cards to display various colours and

shapes. Similarly, P9 suggested that the robot could teach counting or differentiate

between colours.

The RAAT was a novel experience for both therapists. T1 therapist provided

her opinion in the perspective on the CRI setting, which states that “children should

be left alone to observe their behaviours from outside.” T2 therapist highlighted

the importance of not forcing children to communicate with a robot. As there were

parents, who were pushing their children to interact with the robot. The T2 therapist
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also pointed out that “children with autism do not like to wait,” which could have

negative consequences for their actions throughout the intervention. The therapists

proposed to implement activities similar to kicking a ball and playing the xylophone.

It might enhance the turn-taking and imitation skills of children. The importance of

a long-term triadic relationship involving a robot, a child with autism, and a typically

developed child was also acknowledged.

4.10 Discussion

In general, RAAT intervention indicates that children with autism sustained their

engagement with the robot during a long-term interaction. While we observed only a

small difference in engagement results, the intervention was successful in maintaining

the children’s engagement over multiple sessions. Additionally, we found that valence

scores and eye gaze time remained consistent across the labelled sessions, suggesting

that the children re-engaged in the interaction.

The H1 hypothesis investigated the relationship between engagement and chil-

dren’s preference for familiar or unfamiliar activities. We found that the mean of

engagement score, engagement duration and eye gaze duration during familiar ses-

sions were significantly higher than during unfamiliar sessions, allowing us to accept

the hypothesis. In line with prior research [37, 107], children’s positive emotions

for specific activities can be regarded as indicators of their engagement. In other

words, when we employed preferred activities, as determined by the human ther-

apist, the children were more positive, focused, and engaged. Therefore, it seems

advantageous to create a personalized autism intervention that takes into account

each child’s unique needs and abilities, given the considerable individual differences

observed among children diagnosed with autism participating in RAAT.

Our study yielded interesting findings regarding long-term engagement in autism

therapy involving CRI. Firstly, we did not observe a significant increase in the chil-

dren’s engagement levels despite the use of versatile activities. Secondly, we found

that children were more engaged with familiar activities than unfamiliar ones, indi-
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cating a preference for activities that they were comfortable with. This finding con-

tradicts previous research on typical CRI, which suggests that incorporating novelty

and variation into an interaction can prevent predictability and boredom [45, 101].

However, for children with autism, it appears that a preference for routine and same-

ness, and aversion to change, could explain why they preferred familiar activities

[193]. Thus, this core feature of autism may explain why children with autism were

more preferred to familiar activities.

A way to improve engagement and the efficacy of autism therapy using robots is by

developing autonomous robotic systems. Prior researchers [91, 137, 145] have focused

on creating adaptive and autonomous robots that can enhance RAAT sessions by

identifying the unique and social cues of the children and offering them individualized

and thorough experiences. Due to ethical and practical constraints, however, there

are concerns regarding the robot’s long-term ability to respond to the child in an

acceptable manner [235]. Despite these restrictions, it is essential to keep looking into

new play-scenarios and applications that can positively influence autism research. To

further support the role of the robot as an assistant or mediator in autism therapy,

it is necessary to develop adaptable and socially engaging tasks and therapy designs.

Finally, valuable comments were obtained from parents and therapists, offering

suggestions for enhancing the CRI. These included the need for the robot to exhibit

more personalized and active behaviours addressing children by their names, like

playing an instrument, or engaging in free movement. Tozadore et al. [217] reported

the significance of initial greetings, such as name recognition and high-fives to improve

the quality of robot interactions be more natural. Additionally, it was noted that

educational content and skills the robot can teach are crucial, and the interaction

time should be managed and increased. Furthermore, some parents suggested allowing

children to interact with the robot alone in the room to avoid external distractions.

However, a few parents requested on playing with the robot and imitating its actions.

Together, these comments highlight the requirement to reduce human involvement

and maximize robot autonomy.
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4.11 Concluding Remarks

We targeted to create a personalized long-term RAAT program for children with ASD

and ADHD by leveraging the expertise of therapists and various behavioural mea-

sures. These measures were used to evaluate the therapy’s effectiveness. We made a

quantitative analysis to examine the interaction of 11 children aged 4 to 11 during

RAAT. Our findings suggest that maintaining engagement in children with autism

and ADHD is possible across multiple sessions, and personalizing activities based

on each child’s preferences leads to better engagement and attention. These results

prove our hypothesis that personalized sessions are more beneficial for children with

autism. However, the necessity for various robot behaviours to enhance attention

and engagement among children with autism still requires more investigation. Our

research clearly shows the need for more interactive, educational activities in which

both children and robots participate equally. We suggested autism intervention ap-

pears to have great potential as a beneficial addition to the long-term HRI community,

but additional research is required to yield more compelling results.

Our study provides valuable insights into the importance of employing customized

robots in RAAT for children diagnosed with ASD and ADHD. By combining both

qualitative and quantitative data, we can draw meaningful conclusions about the

impact of therapy on children’s behaviour as well as the possible advantages of uti-

lizing robots in therapy. The RCRC was an ideal setting for our study due to its

comprehensive rehabilitation services for children with ASD and ADHD, the long-

term therapy program, personalized approach, and active parental involvement, all

of which allowed us to gather valuable data and insights.
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Chapter 5

Generating QAMQOR Dataset

The chapter describes a detailed overview of the process we followed to create a

QAMQOR dataset, which will serve as a valuable resource for researchers studying

engagement in interactions between children with autism and robots.

We begin by outlining the data collection, providing important context for our

dataset. We also discuss the important steps we took during data pre-processing and

feature extraction.

A significant part of our dataset creation process involved accurately labelling

the collected data. We describe the techniques we employed for labelling the data,

including our coding system for measuring engagement.

Overall, the QAMQOR dataset we have created provides a comprehensive resource

for researchers interested in studying engagement in social interactions between chil-

dren with autism and robots. Subsequent chapters of this dissertation will discuss the

results of our experimental study, including how our dataset was utilized to answer

key research questions.

5.1 Data Collection

Three cohorts of participants were involved in RAAT at the RCRC (center) over a

one-year period from 2018 to 2019. During this RAAT study, a total of 34 children

diagnosed with ASD aged between 3 and 12 years took part in the research.
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Table 5.1: Characteristics of the children and information about their sessions

Child Age Sex Verbal ADHD ADOS-2 Sessions Mean SD Time
C1 5-6 F - - 8 6 727.73 378.15 4178
C2 5-6 M - - 5 6 876.53 181.62 5132
C3 8-9 M - - 8 6 875.33 166.27 5150
C4 3-4 M ✓ - 3 5 945.52 149.75 3978
C5 5-6 M ✓ - 4 5 760.96 184.59 3683
C6 5-6 M ✓ ✓ 6 5 788.28 168.04 3864
C7 7-8 M - - 7 4 899.45 73.73 3521
C8 3-4 M - - 5 2 715.2 224.8 1389
C9 5-6 M - - 4 2 331.6 59.6 599
C10 3-4 M ✓ - 3 2 603.6 203.6 1182
C11 8-9 M ✓ - 9 2 938.4 50.4 1821
C12 5-6 M - - 6 10 1150.48 166.57 11335
C13 10-11 M ✓ ✓ 9 9 987.11 189.57 10820
C14 7-8 M - ✓ 9 9 966.49 72.25 8447
C15 7-8 M - ✓ 8 8 1005 221.34 7950
C16 5-6 M - ✓ 8 8 963.8 215.34 7537
C17 5-6 M - ✓ 6 8 783.7 180.5 6137
C18 5-6 M - ✓ 7 8 1021.4 216.75 7996
C19 10-11 M ✓ - 9 7 1066.86 205.5 7255
C20 5-6 M - - 8 7 1159.66 235.34 8021
C21 12-13 M - - 9 6 964.67 87.83 5638
C22 8-9 M ✓ - 8 5 870.4 247.9 4352
C23 9-10 M ✓ - 8 5 977.12 162.3 4732
C24 3-4 M - ✓ 6 5 970.27 200.14 4526
C25 5-6 M - ✓ 6 4 804.2 234.41 3113
C26 3-4 M - ✓ 5 3 1270.93 335.6 3778
C27 5-6 F - ✓ 6 7 744.88 311.11 5959
C28 3-4 M - - 7 6 776.8 179.19 3884
C29 3-4 M ✓ - 5 7 1140.43 359.24 7983
C30 5-6 M - - 7 5 727 180.68 3635
C31 3-4 M - - 5 4 558.75 320.4 2235
C32 3-4 M - - 5 4 510.75 96.71 2043
C33 7-8 M ✓ - 7 6 870.5 227.59 5223
C34 3-4 M - - 6 2 813 14.14 1626
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Of the 34 participants, 32 were boys, and only 2 were girls, reflecting the higher

incidence of ASD in males. All the children had been diagnosed with ASD in combi-

nation with ADHD. The average ADOS-2 test score was 6.53 (SD = 1.74), indicating

that the children in the study had moderate to severe symptoms of ASD. Twenty-

three children had difficulty in communicating through speech and were labelled as

nonverbal. Eleven children were able to speak and were assigned as verbal. To group

the children by developmental milestones, they were divided into three age groups:

from 3 to 4 years old, which had in total 10 children; from 5 to 6 years old which

consisted of 13 children; and from 7 to 12 years old which included 11 children.

Table 5.1 presents further details about the participants, including the number

of attended therapy sessions, and the average and total duration of those sessions.

The table provides important information about the children’s participation in the

study, which can be used to understand their progress and to analyze the results of

the interventions.

5.2 Data Pre-Processing

The datasets are valuable to the success of machine learning applications, as they

provide the foundation upon which models can be built and trained [140]. In light

of this, we recognized the importance of developing a robust and automated data

handling pipeline to organize the raw data obtained from the RAAT study into a

dataset that could be used to train and evaluate machine learning models.

To ensure that the data was well-structured and organized, we designed a data

pre-processing pipeline consisting of six essential steps. This is shown in Figure 5-1.

• The initial step in our data pre-processing pipeline involved extracting frames

from each video using the video capture function from the OpenCV library [28],

with a rate of one frame per second.

• During the second step, we used a pre-trained “YOLOv3” model [161] from the
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Figure 5-1: Data pre-processing steps

ImageAI library 1 to detect humans and crop the frames.

• The third step involved manually removing unnecessary images, leaving only

the child’s image in the frame.

• In the fourth step, we assigned labels for each frame. We used both multi-class

(1-5) and binary (0 and 1) labels to capture different aspects of the child’s

behaviour during the therapy sessions. Further details on the labelling process

are provided in Section 5.4.

• The fifth step of our pipeline involved parsing the cropped frame and saving

the keypoints in a JavaScript Object Notation (JSON) file format using two

libraries: the OpenPose library [32] and the MediaPipe Holistic library [89].

These libraries enabled us to extract detailed information about the child’s

body posture, movements, and facial expressions. More details on the feature

extraction process are provided in Section 5.3.
1https://github.com/OlafenwaMoses/ImageAI
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• Finally, we generated the dataset by extracting the facial features and body

joints of the child from the JSON files into one CSV file. This file contained all

the information needed to train and evaluate machine learning models, including

the labels assigned to each frame.

In conclusion, our automated data handling pipeline allowed us to efficiently and

effectively pre-process the raw data obtained from our study and organize it into a

well-structured and informative dataset. This dataset will serve as a valuable resource

for future research into ASD and machine learning applications in this field.

5.3 Feature Extraction

To extract features from the videos of children with ASD, we used the OpenPose and

MediaPipe Holistic libraries. These libraries allowed us to extract both facial features,

such as eye gaze, body joint movements and facial expressions. These features were

chosen because they have been shown to be relevant for understanding social interac-

tion and movement coordination difficulties in children with ASD. Facial expressions

and eye gaze are important for social interaction, while body joint movements are

relevant for motor coordination. The extracted features will be utilized as inputs to

our models to predict diagnostic outcomes and treatment responses in children with

ASD. Prior to feature extraction, we applied a Gaussian blur filter to each frame to

reduce noise and enhance the quality of the features.

5.3.1 OpenPose Feature Extraction

The OpenPose library has become an essential tool for numerous research subjects

that require human analysis, including human re-identification, retargeting, and HRI.

This library, developed by Carnegie Mellon University, is a real-time multi-person

keypoint detection tool that can estimate the body, face, hands, and foot positions

[202]. With OpenPose, we can detect 2D information on 201 keypoints in the body,

hands and feet and 210 keypoints in the face. OpenPose provides the 2D coordinates
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of characteristic points (𝑋 and 𝑌 ) and their confidence level as feature sets. Given its

widespread use and effectiveness, we chose to utilise the OpenPose library [35, 36, 202]

to parse the video frame in order to get keypoints of the person. Figure 5-2 shows

the extracted keypoints of the face and body using different conditions.

Figure 5-2: OpenPose keypoints of the child

In the end, we successfully extracted facial and body features from 93.85% of the

146,839 samples (frames) using OpenPose. However, some frames did not have an

appropriately-oriented face or body, resulting in empty feature sets. To maintain the

consistency of our dataset, we filled the empty features with 0s and removed them

from the dataset.

5.3.2 MediaPipe Feature Extraction

To extract keypoints from the video frames, we also utilised the MediaPipe Holistic

library [89]. This library is a multistage tool that integrates separate models for pose,

face, and hands detection. It detects 2D information of 33 pose landmarks, 2x21 land-

marks for both hands and 468 face landmarks. Unlike OpenPose, MediaPipe Holistic

provides normalised 𝑋, 𝑌 coordinates, and 𝑍-value, which provides depth informa-

tion of the landmark and saves the output in JSON format. Moreover, MediaPipe

Holistic indicates the likelihood of each landmark being visible in the image.
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Figure 5-3: MediaPipe landmarks of the child

We chose MediaPipe Holistic to compare its performance with OpenPose and to

check different image processing techniques. The face, body and hands landmarks

were successfully extracted with an accuracy of 87.38% from a total of 136711 samples

(frames). Figure 5-3 shows the extracted keypoints of the face and body using different

conditions. Similarly, we filled the missing data in some frames with 0s and removed

them from the dataset.

5.3.3 Full-frame Feature Extraction

In our study, we utilized Convolutional Neural Networks (CNNs) for full-frame feature

extraction. CNNs, a subset of deep neural networks, are often employed in computer

vision applications including segmentation, object identification, and picture classifi-

cation. The extraction of features from pictures using CNNs has shown to be quite

successful, particularly for tasks requiring local and spatial information.

We employed the EfficientNet architecture, a cutting-edge CNN architecture cre-

ated to maximize the trade-off between computational efficiency and accuracy, to

extract the features from the full-frame pictures. With the use of a compound coef-

ficient, the EfficientNet technique for scaling consistently scales all depth, breadth,

and resolution parameters. According to the method, a larger input picture will ne-
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cessitate additional layers to expand the network’s receptive area and more channels

to catch the finer-grained patterns on the bigger image. The mobile inverted bot-

tleneck convolution serves as the foundation of the EfficientNet architecture, which

is a lightweight and efficient module that uses depthwise separable convolution to

reduce the computational cost. EfficientNet-B7, which is the largest model in the

EfficientNet family. Despite being 8.4 times smaller and 6.1 times faster at prediction

than the best existing neural architecture, it obtains a top-1 accuracy of 84.3% on

the ImageNet dataset.

By using EfficientNet for full-frame feature extraction, we could record and rep-

resent the significant information in the input images, which can be further utilized

for the engagement recognition task.

5.3.4 Modalities

We investigated seven modalities (𝑀1 − 𝑀7) in the dataset (5-1). Specifically, in

the dataset, there are six modalities: 𝑀1 and 𝑀4 consist of face features, 𝑀2 and

𝑀5 consist of body and hands features, and 𝑀3 and 𝑀6 consist of all face and body

features (5-1).

Additionally, we added the seventh modality (𝑀7) that consists of 2048 features.

These features were extracted using the pre-trained EfficientNet architecture for each

sample (frame) (Section 5.3.3).

Face Features

The 𝑀1 and 𝑀4 modalities include facial features from the videos. 𝑀1 is a modality

that consists of 210 facial features from a frame using the OpenPose tool. These

features include landmarks such as the eyes, nose, and mouth, as well as facial ex-

pressions and head orientation.

On the other hand, 𝑀4 is composed of 1872 facial features that were extracted

by utilising the MediaPipe Holistic parsing tool. This modality includes all the fea-

tures from 𝑀1 with more detailed keypoints. The MediaPipe Holistic parsing tool is
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designed to provide a more comprehensive view of the individual’s facial expressions.

Both 𝑀1 and 𝑀4 modalities are used to examine the effectiveness of facial key-

points that can be used in various HRI scenarios.

Body Features

The 𝑀2 and 𝑀5 modalities include body and hand features from videos. 𝑀2 is

a modality that consists of 201 body and hand features from a frame using the

OpenPose tool. These features include key points such as the shoulders, elbows,

wrists, and fingers, which allow for the recognition of body and hand movements and

gestures.

On the other hand, 𝑀5 is composed of 300 body and hand features that were

extracted by utilising the MediaPipe Holistic parsing tool. This modality includes all

the features from 𝑀2 with more additional keypoints of the body.

Similarly, to 𝑀1 and 𝑀4 modalities, the 𝑀2 and 𝑀5 modalities can provide

valuable insights into human movements and gestures, enabling advancements in a

wide range of applications.

Face, Body and Hand Features

The 𝑀3 and 𝑀6 modalities include face, body and hand features from videos. 𝑀3 is

a modality that consists of 411 face, body and hand features from a frame using the

OpenPose parsing tool, which includes all the features from 𝑀1 and 𝑀4. Similarly,

𝑀6 is composed of 2172 face, body and hand features that were extracted by utilising

the MediaPipe Holistic parsing tool, which includes all the features from 𝑀2 and 𝑀5.

This modality provides a highly detailed representation of the child’s body movement

and an understanding of his behaviour.

5.4 Labelling

Engagement is a significant metric in the therapy of autism, as it is defined by the

active and appropriate involvement in the task with the robot and/or the therapist.
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In order to accurately label the dataset, we adapted a coding approach (Likert-type

scale from 0 to 5) proposed in previous studies [107, 177] to ensure comparability with

other researchers working in the field of engagement estimation. As ratings of 0 and

1 represented intense noncompliance and non-compliance, respectively, in our study

we decided to combine label 0 (intense non-compliance) and label 1 (non-compliance)

into a single category called “non-compliance.” As a result, in this work, a five-point

Likert scale was used. Table 5.2 describes the differences between our coding scheme

and the schemes proposed by Kim et al. [107] and Rudovic et al. [177].

Table 5.2: The differences between coding schemes

# Our work Kim et al. [107] Rudovic et al. [177]

0 Intense noncompliance

– participant stood and

walked away from the

table on which the robot

interaction took place

Evasive – child is not

responding to therapist

and/or NAO’s prompts

at all and after the

prompts, or immediately,

walks away from Nao

1 Non-compliance, when a

child is unwilling to en-

gage in the conversation,

is not paying attention to

the engagement, and is

not reacting to the ther-

apist

Noncompliance – partic-

ipant hung head and re-

fused to comply with the

interviewer’s request to

speak to the robot

Non-compliance – child is

not responding to ques-

tions or tasks by therapist

(e.g., the child hung head

and refused to participate

in the interaction, was

looking somewhere else,

not paying attention to

the interaction)

Table 5.2: The differences between coding schemes (cont.)
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# Our work Kim et al. [107] Rudovic et al. [177]

2 Indifference - if the ther-

apist asks the same ques-

tion more than three

times before the child fol-

lows the rules

Neutral – participant

complied with instruc-

tions to speak with

the robot after sev-

eral prompts from the

confederate

Indifferent – therapist re-

peats the question and/or

attempts the task more

than 3 times until child

complies with the instruc-

tions

3 Low engagement, after 2

or 3 repetitions, the child

complies with the direc-

tions

Slight interest – partic-

ipant required 2 or 3

prompts from the con-

federate before respond-

ing to the robot

Low engagement - Child

complies with the instruc-

tions after 2-3 repetitions

4 Mid engagement, when

a child follows directions

the first time but needs

assistance, such as a fin-

ger point, a name call,

a demonstration of some-

thing to pay attention to,

etc.

Engagement - the

participant complied

immediately following

the confederate’s request

to speak to the robot

or answer a question,

or in which no request

was made while the

robot walked, and the

participant maintained

their gaze on the robot

or looked at the confed-

erate or robot controller

without disrupting the

progress of the task of

speaking to the robot.

Mid engagement – a

child is to the first

prompt/question to per-

form the task but needs

a bit of boost from a

therapist (eg., pointing

with a finger, calling by

name, showing something

to pay attention to and

so on)

Table 5.2: The differences between coding schemes (cont.)
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# Our work Kim et al. [107] Rudovic et al. [177]

5 High engagement, when

the child spontaneously

interacts with the NAO

robot, responds to the

therapist and/or robot,

and completes the neces-

sary tasks

Intense engagement -

the participant spon-

taneously engaged the

confederate or robot

(e.g., created encourag-

ing phrases to the robot

which had not been of-

fered as examples by the

confederate, or spoke to

the robot spontaneously

and not only when the

confederate had in-

structed the participant

to speak), or changed

his or her posture (e.g.,

leaned forward) to non

verbal interact with the

robot.

High engagement – child

immediately responds to

the question of a thera-

pist, following the inter-

action scenario and re-

acting with NAO sponta-

neously

Table 5.2: The differences between coding schemes (cont.)

Kim et al. [107] assigned engagement scores to short fixed-interval segments, i.e.

one out of every four 5-second intervals. In contrast, Rudovic et al. [177] used a task-

driven coding approach, where engagement scores were assigned to a video fragment

starting from the task instruction until one of the engagement levels had been met. As

children with autism may engage and disengage rapidly due to co-occurring ADHD,

we decided to assign the engagement level to each frame (i.e. second). For example,

the researchers assigned label 3 to frames 1 to 10 for that specific 10-second duration

in which the child displayed behaviours associated with label 3 (low engagement).
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Three independent researchers coded the frames and the agreement score was

computed from the coders’ pair-wise ICC, which was found to be 82.62%.

As shown in Figure 5-4, we have two types of classifications:

1. Binary class - engaged and disengaged. Engagement levels 1 and 2 were assigned

to class 0, e.i. disengaged. And engagement levels from 3 to 5 were assigned to

class 1, e.i. engaged;

2. Multi-class - engagement levels from 1 to 5 left as it is without any modifications.

Figure 5-4: Frequency distribution of classes in the generated dataset

The frequency distribution of each label is also shown in Figure 5-4.

A lot of time and effort should be spent to assign engagement levels to each frame

since the coding schema has to be trained, tested, and validated in order to produce

accurate results. However, it is an important metric for evaluating robots in autism

therapy. The process of analyzing behavioural data might benefit considerably from

an efficient and reliable automated video coding system.
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5.5 Concluding Remarks

In summary, this chapter has described the creation of the QAMQOR dataset, which

consists of engagement-related data collected during 194 therapy sessions from 34

children with autism. The dataset comprises video recordings and engagement levels

from more than 48 hours of video.

The QAMQOR dataset contains valuable information, including facial and body

features, demographic information, and the number of children, sessions, and activ-

ities during the interaction. The dataset is a valuable resource for researchers who

wish to quantitatively analyze the social behaviours of children with autism under

different conditions. Additionally, the dataset can be used to train artificial mod-

els for engagement recognition during interactions with children and potentially be

extended to adults with autism.

It’s worth noting that combining produced QAMQOR dataset with already avail-

able HRI datasets can be a complex process, and we have to be careful about potential

biases or confounding factors introduced by the combination. Therefore, the following

steps were taken to be able to combine the QAMQOR dataset with other datasets:

• Data pre-processing of the QAMQOR dataset to ensure data consistency, clean

any noise, and handle missing or incomplete information.

• Data alignment. The QAMQOR dataset has similar modalities of face and body

features and aligned the data based on time, child and order of the sessions as

in PInSoRo and DREAM datasets.

• Feature extraction, we utilized the OpenPose library to extract face and body

features for having a unified set of features that can be used together.

• Ethical considerations for combining datasets involving human participants re-

quire ethical considerations. We ensure that privacy and confidentiality are

protected, and data usage adheres to ethical guidelines.

Overall, this chapter has outlined the data collection and annotation process uti-

lized for data collection and dataset generation. Furthermore, we discussed how we
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extracted features using OpenPose and MediaPipe Holistic libraries. In subsequent

chapters, we will evaluate the performance of the dataset using machine learning

models and neural network architectures.
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Chapter 6

Evaluating QAMQOR Dataset

Engagement recognition is a challenging problem, often addressed through supervised

machine learning methods that rely on classical input features derived from spatial in-

formation, including velocity, gaze, human position, head pose, and facial expressions.

In this chapter, we evaluated the QAMQOR dataset using a multimodal architecture

that combines classical machine learning techniques and deep learning approaches to

classify engagement.

We start by describing our methodology for evaluating the dataset in the first

section. Then, in the second section, we detail the classification models used in the

experiments. In the third section, we discuss the modalities present in the QAMQOR

dataset employed in our evaluation. The fourth section outlined the different splits

we used to partition the dataset. The fifth section described the subsets of the dataset

we utilized in our experiments. We summarize the chapter with a discussion of our

findings and some concluding remarks.

6.1 Methodology

To evaluate our system’s performance, we employed a multimodal architecture (Figure

6-1) that utilizes classical machine learning techniques and deep learning approaches

to recognize children’s engagement. Given the QAMQOR dataset’s noisy and missing

data, we partitioned it into three subsets: training, validation, and testing. and More-
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over, we tested the system under four different splits: Random, Child Independent,

Session Independent, and Activity Independent.

We evaluated the performance of our system on two distinct classification prob-

lems: (i) binary classification (engaged and disengaged) and (ii) multi-class classifica-

tion (as explained in Section 5.4). To identify the best-performing supervised machine

learning models and neural network architectures, we conducted a series of experi-

ments considering different hyperparameters (Table 6.1). For each model, we defined

a search space consisting of the hyperparameters that we wanted to tune. Then, we

explored this area using a search method to identify the set of hyperparameters that

produced the greatest performance on a validation set.

The search algorithm used was Grid Search, where we defined a set of possible

values for each hyperparameter and then trained the model using all possible combi-

nations of these values. We chose Grid Search because it is a simple and exhaustive

search method that explores all possible combinations of hyperparameters, making

it a good starting point for hyperparameter tuning. However, more advanced search

methods like Random Search or Bayesian Optimization could also be used to further

improve the results.

Our multimodal architecture, which is shown in Figure 6-1, used three types of

features: OpenPose, MediaPipe Holistic, and EfficientNet. We trained our models us-

ing different hyperparameters and reported the top-3 results of standard classification

models (AdaBoost, XGBoost, and LogReg) for binary and multi-class classification

problems (Table 6.2).

6.2 Classification Models

We evaluated the QAMQOR dataset using a machine learning approach that com-

bined classical and deep learning techniques. We used several classical supervised ma-

chine learning models, such as Regularized logistic regression (LR), k-Nearest Neigh-

bors (KNN), Extra-Trees classifier, Gaussian Naive Bayes (Gaussian NB), multivari-

ate Bernoulli model (Bernoulli NB), Random Forest classifier, AdaBoost classifier,
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Table 6.1: Supervised machine learning model types

Model Hyperparameter Search Space

Gaussian NB priors None
var_smoothing log-uniform distribution [1e-12, 1e-5]

Bernoulli NB
alpha log-uniform distribution [1e-6, 10]
binarize uniform distribution [0.0, 1.0]
fit_priorbool uniform distribution [0.0, 1.0]

KNN
n_neighbors integer uniform distribution [1, 50]
weights categorical distribution [‘uniform’, ‘distance’]
algorithm categorical distribution [‘auto’, ‘ball_tree’,

‘kd_tree’, ‘brute’]
Random
Forest

n_estimators integer uniform distribution [10, 100]

min_samples_split integer uniform distribution [2, 10]
max_depth integer uniform distribution [10, 50]

Extra Trees
n_estimators integer uniform distribution [10, 100]
min_samples_split integer uniform distribution [2, 10]
max_depth integer uniform distribution [10, 50]

Gradient
Boosting

n_estimators integer uniform distribution [50, 200]

max_depth integer uniform distribution [2, 10]
learning_rate log-uniform distribution [0.001, 1.0]

AdaBoost n_estimators integer uniform distribution [10, 100]
algorithm categorical distribution [‘SAMME’, ‘SAMME.R’]

XGBoost n_estimators integer uniform distribution [50, 1000]
max_depth integer uniform distribution [2, 20]

LR solver categorical distribution [‘lbfgs’, ‘liblinear’,
‘newton-cg’, ‘newton-cholesky’, ‘sag’, ‘saga’]

Gradient Boosting classifier, and XGBoost. Moreover, for deep learning model, we

used a recurrent neural network (RNN), specifically bidirectional Long Short-Term

Memory (BiLSTM). We implemented these models using Scikit-learn version 0.24.2

[150], XGBoost version 1.5.0 [42], and Torch version 1.7.1 [149] in Python. To deter-

mine which models performed best, we used the hyperparameters presented in Table

6.1 and reported only the top-3 results of standard classification models (AdaBoost,

XGBoost, and LogReg) for binary and multi-class classification problems.

For the sequential model architecture, we used a 2-layer BiLSTM with 256 hidden

units to consider sequential dependencies. We identified three different sequences

of frames, 5, 10, and 15 frames per sample, to train our models. The BiLSTM

models had similar performance to the classical machine learning models. We used a
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Figure 6-1: The overview of the architecture for multimodal engagement recognition

logarithmic softmax activation function for the output layer and the swish activation

function for the rest of the layers. We trained our neural network models using the

Adam optimizer [110] with a learning rate of 0.001 and a batch size of 60 for 20 epochs

each using the cross-entropy loss function as an objective.

6.3 Results

6.3.1 Performance metrics

We have used several performance metrics to evaluate the algorithms for engagement

recognition. These metrics helped to assess the effectiveness and efficiency of the

models.

Accuracy is a fundamental performance metric used to evaluate engagement recog-

nition algorithms, therefore we decided to report them in Tables 6.2, 6.3. It measured

how well the algorithms correctly identified the child’s level of engagement and emo-
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tional response during the interaction with the NAO robot in autism therapy sessions.

F1-score metric was used to assess the algorithms’ overall performance by provid-

ing a more balanced assessment as our data is highly imbalanced. Due to the space

limit in the tables and the similarities of the achieved values, F1 score with accuracy

values, just with smaller changes, did not record them in the table of results. XG-

Boost algorithm performed the best in terms of accuracy F1-Score (0.85), indicating

that it correctly identifies the child’s level of engagement with high precision and

recall in the Random split.

Processing time was measured in seconds for each subset. It is a critical met-

ric, especially when we will predict engagement levels in real-time, as it affects the

system’s responsiveness and usability. We calculated the processing time for each

of the standard machine learning algorithms. Based on the result, AdaBoost has a

processing time of 1.3 seconds per frame, making it relatively efficient for real-time

applications, while still achieving a reasonably high accuracy.

In order to find how quickly the engagement recognition algorithms reach stable

and accurate predictions, we used the speed of convergence. Smooth and steep learn-

ing curves indicated faster convergence. This convergence rate was evaluated using

learning curves, which plot the performance of the algorithms over different training

iterations or epochs. As a result, the LR algorithm had slower convergence, stabiliz-

ing after 100 training iterations and slightly lower accuracy and F1-Score compared

to the other two algorithms, indicating that it may require more training iterations

to achieve optimal performance.

6.3.2 Modalities

First, we tested H2 by analyzing the impact of different modalities on engagement

recognition accuracy. To achieve this, we trained models using various combinations

of modalities and analyzed their contributions. We compared six modalities from the

dataset (see Section 5.3.4 for more detailed information).

To further improve the neural network model’s performance, we introduced a

seventh modality (𝑀7) consisting of 2048 features extracted using the pre-trained
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EfficientNet architecture for each sample. We trained models using actively selected

samples from each modality, and possible samples were predefined to ensure dataset

consistency.

By exploring different modalities, we were able to identify which features con-

tributed the most to engagement recognition accuracy. Our findings suggest that

incorporating multiple modalities can significantly improve engagement recognition

accuracy.

Face Features

After analyzing the experimental results presented in Table 6.2, we found that 𝑀1

modality generally outperformed 𝑀4 modalities in terms of engagement classification

accuracy, although there were a few exceptions. Specifically, in binary classification

during the Session Independent split, both the XGBoost and LR algorithms achieved

higher accuracy on the 𝑀4 modality than on the 𝑀1 modality. In multi-class classifi-

cation during the same split, the XGBoost algorithm achieved higher accuracy on the

𝑀4 modality than on the 𝑀1 modality. Moreover, during the Activity-Independent

split, AdaBoost, XGBoost, and LR algorithms achieved higher engagement classifica-

tion accuracy on 𝑀4 modality compared to 𝑀1 modality in multi-class classification.

These exceptions suggest that the choice of modality and algorithm may influence on

the particular application and context of the engagement recognition task.

After analyzing the results presented in Table 6.2, we can conclude that the 𝑀1

modality consistently outperformed the other modalities in most of the splits, espe-

cially in the Child Independent and Session Independent splits. In binary classifica-

tion, the 𝑀1 modality achieved an accuracy value of 84.17% and 77.16% in Child

Independent and Session Independent splits, respectively. Similarly, in multi-class

classification, the 𝑀1 modality achieved accuracy values of 43.21% and 39.38% in

Child Independent and Session Independent splits, respectively.

Finally, we observe that having more facial features is better for the Activity-

Independent split in multi-class problems to classify engagement levels for all algo-

rithms. This is likely because children’s movement varies from one activity to another,

142



Table 6.2: Classification accuracies of QAMQOR dataset, in %

Classes Algorithm OpenPose MediaPipe Holistic EfficientNet
M1 M2 M3 M4 M5 M6 M7

Random Split

Binary
AdaBoost 80.47 80.41 80.91 74.19 73.92 74.13 -
XGBoost 84.17 90.18 89.78 79.60 84.25 84.41 -
LR 80.05 77.38 80.29 73.94 74.40 74.36 -
BiLSTM - - - - - - 80.59

Multi
AdaBoost 47.43 47.35 48.31 35.09 34.87 35.75 -
XGBoost 60.70 78.43 77.42 51.88 65.09 64.76 -
LR 46.73 46.38 48.66 35.52 37.18 37.65 -
BiLSTM - - - - - - 57.69

Child Independent Split

Binary
AdaBoost 84.17 81.36 81.36 76.48 77.04 76.58 -
XGBoost 83.39 80.14 81.9 76.14 76.8 76.97 -
LR 83.61 83.48 83.33 77.45 78.32 77.93 -
BiLSTM - - - - - - 56.62

Multi
AdaBoost 43.21 38.36 39.46 29.29 28.38 27.96 -
XGBoost 34.24 33.29 34.57 26.75 26.79 26.95 -
LR 39.1 38.24 37.79 26.06 27.81 27.46 -
BiLSTM - - - - - - 26.54

Session Independent Split

Binary
AdaBoost 77.16 74.51 75.77 76.94 75.89 75.76 -
XGBoost 75.39 72.74 73.07 75.73 76.36 76.47 -
LR 76.31 76.36 75.97 76.67 76.32 76.41 -
BiLSTM - - - - - - 68.06

Multi
AdaBoost 39.12 38.42 37.64 36.31 19.14 36.86 -
XGBoost 35.05 33.23 34.66 35.48 34.52 35.25 -
LR 39.38 38.17 37.49 37.9 37.12 36.18 -
BiLSTM - - - - - - 34.36

Activity Independent Split

Binary
AdaBoost 65.83 59.17 57.08 62.5 61.03 62.5 -
XGBoost 68.33 66.67 71.25 62.5 66.91 66.91 -
LR 67.08 65 64.58 62.5 66.18 67.66 -
BiLSTM - - - - - - 79.78

Multi
AdaBoost 22.08 20.83 22.08 30.88 16.91 15.44 -
XGBoost 16.25 26.25 30.83 29.41 36.76 30.15 -
LR 21.67 21.25 21.25 28.68 19.85 19.12 -
BiLSTM - - - - - - 43.06
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and more features in the small area (in our case, the face) provide better accuracy.

However, for the baseline (Random split) and Child Independent split, a minimal

amount of facial features is sufficient.

Body and Hand Features

We conducted a thorough analysis of the experimental results presented in Table

6.2. Our analysis shows that in most cases, the 𝑀2 modality outperformed the 𝑀5

modality in terms of accuracy. However, there were some specific scenarios in which

the 𝑀5 modality performed better, including:

• In binary classification during the Session Independent split, the AdaBoost and

XGBoost algorithms achieved higher engagement classification accuracy.

• In multi-class classification during the Session Independent split, the XGBoost

algorithm achieved higher engagement classification accuracy.

• In binary classification during the Activity Independent split, the AdaBoost,

XGBoost, and LR algorithms achieved higher engagement classification accu-

racy.

• In multi-class classification during the Activity Independent split, the XGBoost

algorithm achieved higher engagement classification accuracy.

Furthermore, we found that in the Random split, the 𝑀2 modality outperformed

the other seven modalities in both binary (with a value of 90.18%) and multi-class

(with values of 78.43%) classification problems using the XGBoost algorithm. Con-

versely, the 𝑀5 modality achieved the lowest engagement classification accuracy in

both binary (with a value of 73.92%) and multi-class (with values of 34.87%) classi-

fication problems using the AdaBoost algorithm. Additionally, using the AdaBoost

algorithm, the 𝑀5 modality attained the lowest accuracy of 19.14% in multi-class

classification problems, which was observed in the Session Independent split.

Our results suggest that having more body and hand features is beneficial for the

Activity Independent split in binary classification problems to classify engagement
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levels for all algorithms. This is likely because children’s movement varies from one

activity to another, and more features in the small area of interest (in our case, the

body and hands) provide better accuracy. However, in the baseline (Random split)

and Child Independent split, a minimal amount of features is sufficient.

Face, Body and Hand Features

We examined the results from Table 6.2 and found that, in most cases, the 𝑀3

modality outperformed the 𝑀6 modality in terms of engagement classification accu-

racy. However, there were a few exceptions, as follows:

• The XGBoost and LR algorithms achieved higher accuracy in binary classifi-

cation using the 𝑀6 modality compared to the 𝑀3 modality in the Session

Independent split.

• The XGBoost algorithm achieved higher accuracy in multi-class classification

using the 𝑀6 modality compared to the 𝑀3 modality in the Session Indepen-

dent split.

• The AdaBoost and LR algorithms achieved higher accuracy in binary classifi-

cation using the 𝑀6 modality compared to the 𝑀3 modality in the Activity

Independent split.

However, despite these exceptions, the 𝑀3 and 𝑀6 modalities had the lowest

overall engagement classification accuracy across all modalities. Specifically, the 𝑀3

modality achieved the lowest accuracy of 57.08% in binary problems with Activity

Independent split, while the 𝑀6 modality had the lowest accuracy of 15.44% in multi-

class classification problems.

However, these modalities that consist of all features achieved the lowest engage-

ment classification accuracy among all modalities. In particular, the 𝑀3 modality

had the lowest classification accuracy of 57.08% compared to the other seven modali-

ties in binary problems with Activity Independent split. Moreover, the 𝑀6 modality

achieved only 15.44% engagement classification accuracy in multi-class classification

problems, which is the lowest value.
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Full-frame Features

To provide a more cohesive analysis, we can expand on the results from Table 6.2.

The 𝑀7 modality, which includes full-frame features, performed exceptionally well

in Activity Independent split for both binary and multi-class classification problems.

This suggests that full-frame features are more effective in this particular split, as

they require more keypoints to accurately predict engagement levels. Additionally,

the balanced data distribution in the Activity Independent split may have contributed

to the superior performance of the 𝑀7 modality.

However, it is important to note that the 𝑀7 modality did not perform well in the

Child and Session Independent splits for binary classification, obtaining the lowest

engagement recognition accuracy values of 56.62% and 68.06% respectively. This

could be due to the fact that the Child and Session Independent splits had more

complex variations and challenges, such as different lighting conditions, backgrounds,

and camera angles. Therefore, using full-frame features may not be sufficient to

accurately predict engagement levels in these splits.

The results suggest that the optimal choice of modality depends on the classifica-

tion problem and split used. For example, full-frame features may be more effective

in Activity Independent split, while a combination of facial, body, and hand features

may be more effective in Child and Session Independent splits. Understanding the

strengths and weaknesses of different modalities can help improve the accuracy of

engagement recognition systems in various settings.

6.3.3 Splits

We conducted experiments using four different data splits, namely Random, Child

Independent, Session Independent, and Activity Independent. These splits were cho-

sen to evaluate the performance of different machine learning algorithms in various

scenarios, where data samples may have different levels of similarity. The data was

divided into non-overlapping subsets, with approximately 80% used for training and

10% each for validation and testing. The algorithms were trained on a representative
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sample of the data and evaluated on previously unseen data to ensure generalization.

Random Split

We randomly split the dataset into disjoint training, validation, and testing subsets

as the baseline for all models. The dataset consisted of X samples and included

features from Y modalities. In the following results, we compare each condition with

the others.

We trained and compared several classification models using different modali-

ties and sequence lengths. Among them, the XGBoost algorithm with 𝑀2 modality

achieved the highest accuracy in engagement classification, with values of 90.18% and

78.43% in binary and multi-class problems, respectively. However, the AdaBoost al-

gorithm with 𝑀5 modality performed poorly, achieving the lowest accuracy of 73.92%

and 34.87% in binary and multi-class classifications, respectively. None of the three

splits produced results that exceeded these values. In total, we trained and compared

9 models with different parameters.

Regarding computational time, the standard classification methods were faster

than the neural network models. The average time for training and testing RNN

models was 13 minutes. The fastest average time for the standard classification meth-

ods was 2 minutes using 𝑀1 modality. AdaBoost was the fastest algorithm, taking

approximately 5 minutes, while XGBoost was the slowest, taking approximately 36

hours.

We also trained the BiLSTM model with three different sequence lengths of sam-

ples: 5, 10, and 15 frames per sample. The highest results were achieved using 10

frames per sample with 𝑀7 modality, both for binary and multi-class classification

problems, with values of 80.9% and 59.37%, respectively. When using OpenPose fea-

tures, we achieved the lowest accuracy when using 15 frames per second, with values

of 53.69% and 45.35% in binary and multi-class classification problems, respectively.
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Child Independent Split

We employed a Child Independent split to divide the videos of 34 children in training,

testing, and validation subsets. This approach ensured that the training subset com-

prised samples from 28 children, while each testing and validation subset included

samples from three children. We used non-overlapping subsets of children to train

and evaluate the models to avoid overfitting.

The AdaBoost classifier outperformed other models with the highest accuracy

of 84.17% in binary and 43.21% in multi-class classification problems using the 𝑀1

modality, which consisted of OpenPose face features (indicated by green cells in Table

6.2). However, the performance of other machine learning models varied depending on

the modality and classification task. For example, the LR algorithm showed higher

engagement recognition accuracy among other algorithms on 𝑀3 and 𝑀6 modali-

ties in binary classification, but not in multi-class classification problems. The 𝑀7

modality showed the lowest accuracy with a value of 56.62% in binary classification

problems for engagement recognition, whereas for multi-class classification problems,

the LR algorithm on the 𝑀4 modality achieved the lowest accuracy with a value of

26.06%. The lowest results are indicated by red cells in Table 6.2.

We evaluated the BiLSTM model using facial and body features from OpenPose

and MediaPipe libraries, as well as EfficientNet features. The BiLSTM model per-

formed better with a sequence length of 15 frames per sample. As shown in Table

6.3, the highest accuracy of 58.84% was achieved in binary classification with Medi-

aPipe features (𝑀6 modality). For multi-class classification problems, the best results

were obtained using EfficientNet features (𝑀7 modality) with an accuracy of 44.74%.

However, EfficientNet features produced the lowest accuracies among all features in

the Child Independent split for both classification problems.

Session Independent Split

To analyze the impact of sessions on predicting engagement levels, we combined

videos from the entire dataset to train our models. Each testing and validation subset
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Table 6.3: Experimental results of RNN

Classification Sequence OpenPose MediaPipe EfficientNet
Random Split

Binary
5 79.44 78.95 79.37
10 79.78 79.57 80.9
15 53.69 54.01 69.98

Multi-class
5 54.34 45.35 53.34
10 52.89 52.49 59.37
15 45.35 54.33 47.07
Child Independent Split

Binary
5 56.71 57.26 53.01
10 58.25 58.58 48.49
15 58.04 58.84 53.67

Multi
5 42.24 33.39 26.31
10 40.84 36.03 36.98
15 37.71 33.5 44.74
Session Independent Split

Binary
5 59.55 62.12 56.53
10 62.47 64.33 54.02
15 61.67 64.31 49.45

Multi
5 44.52 39.06 39.9
10 42.40 38.93 42.44
15 46.07 31.54 42.57
Activity Independent Split

Binary
5 59.67 64.34 61.26
10 61.48 63.73 54.23
15 62.12 63.1 50.56

Multi
5 33.47 31.53 30.19
10 33.01 32.35 31.47
15 34.07 30.71 31.06

149



contained videos from one session not present in the training subset of the remaining

session videos for each specific class. To avoid overfitting sessions, we divided the

sessions without repetition into training, testing, and validation subsets.

Similar to the Child Independent split, the AdaBoost classifier achieved the highest

test accuracy on all modalities in binary classification. Specifically, the best result was

achieved on the 𝑀1 modality with an accuracy of 77.16% using OpenPose features.

However, for multi-class classification, the LR algorithm showed the best performance

among all modalities, with the highest accuracy of 39.38% on the 𝑀1 modality using

OpenPose features.

Consistent with the Child Independent split, the 𝑀7 modality in binary classifi-

cation achieved the lowest engagement recognition accuracy, with a value of 56.62%.

However, in contrast to the Child Independent split, the AdaBoost algorithm showed

the lowest accuracy in multi-class classification with a value of 19.14%. Other results

are shown in Table 6.2.

Using the BiLSTM model, we achieved higher accuracy with a sequence length

of 10 frames per sample for binary classification and 5 frames per sample for multi-

class classification. The best accuracy in the multi-class classification problem was

achieved on the 𝑀3 modality, with a value of 44.52% using OpenPose face and body

features. Meanwhile, in the binary classification problem, the highest test accuracy

was achieved on the 𝑀6 modality using MediaPipe features, with a result of 64.33%.

Activity Independent Split

To investigate the impact of activity type on predicting engagement levels, we trained

our models on a combination of extracted videos from the entire dataset. To prevent

overfitting, we ensured that each testing and validation subset contained videos of

one activity type that were not included in the training subset for each specific class.

For the BiLSTM model, the 𝑀7 modality achieved the highest test accuracy

among all modalities. Specifically, the best accuracy was obtained for binary classifi-

cation at 79.78% and for multi-class classification at 43.06%. In contrast to the Child

Independent split, the AdaBoost algorithm showed the lowest engagement recognition
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accuracy with 57.08% for binary classification on the 𝑀3 modality and 15.44% for

multi-class classification on the 𝑀6 modality. Other results are presented in Table

6.2.

The RNN results are presented in Table 6.3. In the BiLSTM model, we achieved

the highest accuracy on the 𝑀3 modality using OpenPose features in the multi-

class classification problem, and the best accuracy was 34.07% with 15 frames per

sample. For the binary classification problem, the highest test accuracy was obtained

on the 𝑀6 modality consisting of MediaPipe face and body features with 5 frames

per sample, and the accuracy was 64.34%. In contrast to the Random split, the

𝑀7 modality consisting of EfficientNet features achieved the lowest accuracy in both

binary and multi-class classification problems. These results are indicated by red cells

in Table 6.3.

6.3.4 Subsets

Creating subsets based on child and activity from the QAMQOR dataset can help

provide a more targeted view of the data and uncover patterns and trends that may

not be visible in the larger dataset.

Child-based Subsets

To identify the child whose data subset outperforms other subsets, we generated 34

child-based subsets and evaluated each child using the AdaBoost classifier algorithm

on face and body features extracted from OpenPose keypoints (𝑀3 modality). We

divided the data into training, testing, and validation sets with a ratio of 0.8-0.1-

0.1, respectively. For example, if child C1 had six sessions, we randomly chose four

sessions to train the model and evaluated using the other two sessions for the Session

Independent split. A similar approach was applied to the Activity Independent split.

Our child-based subsets demonstrated better results than the QAMQOR dataset

in the Child Independent split. Table 6.4 shows the results of engagement recognition

for each child, using both Activity Independent and Session Independent splits. The
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cells highlighted in red represent areas where the recognition performance was par-

ticularly poor. The cells highlighted in green represent areas where the recognition

performance was particularly good.

The AdaBoost algorithm achieved the highest engagement classification accuracy

on the child C33 subset compared to other children, as its values were higher in all four

scenarios, with scores of 95.66% and 99.97% in binary and multi-class classification for

Activity Independent split, and scores of 83.94% and 90.54% for Session Independent

split. C33 had ASD only, with an ADOS-2 score of 7, but was verbal and attended

six sessions.

The results for the lowest engagement classification accuracy were not consistent,

with different subsets of children achieving the lowest accuracy for each binary and

multi-class classification problem during the Activity and Session Independent splits.

However, child C8 subset has the lowest scores in all four scenarios, with a score of

24.29% in binary classification for Activity Independent split, and scores of 5.95%,

26.14%, and 17.36% in multi-class classification for Activity Independent split, and

binary and multi-class classification for session independent split, respectively. Chil-

dren C8, C9, and C34 were nonverbal and diagnosed with ASD only with ADOS<=6,

and their child-based subsets had only two sessions, which is a small data to train

the model. In contrast, child C17 attended 8 sessions and was diagnosed with ASD

and ADHD with ADOS-2 equals 6. As children diagnosed with ADHD cannot sit in

one place, the model could not accurately predict their engagement levels. Almost

all children who were not diagnosed with ASD and ADHD achieved higher accuracies

compared to others, except for child C27.

Other interesting comparisons can be made by looking at the performance of

children across the different scenarios. For example, the child C2 subset has the

highest score in the multi-class classification for the Activity Independent split, but

its score drops significantly in the Session Independent split, while the child C21

subset has a very consistent performance across all four scenarios.

The results of the engagement recognition experiments showed significant vari-

ability across different children and scenarios. It is important to consider individual
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Table 6.4: Experimental results of child-based subsets

Subsets Activity Session
binary multi-class binary multi-class

C1 65.71 39.89 58.37 29.65
C2 84.55 48.23 84.20 63.18
C3 78.67 48.54 71.45 29.81
C4 75.07 74.09 69.01 45.40
C5 75.98 69.88 78.37 64.22
C6 61.79 50.62 63.85 32.78
C7 71.66 54.37 43.75 18.09
C8 24.29 5.95 26.14 17.36
C9 39.29 5.72 39.17 22.42
C10 50.00 50.00 45.86 45.86
C11 46.59 33.15 47.94 24.32
C12 82.13 38.33 82.78 74.17
C13 61.73 30.58 23.11 63.27
C14 65.03 25.70 69.49 23.60
C15 53.87 39.97 36.38 10.06
C16 73.76 69.26 33.93 7.99
C17 64.07 41.88 0.44 33.29
C18 72.43 60.60 65.26 69.55
C19 91.58 54.85 71.31 44.81
C20 81.35 63.16 47.67 51.60
C21 77.43 44.65 64.69 75.06
C22 55.70 72.48 79.78 27.02
C23 77.11 73.07 73.64 59.52
C24 82.07 66.79 72.10 57.07
C25 70.18 46.79 47.02 35.63
C26 40.55 54.16 43.98 28.31
C27 60.44 42.07 49.00 79.46
C28 71.91 36.52 24.54 44.24
C29 82.98 44.75 75.57 34.02
C30 77.06 56.98 75.61 60.20
C31 65.64 83.43 66.62 39.61
C32 50.00 88.66 46.39 62.79
C33 95.66 99.97 83.94 90.54
C34 29.17 10.42 26.29 7.73
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Table 6.5: Experimental results for the group of children from child-based subsets

Group of
children

Activity Session
binary multi-class binary multi-class

ASD+ADHD 65.25 52.21 48.18 41.44
ASD 66.93 49.95 59.52 44.36
Verbal 70.38 61.33 64.76 48.73
Nonverbal 64.40 46.02 51.10 40.91
ADOS>6 71.60 54.29 57.11 43.93
ADOS<=6 61.07 47.41 74.19 42.76
3-4 years old 57.17 55.40 49.65 43.70
5-6 years old 68.75 48.17 54.43 47.82
7+ years old 72.11 55.24 62.91 40.88

differences and specific contexts when interpreting these results. To address this, we

grouped children based on their characteristics, and the results are presented in Table

6.5.

Overall, the experiments showed that older children were better at differentiating

between engaged and disengaged behaviours for each type of activity. In the binary

classification problem, groups of children older than seven years achieved higher re-

sults, with 72.11% accuracy in the Activity Independent split. However, for younger

children aged 3-4 years old, the AdaBoost algorithm was not able to accurately classify

engagement, achieving only 57.17% accuracy.

Regarding multi-class classification problems, the results showed that verbal chil-

dren achieved higher engagement classification accuracy with a value of 61.33% in the

Activity Independent split, while nonverbal children achieved the lowest accuracy of

46.02%.

In summary, the engagement recognition results varied significantly depending on

the children’s age and communication skills, highlighting the importance of consider-

ing individual differences and specific contexts when interpreting the results.

During the Session Independent split, children diagnosed with high-functioning

autism (ADOS<=6) accurately predicted engagement class in the binary problem

with a value of 74.19%. However, the group of children diagnosed with ASD and

ADHD achieved the lowest results among all binary classifications, with a value of
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48.18%. In multi-class problems, the group of verbal children achieved higher en-

gagement classification accuracy (48.73%) during the Session Independent split, but

children aged over seven years got the least accuracy with a value of 40.88%.

Activity-based Subsets

We examined nine activity blocks of varying social mediation levels to identify which

activities are most beneficial for specific subgroups of ASD. Results showed that

different activities brought the attainment of all children’s social objectives, but be-

havioural outcomes were affected by age-specific and core autism-related character-

istics [240]. Section 3.4 provides details on the activities used, though we could not

use all of them. We combined the “Hello&Bye” activity block with the “Action Song”

block, as they are similar based on body movements.

To determine the activity during which engagement level classification could be

better identified, we created activity-based subsets. Each subset included only one

particular activity. We used OpenPose and MediaPipe Holistic keypoints for face

and body features (𝑀3 and 𝑀6 respectively) and applied the AdaBoost classifier

algorithm to all blocks of activities. We also used the EfficientNet (𝑀7) neural

architecture to extract features for CNN training.

In Table 6.6, experimental findings are displayed. The cell with the highest accu-

racy for Child and Session Independent splits is coloured in green, and the lowest is in

red. Results for binary and multi-class classification are reported. The “Imitations”

activity block showed the highest engagement recognition accuracy in the Child In-

dependent split with OpenPose and MediaPipe Holistic features, achieving 78.67%

and 70.28% for binary and multi-class classification, respectively. Additionally, with

the “Imitations” activity block the highest result of 75.18% and 42.26% was achieved

in Session Independent split in binary and multi-class classification, respectively.

However, we could not notice the same consistency of the results during the Ses-

sion Independent split. OpenPose features showed the best accuracy in engagement

recognition in the “Touch Me” block activities with the value of 80.21% (this is the

best result among all modalities in Session Independent Split). Although, MediaPipe
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Table 6.6: Experimental results of models on activity-based dataset

OpenPose MediaPipe EfficientNet
child session child session child session

Activities Binary
Songs 72.17 65.36 69.73 71.12 54.75 54.48
Dances 44.48 76.55 69.5 69.34 55.08 65.09
Touch Me 53.42 80.21 64.65 70.85 50.76 68.14
Storytelling 54.32 61.44 58.72 74.37 51.86 54.14
Imitations 78.67 79.04 70.28 70.65 60.79 75.18
Emotions 66.15 65.85 61.81 60.51 83.30 56.14
Follow Me 77.94 31.67 46.59 51.32 36.28 50.81
Hello&Bye 63.54 51.91 59.46 64.42 39.13 58.44
Activities Multi-class
Songs 27.67 27.82 26.53 33.45 22.17 27.01
Dances 15.54 29.34 15.98 26.04 22.84 34.65
Touch Me 15.59 27.53 29.2 27.69 27.44 42.14
Storytelling 21.72 19.97 16.75 17.56 22.64 11.43
Imitations 29.29 51.56 30.17 25.27 26.40 42.26
Emotions 28.96 25.39 13.36 21.89 43.47 37.28
Follow Me 4.41 6.4 10.5 25.34 16 6.94
Hello&Bye 26.68 28.01 27.24 30.46 27.71 20.11

Holistic features showed the best accuracy in the “Storytelling” activity block with a

value of 74.37%.

EfficientNet features achieved the highest accuracy of 83.30% and 43.47% for bi-

nary and multi-class classification, respectively, in the Child Independent split during

the “Emotions” activity. For the “Songs” activity, the highest accuracy achieved was

33.45% for multi-class classification in the Session Independent Split with MediaPipe

Holistic features.

The “Follow Me” activity showed the lowest accuracies (red cells in Table 6.6) in

both binary and multi-class classifications, which may be due to the limited number

of data. This activity had only 240 samples, with most data missing as the camera

could not capture the child moving around the room holding a robot’s hand.

In general, EfficientNet features achieved the best engagement recognition accura-

cies of 83.30% for binary classification during the Child Independent split and 51.56%

for multi-class classification during the “Imitations” activity block. However, the to-

tal number of samples can affect the results. The “Imitations” activity block had the
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second highest number of samples compared to others, while the “Follow Me” activity

had less than 1% of the total number of samples. All results for each activity block

are presented in Table 6.6.

We also used RNN models on activity-based subsets, but the results were not

consistent. For the “Emotions” and “Follow Me” activity blocks, we achieved 0 ac-

curacies of engagement recognition. However, for the “Emotions” activity block, we

achieved the best accuracy of 76.49% with 10 frames per sample in binary classifica-

tion. Also, the “Follow Me” activity block demonstrated the best accuracy of 87.5%

in multi-class classification problems among all activities. We were unable to provide

any reasonable justifications for these results. Therefore, we decided not to report

them here.

6.4 Discussion

The chapter describes the results of experiments that aimed to evaluate QAMQOR

dataset.

One potential explanation to a low accuracy is the noisy and missing data resulting

from the different subsets of data gained from specifically sampled groups of children.

This can lead to less meaningful information, affecting classification results, which

include binary and multi-class classifications.

The machine learning algorithms achieve better engagement recognition accuracy

using features extracted from the OpenPose library than those extracted from the

MediaPipe Holistic and EfficientNet tools. The accuracy is compared across various

types of splits, and the results show that the baseline Random split achieves the

highest accuracy due to being trained on all children, sessions, and types of activities.

However, the Child Independent split, which is trained on specific children, achieves

better accuracy than the Session and Activity Independent splits.

This chapter makes two significant remarks:

• First, it presents binary (engaged or disengaged) and multi-class (five classes)

classification problems for four types of splits. The dataset contains more sam-
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ples of “Mid Engagement” (Figure 5-4), indicating that children with ASD were

engaged more during the interaction with the robot. These children were willing

to comply with the robot’s instructions, but only with the help of a therapist.

• Second, the experiments show that individual Child-based and Activity-based

subsets outperform the general Child Independent and Activity Independent

splits, respectively. This finding suggests that the children’s characteristics

and social behaviour during the interaction affect the accuracy of engagement

classification. The highest engagement recognition accuracy achieved for binary

classification is 83.30%, and for multi-class classification, it is 51.56%, while the

Activity Independent split achieves 79.78% and 43.06%, respectively.

6.4.1 Challenges and Solutions for Real-time Assessments

The following points are considered to further clarify the potential challenges and

solutions related to real-time engagement assessments:

• Computational Complexity: The Adaboost algorithm performs its results in 1

minute 23 seconds, XGBOOST algorithm gets the result in 1 minute 46 seconds

for testing, but it took hours for training. Therefore, the proposed approach

might meet real-time processing constraints only if it will use a specific modal-

ity type on a particular split. For example, Child Independent split with M1

modality.

• Hardware: Our experiment was conducted on standard computing resources.

• Model Optimization: The potential model optimization techniques that can be

applied to reduce the processing time without compromising assessment accu-

racy might include pruning or using lightweight architectures as future work.

• Streaming Data: The system connects to a video stream source to receive a
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continuous stream of video frames. The system might set up a data buffer to

temporarily store incoming video frames before they are processed.

• Real-time Processing: The system will use the AdaBoost machine learning

model that is trained to recognize engagement levels based on the keypoints

to classify engagement levels from the buffered video frames.

• Display Engagement Label: The system displays the engagement label in real-

time by presenting it as a visual indicator, allowing a therapist to see the current

engagement level as the video is being processed.

• Trade-offs: We are also should consider near-real-time engagement recognition

that might be more appropriate for the RAAT scenario.

6.5 Concluding Remarks

We present our approach to evaluating the QAMQOR dataset using classical and

deep learning techniques. Our multimodal architecture incorporates different types

of features, and we trained both classical and deep learning models using various

hyperparameters to determine the best-performing models. We compared face and

body modalities and evaluated four types of splits: Random, Child Independent,

Session Independent, and Activity Independent. Our experiments show that binary

classification outperforms multi-class classification due to its simplicity. The highest

test accuracy was achieved when evaluating OpenPose keypoints during the Child

Independent split for binary classification, with values of 84.17%, and for multi-class

classification, 43.21%.

Our work contributes to the development of engagement classification models for

the treatment of ASD. To construct a labelled dataset, we annotated videos of RAT

and applied supervised machine learning algorithms in combination with a recurrent

neural network model with pre-trained EfficientNet. However, we found that the

splits used to classify the data for the training, validation, and testing subsets have
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an impact on how accurate the findings are. Therefore, we emphasize the importance

of examining the data subsets in all splits to check their accuracy and validity, which

is crucial for understanding and interpreting children’s engagement levels.

Moreover, we suggest that the type of modality may affect the specific research

question and available resources. For instance, if the focus is solely on facial expres-

sions, 𝑀1 may be sufficient. However, if a more comprehensive understanding of the

individual’s body language is required, then 𝑀4 may be more appropriate. Addi-

tionally, the quality of input data and computational resources available for analysis

should also be taken into account.

As our research involves a heterogeneous group, where participants vary signifi-

cantly in terms of characteristics, experiences, and ASD conditions, it can pose chal-

lenges to the reliability of the study’s results. Therefore we have used stratified

sampling during the evaluation by dividing the heterogeneous group into meaningful

subgroups based on relevant characteristics and analyze each subgroup separately.

When sharing the obtained results of the experiments with parents, guardians and

children, we adhere to the following principles:

• We use language that is both sensitive and age-appropriate, expressing our deep

appreciation for their invaluable participation in the study.

• We prioritize honesty, acknowledging any limitations or potential biases in our

results.

• We avoid making overly confident claims, particularly in subjective emotional

measurements.

As a next step, we propose investigating transfer learning approaches to determine

if existing CRI datasets can be utilized to classify engagement.
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Chapter 7

A Transfer Learning Approach for

Engagement Classification

This chapter aims to explore the extent to which transfer learning can aid in en-

gagement recognition problems under different conditions. We started by presenting

information regarding the datasets used in our work. We describe the characteristics

of each dataset, including the number of samples, the annotation process, and any

unique features that may affect model performance. Moreover, a brief discussion of

the context in which the datasets were collected and how they relate to the problem

of engagement recognition using keypoints was provided.

Following the dataset overview, we outline the data pre-processing tasks that we

employed to prepare the data for model training. This includes tasks such as data

cleaning, data normalization, feature extraction, and data augmentation. We provide

a detailed explanation of the process of preparing and transforming raw data into a

more suitable format and discuss how they affect the performance of the engagement

recognition model.

Finally, we describe the model architecture used for model deployment and the

results obtained from our experiments. We give an overview of the model’s design,

including the specific layers and activation functions used. We also discuss the training

process, including the hyperparameters and optimization techniques used. We outline

the evaluation criteria, such as accuracy, and F1 score, that was used to rate the
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performance of the model. We also explore the limits of our strategy and some

directions for further research. The data, model, and assessment criteria utilized in

our engagement recognition tests are all thoroughly covered in this chapter.

7.1 Transfer Learning within CRI datasets

Utilizing data-driven approaches in HRI poses challenges due to the small and context-

specific datasets, particularly in cases involving children with autism, where obtaining

a sufficient number of manually labelled training samples can be expensive and time-

consuming. However, there is a need for algorithms that can effectively learn from

limited labelled training data by drawing on related labelled data or data with differ-

ent distributions.

One potential solution to this challenge is transfer learning. This is a supervised

machine learning approach that entails storing information learned from solving one

issue and using it to solve another that is related. Unlike traditional machine learning

methods, transfer learning attempts to transfer information from a prior task to a

target task, enabling the re-training of a model with a different dataset and class

distribution while requiring fewer data for training. Although transfer learning is

commonly used in image recognition, its application in engagement classification using

keypoints has not been extensively explored.

To increase the accuracy percentage of engagement label recognition for children

diagnosed with ASD interacting with social robots in the QAMQOR dataset, we

leveraged transfer learning techniques. Specifically, we utilized PInSoRo dataset to

train our engagement recognition model using OpenPose keypoints.

We describe the processes taken to train our model using transfer learning, in-

cluding the selection of the source dataset, the extraction of relevant features, and

the fine-tuning of the model for the target dataset. A detailed explanation of how

the model was adapted for the QAMQOR dataset, including any modifications to the

architecture or hyperparameters was also provided.
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7.1.1 Methodology

To enhance the accuracy of engagement label classification in the QAMQOR dataset,

we explored the concept of transferring knowledge obtained from a similar dataset.

After carefully analyzing the content of various HRI datasets (as discussed in

Section 2.8), we chose to utilize the PInSoRo dataset to train our initial model for

engagement recognition. The decision to use the PInSoRo dataset was based on

several factors. Firstly, it is publicly available, making it easily accessible for other

researchers to replicate and extend our work.

The movements and facial expressions of children with autism are different from

typically developed children from a medical perspective. But from a computational

perspective, movement can be described by the location of joints, while facial expres-

sions can be described by the shape changes of the location of facial features. In

other words, the characteristics of the samples are the same, but the feature values

may be different because both children with autism and typically developed exhibit

human-like movements and expressions. Second, it provides an engagement label for

each frame, which is similar to the QAMQOR dataset, allowing us to create a model

that is more generalizable across different datasets. Moreover, PInSoRo stores fea-

ture extracted using the OpenPose library in a JSON file format, making the features

extracted from this dataset very similar to the ones in the QAMQOR dataset.

In Section 2.8.5, we provide a more detailed overview of the PInSoRo dataset,

including its characteristics and any unique features that may have an impact on

the model’s performance. Further, we discuss the steps taken to adapt the PInSoRo

dataset for engagement recognition in the QAMQOR dataset, including any modifi-

cations made to the model architecture or hyperparameters.

Data Pre-Processing

The pre-processing of the PInSoRo dataset involved several steps to ensure the data

was cleaned and prepared for analysis. First, we combined individual session CSV files

into one, taking into account the different interaction conditions present in the dataset
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(child-robot, child-child, and both). Therefore, we created a more comprehensive

dataset that could be used for a variety of analyses. Figure 7-3 shows the steps for

pre-processing the data.

Next, we removed rows with ‘NAN’ values for keypoints that were not recognized

by OpenPose. This step was important because it allowed us to focus on the keypoint

features that were shared between the PInSoRo dataset and the QAMQOR dataset.

However, in doing so, several non-shared keypoints between the datasets were deleted,

which is an important consideration when comparing the results of our analyses.

To label the engagement levels in the PInSoRo dataset, we used a scale of 0 to

5, similar to the QAMQOR dataset. For binary classification, we assigned levels

from 0 to 2 to class 0 (disengaged), while levels from 3 to 5 were labelled to class 1

(engaged). This was done to simplify the classification process and allow for a more

straightforward comparison between the two datasets.

Figure 7-1: The percentage of distribution of binary engagement class in the PInSoRo
dataset

The frequency distribution of classes for each interaction condition in both binary

and multi-class classifications is presented in Figure 7-1 and in Figure 7-2, respectively.

The QAMQOR dataset was used with OpenPose features in its original condition,

which means that no pre-processing steps were taken to modify the dataset before

it was used for analysis. By contrast, the PInSoRo dataset required several pre-
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Figure 7-2: The percentage of distribution of engagement levels for multi-class clas-
sifications in the PInSoRo dataset

processing steps to clean and prepare it for analysis. Overall, these pre-processing

steps were crucial to ensure that our analyses were based on accurate and reliable

data.

Neural Network Architecture

Neural network (NN) architecture is a crucial component in the process of building

a deep learning model. It determines the flow of information through the layers of

the network and how the input data is transformed into output predictions. In this

regard, there are many ways to improve and expand upon the basic architecture

described above.
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One approach that we used was expanding the architecture by increasing the

number of hidden layers. This helped to raise the capacity of the model to identify

more complex data patterns. However, it also increased the risk of overfitting the

model to the training data, which lead to poor performance on new, unseen data.

Therefore, we utilized regularization techniques such as dropout and weight decay to

mitigate this risk.

Figure 7-3: Neural Network architecture for the PInSoRo dataset

We implemented the code using open-source deep learning libraries like Keras1

with TensorFlow2 as the back end. We used a simple feedforward NN with three hid-

den layers and dropout regularization to prevent overfitting (Figure 7-3). The ReLu
1https://keras.io/
2https://www.tensorflow.org/
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activation function was used for the hidden layers. A sigmoid activation function

was used for a single neuron output layer. As this function is appropriate for binary

classification tasks like engagement recognition. While the Softmax activation func-

tion was used for the multi-class classification. We used for binary classification the

binary cross-entropy loss function. For the multi-class output, we utilized categorical

cross-entropy for predicting labels. Also, an RMSprop optimizer and accuracy as the

evaluation metric were used in both cases during the training. Moreover, we used the

EarlyStopping callback to automatically stop training if the validation loss does not

improve for two consecutive epochs. This can help prevent overfitting and save time

by stopping training early if the model has already converged.

Transfer Learning

The PInSoRo datasets were used to train each multi-class and binary classification

issue using three modalities (𝑀1, 𝑀2, and 𝑀3) and three conditions (child-robot,

child-child, and both). After pre-training the models, the output layers were frozen

to prevent further training, and new models were created utilizing the pre-trained

models’ transferred information. The information from the PInSoRo models was

then used to create the new models. The same architecture as the previously trained

models were used to train these new models on the QAMQOR datasets with three

modalities (Figure 7-4). Confusion matrices were plotted based on each transfer

model, and the QAMQOR test set was used to assess the models’ correctness.

The choice of transfer learning approach was determined based on the similarity

between the target dataset and the pre-trained dataset. Freezing the layers was

used when the target dataset was significantly different from the pre-trained dataset,

while fine-tuning was used when the target dataset had some similarities with the

pre-trained dataset.

To ensure the best possible accuracy, the performance of the transferred models

was evaluated by F1 score, confusion matrices and accuracies. Additionally, different

NN architectures and hyperparameters were experimented with to find the optimal

combination for each specific modality within the dataset.
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Figure 7-4: Transfer Learning approach for the QAMQOR from the PInSoRo dataset

7.1.2 Results

We conducted experiments with different classification problems and modalities. As in

Section 6 modality that consists of face features showed higher accuracy of engagement

recognition, we decided to examine three modalities of two datasets PInSoRo and

QAMQOR:

• 𝑀1 which consists of face keypoints only,

• 𝑀2 which consists of body keypoints only,

• 𝑀3 which consists of both face and body keypoints.

We used the Scikit machine learning library [150] to split the datasets into train-

ing, testing, and validation set in ratios of 80%, 10% and 10%, respectively. The
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experiments and analyses were run on a machine with an 8-core CPU i7 and NVIDIA

GeForce RTX 2060 graphics card, which has a total memory of 16 GB.

Before applying the transfer learning approach, we evaluated the NN algorithm on

various classification problems for each dataset. Table 7.1 demonstrates the results of

accuracy and F1 score of engagement recognition on the PInSoRo dataset using three

different modalities: 𝑀1, 𝑀2, and 𝑀3. The results are presented for each condition

separately. Whereas, Table 7.2 shows the experimental results of QAMQOR dataset.

Table 7.1: Experimental results of accuracy and F1 score of engagement recognition
on PInSoRo dataset

M1 modality M2 modality M3 modalityConditions ACC, % F1, % ACC, % F1, % ACC, % F1, %
Binary classification

Child-Robot 65.77 64.87 78.44 64.2 73.27 61.4
Child-Child 64.87 76.98 66.39 75.79 65.48 77.78
Both 61.63 69.98 61.79 71.7 64.77 65.89

Multi-class classification
Child-Robot 52.68 35.64 55.47 42.97 56.24 43.01
Child-Child 37.96 8.49 43.61 16.74 43.25 12.07
Both 36.92 5.92 43.01 13.6 43.57 16.51

We used the PInSoRo dataset to perform transfer learning under a variety of

scenarios, including child-robot, child-child, and a mix of both. We evaluated engage-

ment recognition classifiers that were binary and multi-class. We decided to report

accuracy together with an F1 score, as our data is highly imbalanced. And the F1

score provides a better performance assessment of the model with such data. We

should note that the higher F1 score the better model is.

Child-Robot Condition

The results for the Child-Robot condition show that using the 𝑀2 modality, which

includes only body keypoints, achieved the highest accuracy of 78.44% compared to

the 𝑀1 modality, which includes only face keypoints, and the 𝑀3 modality, which

includes both face and body keypoints. The accuracy for the 𝑀1 modality is 65.77%
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and for M3 it is 73.27%. However, the F1 score for M1 is the highest (64.87%) among

the three modalities, followed by M2 (64.2%) and M3 (61.4%). This suggests that

for engagement recognition in the Child-Robot condition, body movements may be

more important than facial expressions.

On the other hand, the F1 score for the 𝑀3 modality was the lowest among the

three modalities, which may indicate that facial expressions together with body pose

are not sufficient for accurately recognizing engagement in this condition.

In the multi-class classification problem, the model performs better when using

the 𝑀3 modality compared to 𝑀1 or 𝑀2. The accuracy for 𝑀3 is 56.24%, while

for M1 it is 52.68% and for M3 it is 55.47%, which means that the model is correct

in its prediction slightly more than half of the time. Similarly, the F1 score for M3

is the highest (43.01%) among the three modalities, followed by 𝑀2 (42.97%) and

M1 (35.64%). Overall, for the multi-class classification problem, the accuracy and F1

score are lower compared to the binary classification problem, as expected.

Overall, these results suggest that a combination of both facial expressions and

body movements is important for recognizing engagement in the Child-Robot condi-

tion, and that body movement may be more important for achieving high accuracy

in this task.

Child-Child Condition

In the binary classification problem, the Child-Child condition the accuracy of en-

gagement recognition achieved a value of 64.87% and the F1 score of 76.98% using

𝑀1 modality for face keypoints. While using the 𝑀2 modality for body keypoints,

the accuracy increased to 66.39% with an F1 score of 75.79%, which is a relatively

small improvement over the M1 modality. Combining both face and body keypoints

(M3 modality) resulted in accuracy of 65.48% and F1 score of 77.78%, which indicates

a better balance between precision and recall. This result is the best performance in

the binary classification task among all modalities.

In the multi-class classification problem, the accuracy of engagement recognition

achieved a value of 37.96% and F1 score of 8.49% using 𝑀1 modality for face key-
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points. However, using the 𝑀2 modality for body keypoints, the accuracy improved

to 43.61% with an F1 score of 16.74%, which is a relatively significant improvement

over the M1 modality. 𝑀3 modality achieved accuracy of 43.25% and an F1 score of

12.07%, which is a slightly lower accuracy than the 𝑀2 modality.

Overall, for the child-child conditions, using the 𝑀2 modality for body keypoints

is the best choice for recognizing engagement with higher accuracy and F1 score in

both binary and multi-class classification tasks. However, when both face and body

keypoints are combined, the performance is still better than using only face keypoints

(M1 modality) for the binary classification task, but not as good as 𝑀2 modality for

the multi-class classification task.

Combination of Both Conditions

In binary classification, the accuracy and F1 scores were observed to be lower for

the “Both” condition compared to the “Child-Robot” and “Child-Child” conditions

in all three modalities. These results suggest that engagement recognition for the

“Both” condition is more challenging than the other two conditions. Among the three

modalities, the 𝑀1 modality performed the worst, achieving the lowest accuracy with

a value of 61.63% and an F1 score of 69.98%.

In the multi-class classification task, the 𝑀1 modality once again achieved the

lowest accuracy among all three modalities and conditions, with a value of 36.92%, and

the F1 score was found to be 5.92%. The accuracy improved slightly during the 𝑀2

modality, achieving 43.01%, while the F1 score was found to be 13.6%. Furthermore,

the accuracy increased among the three modalities in the “Both” conditions with

values of 43.57% and an F1 score of 16.51%. However, these results indicate that the

model’s overall performance was relatively poor.

It is necessary to highlight that the model’s performance achieved generally lower

for the “Both” condition in comparison with the other two conditions (Child-Robot

and Child-Child). This observation suggests that recognizing engagement levels in

communications between both a child and a robot, and between two children, may be

more challenging than recognizing engagement levels in interactions between a child
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and a robot or between two children separately.

QAMQOR after Transfer Learning

Table 7.2: Experimental results of accuracy and F1 score of engagement recognition
on QAMQOR dataset

Classes M1 modality M2 modality M3 modality
ACC, % F1, % ACC, % F1, % ACC, % F1, %

Binary 73.13 61.78 73.12 61.78 73.13 61.78
Multi-class 32.69 0 34.91 0.28 33.67 0

Our experiments applying transfer learning from the PInSoRo dataset did not

yield improved performance compared to our baseline model. The accuracy and F1

score remained the same across all three modalities and conditions. These results

suggest that the PInSoRo dataset may not be directly transferable to our target

dataset for engagement recognition, or that the architecture of our model did not

allow for the effective transfer of knowledge. Further investigation may be necessary

to determine the cause of these results.

7.1.3 Discussion

According to the results of our experiments, the recognition of engagement levels in

children with autism and typically developed children is a challenging task. It is

feasible through the use of computer vision techniques. Our findings demonstrate

that the accuracy and F1 scores for engagement recognition were lower for the “Both”

condition in comparison with the “Child-Robot” and “Child-Child” conditions, indi-

cating that the engagement recognition in interactions between a child and a robot

and between two children is more challenging than in interactions between a child

and a robot or between two children separately.

Our results also revealed that the performance of the model for “Both” condition

was generally lower in comparison with the other two conditions, suggesting that it
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could be more challenging to recognize engagement levels in sessions during inter-

action of both a child and a robot and between two children, than in interactions

between a child and a robot or between two children separately. However, our find-

ings suggest that transfer learning approaches may not necessarily result in improved

performance in this particular task.

It is worth noting that while the movements and expressions of children with

autism may differ from typically developed children, our approach using positional

displacement of joints and facial features was able to effectively capture these dif-

ferences and recognize engagement levels in both groups. Our results highlight the

importance of developing accurate and effective algorithms for recognizing engage-

ment levels in children with autism, as this can have significant implications for their

social and emotional development. Further research is required to improve the accu-

racy and reliability of the engagement recognition model and to better understand the

differences in engagement levels between children with autism and typically developed

children.

7.1.4 Concluding Remarks

We examined H3 hypothesis that states, utilizing transfer learning from a CRI dataset

(PInSoRo dataset) would enhance the engagement recognition accuracy for the QAMQOR

dataset.

Unfortunately, after applying the transfer learning approach, we did not ob-

serve any improvement in the engagement recognition performance in the QAMQOR

dataset. The accuracy (73.13%) and F1 score (61.78%) remained the same as before

applying the transfer learning technique. This suggests that the features learned from

the PInSoRo dataset were not directly applicable to our dataset or were not sufficient

to improve the performance.

While transfer learning did not increase the accuracy of the QAMQOR dataset,

we cannot conclude that it is not effective due to its limitations. The primary contri-

bution of this section is in establishing a methodology for researching the formulated

problem, which can guide future research in this area. As such, we have proposed
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several recommendations for future work:

• To explore other available HRI datasets such as the DREAM and MHHRI

datasets. The DREAM dataset may provide more definitive outcomes as it was

gathered from children with autism like the QAMQOR dataset. It is recom-

mended that the two datasets used for transfer learning should share as many

features as possible for optimal results.

• More NN architectures can be tried, varying the combination of hidden layers

and the nodes number in each layer. The method could benefit from using Deep

Learning and RNN.

Creating a baseline network allowed us to start every transfer learning with iden-

tical conditions, making comparisons simple. Every transfer learning was performed

with 5-fold cross-validation for the training and validation data. The transfer learn-

ing ran for 50 epochs, weights were saved on each epoch and we could then evaluate

whichever test set we required with the weights that had the lowest validation loss.

7.2 Transfer Learning within Activity-based subsets

In the previous section, we tested our hypothesis that transfer learning from a similar

dataset would lead to improved accuracy in recognizing engagement levels for the

QAMQOR dataset. However, our experiment showed that it failed, as there was

no improvement in engagement recognition accuracy for both binary and multi-class

classification problems (see Section 7.1.2).

Nonetheless, there is another transfer learning approach that is worth exploring:

transferring between datasets with similar features. To this end, we will leverage

the concept of transfer learning to fine-tune a model trained on one activity for

classification in the other activity data within the QAMQOR dataset.
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7.2.1 Methodology

Data

This section describes the data used in our transfer learning experiments. The

QAMQOR dataset comprises eight activities that were split by ID: “Songs,” “Dances,”

“Touch Me,” “Follow Me,” “Imitation,” “Storytelling,” “Emotions,” and “Hello&Bye.”

Each subset was evaluated separately to assess its engagement level. We excluded

the “Social Acts” subset from our transfer learning experiments. Because it was in-

troduced only in the last cohort of participants and not present in all data.

To evaluate the engagement level of children during each activity, we extracted

OpenPose features to obtain keypoints of the child’s face, body, and hands. These

features were used to train engagement recognition models, as described in Chapter

6. The consistency in the distribution of OpenPose features across activity-based

subsets in the QAMQOR dataset is crucial for transfer learning experiments since

pre-trained models are leveraged to improve the performance of a new task. Having

similar data distributions helps ensure that the pre-trained models transfer well to

the new task.

Neural Network Model

The Keras Sequential API was used to implement NN model with several layers of

dense neurons, dropout regularization, and activation functions in the output layer.

This parameter plays a crucial role in the size of the weight matrix along with the

bias vector. We used the non-linear Rectified Linear Unit (ReLU) function for the

activation parameter, which outputs the input directly if it is positive, and zero other-

wise. Moreover, it adds more sensitivity to the weighted sum. The model architecture

consists of 7 hidden layers, each with a different number of neurons, and an output

layer with 6 neurons similar to the number of classes in the classification problem.

Similarly to the previous experiment, the Adam optimizer is used for training the

model with the categorical cross-entropy loss function, for multi-class classification

problems. And binary cross-entropy is used for the loss function, for binary classifica-
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tion problems. The two metrics, F1-score and accuracy are used to assess the model

during training and testing.

The dropout layers are used to avoid overfitting by driving the surviving neurons

to acquire more robust features by randomly removing a portion of the neurons during

training. We set the number of epochs to 50, the learning rate to 0.01, the chunk

length to 200, and the batch size to 1000 while varying the hidden size and layer

count.

Experiments

In order to conduct the experiment the following procedures were performed:

1. QAMQOR dataset was split based on the activity ID, resulting in eight dif-

ferent subsets: Songs, Dances, Touch Me, Follow Me, Imitation, Storytelling,

Emotions and Hello&Bye.

2. Each activity subset was saved as a separate CSV file for further processing.

3. A NN model was created to further transfer the learning approach as the back-

bone architecture.

4. One activity subset was selected to fine-tune the pre-trained model. The model

was trained on this subset using an 80/20 training/validation split.

5. The learned weights from the domain activity were used to initialize a new

model for each of the remaining activity subsets.

6. The process was repeated five times per activity subset for cross-validation.

7. Steps from 4 to 6 repeated for all remaining subsets of activities.

This detailed methodology provides a clearer understanding of the experimental

procedures and can be used to replicate the experiment.
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7.2.2 Results

After all five folds have been processed, the mean and standard deviation of the

validation accuracies and F1 scores are printed to assess the performance of the model

using cross-validation. To enhance clarity and precision, we have chosen to present

our findings by providing results for each activity subset separately. The cells in

green indicate an improvement in the accuracy and F1 score after applying transfer

learning, while the cells in red indicate a decrease in accuracy and F1 score.

“Songs” Activity

Table 7.3 presents the achieved results of engagement recognition accuracy and F1

score of the model on the “Songs” activity subset before and after applying the transfer

learning approach. During binary classification the “Songs” activity subset achieved

72.24% accuracy and 83.88% F1-score. When the model was pre-trained on the

“Touch Me” activity and then fine-tuned on the “Songs” activity subset, we achieved

the highest improved accuracy and F1 score with values of 74.81% and 85.56%, re-

spectively. As can be seen from Table 7.3, the results show that applying transfer

learning has improved the accuracy and F1 score of the model pre-trained on the four

activities (“Dances,” “Touch Me,” “Imitation” and “Emotions.”).

On the other hand, we noted that the accuracy and F1 score for multi-class classi-

fication remained the same while pre-trained on activities, such as “Touch Me,” “Im-

itation,” “Emotions” and “Hello&Bye.” When the model pre-trained on the “Dances”

activity, the F1 score was slightly improved compared to the values that were achieved

without applying transfer learning.

“Dances” Activity

Table 7.4 shows the achieved results of engagement recognition accuracy and F1

score of the model on the “Dances” activity subset before and after applying the

transfer learning approach. During binary classification the “Dances” activity subset

achieved 74.4% accuracy and 85.32% F1-score. When the model was pre-trained
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Table 7.3: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Songs” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Songs 72.24 83.88 32.51 9.81
Domain Activity After transfer learning
Dances 73.32 84.6 32.51 9.82
Touch Me 74.81 85.56 32.51 9.81
Storytelling 69.63 82.06 23.62 7.64
Imitation 73.9 84.98 32.51 9.81
Emotions 74.45 85.33 32.51 9.81
Follow Me 64.17 76.55 31.08 11.6
Hello&Bye 68.49 81.23 32.51 9.81

on the “Touch Me” activity and then fine-tuned on the “Dances” activity subset,

we achieved the highest improved accuracy and F1 score with values of 74.67% and

85.48%, respectively. As can be seen from Table 7.4, the results show that applying

transfer learning has improved the accuracy and F1 score of the model pre-trained

on the two activities (“Touch Me” and “Follow Me.”).

Table 7.4: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Dances” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Dances 74.4 85.32 33.46 10.04

Domain Activity After transfer learning
Songs 73.32 84.6 33.45 10.02
Touch Me 74.67 85.48 33.46 10.02
Storytelling 71.22 83.15 18.96 6.3
Imitation 74.07 85.09 33.46 10.02
Emotions 74.43 85.33 33.46 10.02
Follow Me 66.3 78.5 33.31 13.3
Hello&Bye 70.46 82.59 33.46 10.02

On the other hand, we noted that the accuracy and F1 score for multi-class clas-

sification remained the same while pre-trained on activities, such as “Touch Me,”
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“Imitation,” “Emotions” and “Hello&Bye.” However, when the model pre-trained on

the “Storytelling” activity, the accuracy and F1 score were dramatically decreased

compared to the values that were achieved without applying transfer learning.

“Touch Me” Activity

Table 7.5: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Touch Me” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Touch Me 77.38 87.25 32.25 9.75

Domain Activities After transfer learning
Songs 74.67 85.48 32.25 9.75
Dances 74.67 85.48 32.31 9.86
Storytelling 72.76 84.17 23.72 7.67
Imitation 74.89 85.63 32.25 9.75
Emotions 75.17 85.81 32.25 9.75
Follow Me 68.57 80.32 32.75 11.76
Hello&Bye 72.19 83.76 32.25 9.77

Table 7.5 shows the achieved results of engagement recognition accuracy and F1

score of the model on the “Touch Me” activity subset before and after applying the

transfer learning approach. During binary classification the “Touch Me” activity sub-

set achieved 77.38% accuracy and 87.25% F1-score. In contrast to the previous two

activities, we did not notice any improvements, only a decrease in all values. And

the lowest accuracy was achieved while the model was pre-trained on the “Follow Me”

activity subset.

On the other hand, we noted improvements in the accuracy and F1 score for multi-

class classification while pre-trained on activities, such as “Dances,” “Follow Me” and

“Hello&Bye.” When the model was pre-trained on the “Follow Me” activity and

then fine-tuned on the “Touch Me” activity subset, we achieved the highest improved

accuracy and F1 score with values of 32.75% and 11.76%, respectively.
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“Storytelling” Activity

Table 7.6: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Storytelling” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Storytelling 67.01 80.25 23.91 7.73
Domain Activity After transfer learning
Songs 72.76 84.17 23.24 7.54
Dances 72.76 84.17 23.24 7.56
Touch Me 72.76 84.17 23.24 7.54
Imitation 73.32 84.55 23.24 7.54
Emotions 73.54 84.69 23.24 7.54
Follow Me 68 80.08 22.26 8.86
Hello&Bye 71.15 83.05 23.25 7.56

Table 7.6 shows the achieved results of engagement recognition accuracy and F1

score of the model on the “Storytelling” activity subset before and after applying the

transfer learning approach. During binary classification the “Storytelling” activity

subset achieved 67.01% accuracy and 80.25% F1-score. As can be seen from Table

7.6, we noted improvements in the accuracy and F1 score for binary classification

while pre-trained on all activities. And, when the model was pre-trained on the

“Emotions,” we achieved the highest improved accuracy and F1 score with values of

73.54% and 84.69%, respectively.

On the other hand, we noted that the accuracy and F1 score for multi-class clas-

sification slightly decreased while pre-trained on all activities compared to the values

that were achieved without applying transfer learning. And when the model pre-

trained on the “Follow Me” activity, the result showed the lowest values of accuracy

with values of 22.26%. In contrast, the F1 score increased from a value of 7.73% to

8.86%.
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Table 7.7: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Imitation” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Imitation 75.55 86.07 34.75 10.31
Domain Activity After transfer learning
Songs 73.32 84.55 34.75 10.32
Dances 73.32 84.55 34.75 10.32
Touch Me 73.32 84.55 34.75 10.31
Storytelling 73.32 84.55 25.85 8.22
Emotions 73.87 84.92 34.75 10.31
Follow Me 69.03 80.89 32.35 12.2
Hello&Bye 71.89 83.56 34.74 10.32

“Imitation” Activity

Table 7.7 shows the achieved results of engagement recognition accuracy and F1 score

of the model on the “Imitation” activity subset before and after applying the trans-

fer learning approach. During binary classification the “Imitation” activity subset

achieved 75.55% accuracy and 86.07% F1-score. Similar to the “Touch Me” activity,

we did not notice any improvements, only a decrease in all values. And the lowest

accuracy was achieved while the model was pre-trained on the “Follow Me” activity

subset.

On the other hand, we noted that the accuracy for multi-class classification re-

mained the same while pre-trained on activities, such as “Songs,” “Dances,” “Touch

Me” and “Emotions.” However, when the model pre-trained on the “Storytelling” ac-

tivity, the accuracy and F1 score were dramatically decreased compared to the values

that were achieved without applying transfer learning.

“Emotions” Activity

Table 7.8 shows the achieved results of engagement recognition accuracy and F1 score

of the model on the “Imitation” activity subset before and after applying the trans-

fer learning approach. During binary classification the “Emotions” activity subset
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achieved 76.66% accuracy and 86.78% F1-score. Similar to the “Touch Me” and “Im-

itation” activities, we did not notice any improvements, only a decrease in all values.

And the lowest accuracy was achieved while the model was pre-trained on the “Follow

Me” activity subset.

Table 7.8: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Emotions” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Emotions 76.66 86.78 42.65 11.96
Domain Activity After transfer learning
Songs 73.87 84.92 42.65 11.96
Dances 73.87 84.92 42.65 11.96
Touch Me 73.87 84.92 42.65 11.96
Storytelling 73.87 84.92 19.12 6.42
Imitation 73.87 84.92 42.65 11.96
Follow Me 69.91 81.57 38.49 13.85
Hello&Bye 72.57 84.02 42.66 11.98

On the other hand, we noted that the accuracy and F1 score for multi-class classi-

fication remained the same while pre-trained on activities, such as “Songs,” “Dances,”

“Touch Me,” and “Imitation.” And, when the model pre-trained on the “Storytelling”

activity, the accuracy and F1 score were dramatically decreased compared to the val-

ues that were achieved without applying transfer learning. However, when the model

pre-trained on the “Hello&Bye” activity, the accuracy (42.66%) and F1 score (11.98%)

were slightly increased compared to the values that were achieved without applying

transfer learning.

“Follow Me” Activity

Table 7.9 shows the achieved results of engagement recognition accuracy and F1

score of the model on the “Follow Me” activity subset before and after applying the

transfer learning approach. During binary classification, the “Follow Me” activity

subset achieved 57.92% accuracy and 70.71% F1-score.
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Table 7.9: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Follow Me” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Follow Me 57.92 70.71 32.08 17.6
Domain Activity After transfer learning
Songs 72.79 84.17 23.33 8.96
Dances 72.79 84.17 23.33 8.96
Touch Me 72.79 84.17 23.33 8.96
Storytelling 72.79 84.17 3.75 1.51
Imitation 72.79 84.17 23.33 8.96
Emotions 72.79 84.17 23.33 8.96
Hello&Bye 71.78 83.47 23.33 8.96

As can be seen from Table 7.9, we noted the highest improvement in accuracy and

F1 score (with values of 72.79% and 84.17%, respectively) for binary classification

while pre-trained on all activities, except for “Hello&Bye.”

On the other hand, we see from Table 7.9 that the accuracy and F1 score for

multi-class classification decreased while pre-trained on all activities. Also, when

the model pre-trained on the “Storytelling” activity, the accuracy and F1 score were

dramatically decreased compared to the values that were achieved without applying

transfer learning.

“Hello&Bye” Activity

Table 7.10 shows the achieved results of engagement recognition accuracy and F1 score

of the model on the “Hello&Bye” activity subset before and after applying the transfer

learning approach. Similar to the “Storytelling” and the “Follow Me” activities, during

binary classification, the “Hello&Bye” activity subset achieved 64.73% accuracy and

78.58% F1-score. As can be seen from Table 7.10, we noted the highest improvement

in accuracy and F1 score (with values of 71.78% and 83.47%, respectively) for binary

classification while pre-trained on all activities, except for “Follow Me.”

Moreover, for multi-class classification, we noted that the accuracy and F1 score
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Table 7.10: The results of accuracy and F1 score before and after applying the transfer
learning approach for the “Hello&Bye” activity subset.

Binary Multi-class
Before transfer learning

Target Activity ACC, % F1, % ACC, % F1, %
Hello&Bye 64.73 78.58 26.05 8.3
Domain Activity After transfer learning
Songs 71.78 83.47 27.12 8.57
Dances 71.78 83.47 27.1 8.52
Touch Me 71.78 83.47 27.1 8.52
Storytelling 71.78 83.47 24.51 7.87
Imitation 71.78 83.47 27.1 8.52
Emotions 71.78 83.47 27.1 8.52
Follow Me 69.06 80.96 25.73 10.05

for multi-class classification slightly increased while pre-trained on activities, such

as “Songs,” “Dances,” “Touch Me,” “Imitation” and “Emotions.” However, when the

model pre-trained on the “Storytelling” the accuracy and F1 score were dramatically

decreased compared to the values that were achieved without applying transfer learn-

ing.

7.2.3 Discussion

Transfer learning results were highly volatile and required further investigation before

reporting. The number of folds was limited to 5 to train per transfer learned model.

According to the results, we evaluated the performance of their engagement recog-

nition model on eight different activities. We compared the accuracy and F1 score of

the model before and after applying transfer learning, and observed how the model’s

performance varied across different activities.

For example, the results show that applying transfer learning has generally im-

proved the accuracy and F1 score of the model for binary classification in most activ-

ities. For instance, when the model was pre-trained on the “Touch Me” activity and

then fine-tuned on the “Songs” activity subset, the highest improved accuracy and

F1 score were achieved, with values of 74.81% and 85.56%, respectively. A similar
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trend was observed in the “Dances” and “Storytelling” activities. On the other hand,

the accuracy and F1 score for multi-class classification remained mostly the same or

slightly decreased while pre-trained on activities such as “Touch Me,” “Imitation,”

“Emotions,” and "Hello&Bye.” However, in the “Touch Me” and “Imitation” activi-

ties, no improvement was observed, and all values decreased after applying transfer

learning. Moreover, in the “Touch Me” activity, the lowest accuracy was achieved

while the model was pre-trained on the “Follow Me” activity subset.

These findings suggest that the effectiveness of transfer learning depends on var-

ious factors, such as the similarity between the pre-training and fine-tuning tasks,

the size and diversity of the datasets, and the complexity of the model architecture.

Therefore, it is important to carefully select the pre-training and fine-tuning strategies

based on the specific task and dataset at hand.

7.2.4 Concluding Remarks

One group of data is used as an initialization for the classification of another group of

data through a series of techniques referred to as transfer learning. We have only so

far looked into training across all activities in an experiment, followed by fine-tuning

the entire network on a particular activity. There are several more transfer learning

methods that might be effective.

In conclusion, the results indicate that transfer learning might be a useful method

for enhancing the performance of engagement recognition models for binary classi-

fication problems, but it may not necessarily lead to better results in multi-class

classification tasks. The pre-training activity selected might also have a big influence

on the model’s performance. The results can help practitioners and researchers in the

field of engagement recognition increase the F1 score and accuracy of their models.
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Chapter 8

Conclusions

The structure of the chapter is aimed to provide a clear and concise overview of our

research and highlight the main insights and contributions that we have made in the

field. In general, this thesis addressed the role of social robots and engagement in

long-term CRI. More specifically, we studied the engagement during the interactions

between children diagnosed with autism and robots.

8.1 Long-term RAAT

Children with ASD typically experience difficulties in adaptability skills, interper-

sonal synchrony, self-initiation, and eye contact [14]. They may also resist engaging

with human therapists [233], making effective interaction challenging [113, 134]. Re-

cent research indicates that robots are well-received by children with ASD, positively

impacting their imitation abilities, eye contact, behavioural reactions, joint attention,

and repetitive or stereotyped behaviours [20, 151]. Furthermore, autistic individu-

als often acquire life skills more effectively when interacting with robots than with

humans [17, 64, 151].

Research on autism requires intervention-based experiments that focus on design-

ing and conducting special therapy to assist in the improvements of social and com-

munication skills. However, there is an issue of generalizability, as individuals with

autism exhibit varying degrees of symptoms and may respond differently to therapy.
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As a result, therapy plans are often customized and tailored to each child’s individual

needs and preferences.

In this thesis, we conducted a long-term RAT for children with ASD and ADHD,

examining an adaptive experience that brought positive changes in children’s be-

haviours through long-term engagement. We investigated whether employing familiar

activities for each child could enhance engagement levels across sessions, as hypoth-

esized in H1 (see Section 1.6). We conducted qualitative and quantitative analyses

of interactions of children with autism with the NAO robot during RAAT and found

statistically significant differences in all four measures between adaptive and non-

adaptive sessions. These findings support the hypothesis that personalized sessions

are more effective for children with ASD. As described in Section 4, implementing per-

sonalized rehabilitation and assessment techniques for children with ASD and ADHD

is crucial. Based on therapist feedback from our study, we suggest designing activities

that incorporate a triadic setting, including typically developed children such as the

child’s sibling [159].

In summary, this research adds to the literature on building an adaptive approach

based on ASD children’s needs and differences, focusing on the long-term commitment

to interventions.

8.2 QAMQOR Dataset

As mentioned in the previous Section 2, engagement is vital in HRI, not just for

controlling interaction design and implementation but also for enabling highly so-

phisticated interactions to respond to users. To indicate the effect of robots within

autism therapy and the quality of interaction several projects have measured the en-

gagement of the children [107]. The concept of engagement is interpreted differently

[143]. In our work, engagement is defined as one’s active and appropriate involvement

in the task with the robot and/or the therapist, which includes attention, involve-

ment, interest, immersion, rapport, empathy, and stance [180]. Many scientific works

investigated the use of social cues to help and assess children’s engagement [148, 213].
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However, child behaviour is heterogeneous: the differences in facial expressions, body

gestures and tone of voice.

In order to test our H2 that states, recognition of engagement would be more ac-

curate if the model trains on multimodal data compared to the single type of data, we

generated a new QAMQOR dataset (Section 5) to evaluate standard machine learn-

ing algorithms for the engagement recognition task. The QAMQOR is a multimodal

dataset of behavioural data recorded from 34 children diagnosed with ASD, covering

194 therapy sessions and more than 48 hours of video. We evaluated these multimodal

data (facial and body modalities) in conjunction with four different split methods,

namely Random, Child Independent, Session Independent, and Activity Independent.

The highest percentage of accuracy during testing was attained through examination

of OpenPose keypoints, particularly during the Child Independent split, resulting in

a binary classification accuracy of 84.17% and a multi-class classification accuracy

of 43.21%. After analyzing the outcomes presented in Section 6, we can conclude

that body multimodal features demonstrate a higher level of precision when recog-

nizing engagement in both binary and multi-class classification tasks, particularly

in the Random split. Conversely, when conducting Child and Session Independent

splits, face multimodal features tend to yield better results. The experimental results

demonstrate that the accuracy of engagement recognition systems can be improved

by selecting an appropriate feature modality depending on the classification prob-

lem and split. While full-frame features may perform well in some situations, other

modalities may be more effective in addressing specific challenges.

In summary, as for the practical utility of the robots in a clinical environment,

the real-time engagement estimation model could allow therapists and caregivers to

detect small behavioural changes in children with ASD and keep track of them. In

addition, it provides a possibility for the therapists to monitor engagement. Finally,

the engagement recognition model will help to label new data and save resources and

time during the annotation process.
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8.3 Applying Transfer Learning Approach

Data-driven approaches in HRI face challenges due to small and context-specific

datasets, especially when dealing with children with autism. Obtaining a sufficient

number of manually labelled training samples can be expensive and time-consuming.

Nonetheless, there is a need for algorithms that can learn effectively from limited

labelled training data by utilizing related labelled data or data with different distri-

butions.

During this PhD research, we investigated the effectiveness of transfer learning in

utilizing multimodal features for engagement recognition in children diagnosed with

ASD.

The availability of publicly accessible CRI datasets, particularly those featuring

interactions between children with autism and robots, is limited, as discussed in

Section 2.8. Our research objective was to improve engagement recognition accuracy

using the transfer learning approach, by training the model on a comparable dataset

and identifying any transferable features between the typical population and the

population diagnosed with autism. To achieve this, we utilized the PInSoRo dataset, a

publicly available dataset featuring free-play interactions between typically developed

children and the NAO robot.

To test our H3, we applied transfer learning by pre-training a model on a similar

available CRI dataset and then fine-tuning it on the QAMQOR dataset. However,

the results (Section 7.1.2) showed that the engagement recognition accuracy decreased

after applying transfer learning, which led us to reject our hypothesis. Our results

showed that none of the multimodal features was transferable from the typical popu-

lation to the population diagnosed with ASD. This means that the features that are

effective in engagement recognition for typical children are not useful for engagement

recognition in children with ASD. These results emphasize the challenges of develop-

ing effective engagement recognition models for children with ASD, particularly when

dealing with small and context-specific datasets.

It is worth noting that while our experiment did not find transfer learning to be
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effective for the engagement recognition of children with ASD, this does not imply

that transfer learning is not a useful approach for this population. Further research is

needed to explore other potential factors that may affect the effectiveness of transfer

learning for engagement recognition in children with ASD.

However, the effectiveness of engagement recognition models may depend on the

context of the interaction and the type of activity performed by the robot. This

raises questions about the generalizability of engagement recognition models across

different robot activities.

We explored the generalizability of engagement recognition models by investigat-

ing whether knowledge can be transferred from one activity to another with similar

instances. Our experiment aimed to test H4, which states that we can transfer knowl-

edge from one activity to another with similar instances (face and body features)

using the transfer learning approach for engagement recognition. To achieve this, we

used the QAMQOR dataset, consisting of eight different robot activities, including

“Songs,” “Dances,” “Touch Me,” “Storytelling,” “Imitations,” “Emotions,” “Follow Me,”

and “Hello&Bye.” Specifically, we pre-trained an engagement recognition model on

one activity and evaluated its performance on other activities. By doing so, we aimed

to explore whether the knowledge gained from one activity could be applied to an-

other using transfer learning, a popular approach for improving model performance

with limited labelled data.

Based on the result, written in Section 7.2.2, transfer learning had a positive

impact on the model’s accuracy and F1 score in some activities but not in others.

For example, when pre-trained on the “Touch Me” activity, the model’s performance

did not improve when fine-tuned on the “Touch Me” or “Imitation” activity subsets

but did improve when fine-tuned on the “Dances” or “Hello&Bye” activity subsets.

Similarly, when pre-trained on the “Storytelling” activity, the model’s performance

improved for binary classification when fine-tuned on all activity subsets, but slightly

decreased for multi-class classification.

The findings from this experiment will contribute to a better understanding of the

generalizability of engagement recognition models in HRI and provide insights into
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developing more effective models that can be applied to various robot activities.

In summary, this thesis contributes to the existing knowledge of engagement recog-

nition in HRI for children with ASD, highlighting the need for tailored approaches and

models. Our findings underscore the importance of developing effective engagement

recognition models that can improve the quality of RAAT.

8.4 Limitations

While the RAAT shows potential, it is important to consider the limitations and

challenges associated with this approach. During the course of PhD research, there

are various limitations that need to be taken into account.

• Due to the COVID-19 pandemic, we encountered a limitation in data collection

as we were unable to gather the intended sample size of 100 children with autism

as originally planned.

• One of the limitations of using robots for therapy is that technical issues and

connectivity problems can arise, leading to dropped engagement levels of chil-

dren during their interaction with the robot.

• Due to time constraints, we were unable to implement a new model for engage-

ment recognition, and instead had to evaluate the QAMQOR dataset using only

standard machine learning algorithms.

• The accuracy of the results was limited due to the highly imbalanced and noisy

nature of the data, which made it difficult for the machine learning algorithms

to accurately classify the data.

• The experiment is limited by the fact that the QAMQOR dataset was utilized

in the analysis, but the PInSoRo dataset was used in the trial and was obtained

from typically developed children. In addition, there were a significant amount

of missing data points in the PInSoRo dataset, which may have impacted the

accuracy of the obtained model. In addition, the PInSoRo dataset only included
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18 keypoints of the body and lacked key features like keypoints for the left and

right hands, which limited the capabilities of the QAMQOR dataset by limiting

the features to 18 out of 25 keypoints of the body. The effectiveness of transfer

learning depends on the availability of a highly accurate model trained on good

data. Therefore, it may not be as effective due to the underlying differences in

neural mechanisms for learning and processing information.

• There was still room for further investigation with a larger dataset of children

with autism (for example, DREAM), which is necessary to determine the effi-

cacy of transfer learning techniques in this population.

8.5 Future Work

Despite the progress made in engagement recognition using HRI technology for chil-

dren with autism, several areas for future research exist.

First, while the use of multimodal features has shown promise in improving en-

gagement recognition accuracy, further research is needed to explore the potential of

additional modalities, such as physiological and psychological data.

Second, a standardized model for engagement recognition in children with autism

would facilitate comparisons between different studies and enable the development of

more effective and tailored approaches to therapy.

Third, it is necessary to explore larger and more diverse datasets that consist of

data from children with ASD. One possible approach is to use transfer learning with

similar datasets, such as the DREAM or MDCA dataset, to develop more robust and

generalizable engagement recognition models that can be applied to different settings

and scenarios.

Fourth, it is important to experiment with different neural network architectures,

including deep learning and recurrent neural networks, to improve the performance

of engagement recognition models. This can involve varying the number of hidden

layers and nodes in each layer to identify the optimal architecture for the specific task

of engagement recognition in children with ASD.
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Fifth, while interactive communication technologies show potential for improving

the lives of children with autism, more research is required to develop practical and

effective approaches to therapy. The future work outlined above will contribute to

addressing the challenges faced in engagement recognition using HRI technology and

ultimately improve the skills of children with autism.

Overall, this thesis provides a strong foundation for future research in the field

of interactive technologies for children with autism, and we anticipate the extension

and application of our findings in practice.
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Glossary

Adaptive sessions: RAT sessions that contain mostly seen activities by a child and

follow each child’s familiarity, preferences, and unique characteristics.

Engagement: Individual’s level of involvement, interest, attention, and active par-

ticipation in a particular activity, task, or interaction. A child who is engaged

is more likely to benefit from the therapy sessions, as they are actively partici-

pating, learning, and building essential social and cognitive skills.

Engagement recognition model: A machine learning model used to recognize and

assess the engagement levels of children with autism in the QAMQOR dataset.

Multimodal data: The collection and integration of information from modalities

during therapy sessions with children with autism. Our study employs different

visual data from different modalities.

Multi-session study: A research that involves interactions with participants over

multiple distinct sessions.

QAMQOR dataset: A valuable resource in the context of our research, specifically

designed to support the development and evaluation of engagement recognition

models for children with autism during therapy sessions.

Transfer learning: A machine learning technique where knowledge gained from one

activity/dataset is applied to improve performance on a target activity/dataset

to improve engagement recognition models.
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Valence: The emotional quality of an individual’s response during interactions with

a social robot in autism therapy sessions. We use behavioural observations to

measure facial expressions, body language, and vocalizations, which provide

valuable cues about the child’s emotional state.
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