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Abstract

We perform a detailed study of the dynamics of a nonlinear, one-dimensional oscillator

driven by a periodic force under hysteretic damping, whose linear version was originally

proposed and analyzed by Bishop in [1]. We first add a small quadratic stiffness term in

the constitutive equation and construct the periodic solution of the problem by a systematic

perturbation method, neglecting transient terms as t → ∞. We then repeat the analysis

replacing the quadratic by a cubic term, which does not allow the solutions to escape

to infinity. In both cases, we examine the dependence of the amplitude of the periodic

solution on the different parameters of the model and discuss the differences with the

linear model. We point out certain undesirable features of the solutions, which have also

been alluded to in the literature for the linear Bishop’s model, but persist in the nonlinear

case as well. Finally, we discuss an alternative hysteretic damping oscillator model

first proposed by Reid [2], which appears to be free from these difficulties and exhibits

remarkably rich dynamical properties when extended in the nonlinear regime.

1 Introduction

As engineering materials are used in increasingly mission-critical (and thus behavior-
critical) contexts, where no longer strength but also noise and vibration behavior matter
across a spectrum of operating frequencies, their nonlinear characteristics cannot afford
to be ignored [3]. Power law materials are used to describe more accurately the stiffness
behavior of most material continua [4], whereas for various springs and composite meta-
materials quadratic and cubic stiffness terms are appropriate [5, 6]. Since damping –and in
particular hysteretic damping–crucially affects the dynamical behavior of these nonlinear
models, we have decided to make this the focus of the present study, since research in this
direction has been rather limited. Thus, in this paper we discuss the numerical stability of
two highly influential (and by no means simple) mathematical models for hysteretic damp-
ing in the presence of nonlinearity: the complex stiffness model first introduced by Bishop
[1] and the internal friction model first introduced by Reid [2].

Many energy dissipation mechanisms arising in mechanical systems are characterized
by nonlinearities of various types. In many studies, hysteretic damping is considered as
the primary source of nonlinearity, even though other forms of inherently nonlinear terms
may also be present that can seriously affect the dynamics. In contrast with models that
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include nonlinear stiffness, systems whose only nonlinearity enters through damping are
often called ‘‘quasilinear’’ [7] and are considered accurate approximations of the underlying
dynamics, due to the absence of jump or bifurcation effects, which do not frequently occur
in practice.

In the absence of external forcing, if stiffness nonlinearities are small, their effect on the
oscillator’s behavior is expected to be minimal. However, in the case of periodic driving,
the nonlinear terms can seriously affect the amplitude of the periodic solution to which the
oscillations are attracted. In fact, under suitable parameter values, they may render the
solution unstable, and steer the motion in a chaotic region, from which it may even escape
to infinity, depending on the form of the potential (see e.g. [8]).

Thus, one of the main objectives of this work, from a mechanical engineering point of
view, is to ensure that hysteretically damped oscillators respond predictably under periodic
forcing, exhibiting oscillations whose amplitude, frequency and phase can be efficiently
controlled. This is especially significant, as we shall demonstrate, in the highly realistic
case that such oscillators operate in the presence of weakly nonlinear stiffness terms.

In a seminal paper [1] R. E. D. Bishop introduced a complex hysteretic damping term
for linear springs, as an improvement over the usual viscous damping models in which
dissipation is simply proportional to the velocity of the oscillator ẋ(t). In Bishop’s hysteretic
damping model the total (linear) force is not in phase with x(t) and this accounts for dis-
sipative effects due to hysteresis losses in the material of the spring. Thus both stiffness
and damping are governed by properties of the material and are included in a single linear
complex term in the equation of motion.

In this paper, we are interested in adding a nonlinear stiffness term and driving such an
oscillator by an external periodic force of the form Fexp(iωt) to examine the periodic solution
of period T = 2π/ω to which the motion is attracted, since transients will be damped out
in time. As Bishop demonstrated, in his linear stiffness model, the mathematical analysis
is straightforward and can be easily carried out, not only in the one oscillator case [1], but
also for an an arbitrary number of N coupled masses and springs [9].

Since their introduction, hysteretic damping models have been used in a wide variety of
applications, including seismic behavior [10], composite beam modeling [11], rotor dynam-
ics [12, 13] and material modeling [14], mainly because, contrary to the commonly used
(fractional) Kelvin–Voigt based models [15], they allow for the energy loss per cycle to be
independent of the deformation frequency [16].

Our aim in this work is to study Bishop’s hysteretic damping linear model in the pres-
ence of small stiffness nonlinearities, which typically occur in a wide variety of coupled
oscillator systems of mechanical engineering [8, 17]. We thus begin in Section 2 by review-
ing Bishop’s linear oscillator model, pointing out certain spurious errors that arise in the
numerical computation of the exact solution, already in the unforced case, at times when
the oscillations become too small. We show that these errors persist even when we include
periodic forcing on the right side of the equation and explain how they can be distinguished
from the divergence of solutions due to dynamical effects.

Next, we proceed in Section 3 to solve the periodically driven single oscillator, in the
presence of a small quadratic stiffness nonlinearity, by developing a perturbation expansion
in powers of a small parameter ϸ. Since part of the solution damps out due to dissipation,
we focus on the periodic attractor to which the motion converges as t −→ ∞. This has the
advantage of avoiding numerical errors produced by small oscillations, and allows us to
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verify computationally the validity of our analytical results, given as a convergent Fourier
expansion of the T–periodic attractor, where T is the period of the forcing term.

Studying in detail the behavior of the amplitude of the real part of our periodic solutions
for different values of the parameters, including ϸ > 0, we find that it increases signifi-
cantly in magnitude and complexity with growing ϸ. Furthermore, plotting the amplitude
response of our solutions as a function of frequency, we observe, besides the high peak
at the harmonic frequency ω1 of the unforced oscillator, secondary peaks at subharmon-
ics, ω1/2, ω1/3, ..., which also grow with increasing ϸ. We point out, however, that, as ϸ

increases, the periodic solutions of the quadratic model eventually become unstable and
lead to oscillations that escape to infinity through the homoclinic tangle associated with the
saddle point of the potential.

Next, in Section 4, we turn to the case of a symmetric nonlinearity with positive quartic
term in the potential and cubic nonlinearity in the equation of motion, for which saddles
are absent and escape of solutions to infinity is precluded. We again obtain analytically the
periodic solutions of the problem, and show that they become unstable as ϸ is increased,
leading to chaotic motion very similar to what is observed in a classical Duffing’s equation
[8]. This leads to oscillation amplitudes of great complexity in phase space projections, as
well as amplitude and phase response curves with very similar features as in the case of
quadratic nonlinearity.

Nevertheless, as we demonstrate in this paper, in both nonlinear extensions, the solu-
tion of the Bishop model is never numerically stable for arbitrarily long times! Indeed, even
in cases where our periodic solutions should be dynamically stable, they are not true at-
tractors, since the numerical computation possesses inherent errors which will eventually
grow exponentially and lead away from the desired periodic solution!

To address this problem, we devote Section 5 of our paper to a preliminary study of a
different hysteretic model introduced by Reid [2], which appears to be free from the above
numerical instabilities. Its linear version is expressed in terms of a differential equation
with purely real (or purely imaginary) solutions and is hence more ‘‘physical’’ than Bishop’s
model. As a result, no numerical errors appear during integration and stable periodic
solutions are true attractors. More importantly, the solutions of its nonlinear version exhibit
a fascinating property of multistability, i.e. coexisting periodic attractors of different periods
with intricate basins of attraction, whose rich structure needs to be further studied in the
future.

Finally, in Section 6, we summarize our conclusions and describe ongoing work on
the remarkable and potentially highly relevant dynamical features of nonlinear mechanical
systems with hysteretic damping. The expected outcome of this work is to provide concrete
and implementable criteria that can guarantee the safe and efficient operation, not only of
one, but many hysteretically damped oscillators connected in a ‘‘chain’’ through nearest
neighbor interactions.

Although the models discussed here are limited to the single-degree-of-freedom case,
while practical engineering problems are usually delegated to multi-degree-of-freedom and
eventually finite element analyses, most steady-state solvers for the latter are founded on
these same models (especially Bishopâ™s model) and are therefore affected critically by the
errors discussed explicitly for the first time in this paper. It is notable that, although the
causality of Bishopâ™s model has been often been brought to question [18], its numerical
accuracy has barely received the same scrutiny. As such, we consider the findings pre-
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sented in this paper to be significant. At the same time, Reidâ™s model is one of the few
truly practical alternatives to Bishopâ™s model among a plethora of other models, which
use e.g. internal variables (Bouc-Wen) [19], fractional derivatives [20], Hilbert-transforms
(Biotâ™s model) [21], and even operators and neural networks [22]. These are mathemati-
cally interesting but practically too complex and sometimes artificial for general engineering
practice. Reidâ™s model, on the other hand, has hardly received the attention it merits
and several decades after its first introduction its uses remain limited to linear material
models [23, 24, 25]. The present paper is perhaps the first to explore the use of this model
for engineering materials with cubic stiffness nonlinearity to uncover significant behaviors
that were previously unknown.

2 A linear oscillator with hysteretic damping

The analysis of one degree–of–freedom linear oscillator under periodic forcing in the presence
of ‘‘hysteretic damping’’ [1] starts with the following complex differential equation:

Mẍ +
h

ω
ẋ + kx = F exp{iωt}, (1)

where x denotes the particle displacement from equilibrium.
Note that when the coefficient of hysteretic damping h is small compared to the stiffness

k the results approximate very closely those obtained for viscous damping. In particular,
with x = R exp{iωt}, we may write hẋ/ω→ ihx, and end up with the equation

Mẍ + (k + ih) x = F exp{iωt}, (2)

In this case, the complex stiffness of a hysteretic damper is given by k + ih so that, for a
spring-and-damper system, we have a (complex restoring) force f = (k + ih)x = k (1 + iµ)x,
with µ = h/k, thus allowing for the desired frequency independent response.

2.1 Free vibration of the linear oscillator

Let us first analyze the free vibration of the linear hysteretic model, setting F = 0 in Eqn.
(2) with M = 1:

ẍ + (k + ih) x = ẍ + k (1 + iµ) x = 0. (3)

We define the natural frequency of the oscillator by ω1 =
√

k, whence using the representa-
tion x = u + iv we write the solution of Eqn. (3) in the form:

x = α exp{−ω1bt + i (ω1ct + θ)}, (4)

with real and imaginary parts

u = α exp{−ω1bt} cos (ω1ct + θ), (5)

v = α exp{−ω1bt} sin (ω1ct + θ), (6)

respectively, where

b =















√

1 + µ2 − 1

2















1
2

, c =















√

1 + µ2 + 1
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1
2

. (7)
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Figure 1: Using the parameters k = 1, h = 0.02 and solving Eqn. (3) for initial conditions
with α = 0.5, θ = 0.3 in Eqs. (8) we find that numerical and exact solutions of the linear
oscillator coincide up to time t=1000, in this example. For longer times, however, numerical
errors are seen to grow exponentially.

This can be shown by directly differentiating the solution (4) and substituting in Eqn. (3) to
verify the solution as given in Eqs. (4) and (7).

Setting now t = 0 in Eqn. (4) and its derivative we obtain the initial displacement and
velocity as:

x(0) = α exp{i θ}, ẋ(0) = α ω1 (−b + i c) exp{iθ} (8)

where the (real) parameters α and θ are arbitrarily chosen.
It is instructive to solve Eqn. (3) numerically to see whether we can reproduce the

analytical results for sufficiently long times. Thus, choosing initial conditions with α =

0.5, θ = 0.3 in Eqn. (8) and parameters k = 1, h = 0.02, we present in Fig. 1 time plots of
the displacement, superimposed with the exact solution for the real and imaginary parts of
the displacement and verify that the numerical and analytical solutions practically coincide
and appear to converge to zero, at least up to times t ≈ 1000 in this example.

However, the situation is quite different, if we repeat these calculations for the same
initial conditions, k = 1 and larger damping h, which causes the solutions to converge to
zero faster. In fact, for h = 0.5, the numerical and exact solutions are indistinguishable
until a little before t = 100, where numerical errors suddenly begin to grow. In fact, when
we repeated the experiment of Fig. 1 for times longer than t=1000, we also witnessed
eventually a spurious ‘‘blow-up’’ of the numerical solutions!

We thus arrive at an important observation: While the numerical solution practically
coincides with the analytical one up to times when they are both almost equal to zero,
numerical instabilities arise, which lead to a spurious exponential blow-up. The critical
time td at which these errors begin to grow crucially depends on both the precision level
of the computations and the specific choice of the parameter µ. Interestingly enough, the
dependence of td on µ follows a power-law, which further supports our claim concerning
the spurious nature of these errors.

The same type of errors occur during numerical simulations of the periodically forced
linear problem as well as the nonlinear problems we will discuss in later sections. Thus, we
henceforth adopt the following strategy when solving these equations numerically: When
faced with diverging solutions starting at some approximate value t = td, we increase the
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accuracy of our computations and check whether td depends on the specified tolerance.
If that is the case, we trust the numerical results up the time of blow-up and conclude
that the observed divergence is not a consequence of the true dynamical properties of the
motion.

2.2 Forced vibration

Let us now briefly describe the solutions of the associated inhomogeneous problem adding
a complex periodic force on the right hand side, as described in Eqn. (2), where setting
again M = 1 we obtain

ẍ + (k + ih) x = F exp{iωt}, (9)

with F = f + i g.
As is well–known, the solution of an inhomogeneous linear problem can be written the

form x = xh + y, with xh the solution of the associated homogeneous problem and y a
particular solution. Thus, substituting in Eqn. (9), we find:

ẍh + ÿ + ω2
1 (1 + iµ) (xh + y) = F exp{iωt}, (10)

where, with y = Bexp(iωt), we obtain

ÿ + ω2
1 (1 + iµ) y = F exp{iωt}, B =

F

−ω2 + ω2
1 (1 + i µ)

. (11)

So, we have the solution

x(t) = α exp{−ω1bt + i (ω1ct + θ)} + B exp{iωt}. (12)

In order to identify the initial conditions, we set t = 0 and obtain

x(0) = xh(0) + B and ẋ(0) = ẋh(0) + iωB, (13)

for the initial displacement and velocity, respectively.

Plotting the magnification factor n =

(

(

1 − ω2

ω2
1

)2

+ µ2

)−0.5

with respect to the frequency

ratio ω/ω1 we find precisely the same results as obtained in [1].
Setting the parameters (k, h, f, g, ω) = (1, 0.05, 0.5, 0.5, 0.5) and for initial conditions

associated with the initial parameters (α, θ) = (10.5, 0.3), we plot the results in Fig. 2,
superimposing numerical and exact solutions. After a transient time, the trajectory (of
the real part of the displacement) oscillates periodically with frequency equal to the driving
frequency ω.

Note, however, in Fig. 2, just as in the unforced case, that our numerical solution repro-
duces accurately the analytical results up to a time interval td ≈ 800, as the damped part
of the solution produces numerical errors, which grow exponentially (see Fig. 2(b)). Thus,
we verify here also the presence of the same type of unavoidable errors as in the unforced
problem, whose occurrence depends on the specified accuracy of the computations.
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Figure 2: (a) Numerical and exact solutions of the inhomogeneous problem, together with (b)
the corresponding errors. In his case, the correspondence is exact up to time t ≈ 800, when
the errors begin to grow. The parameters are set here to (k, h, f, g, ω) = (1, 0.05, 0.5, 0.5, 0.5),
while the initial conditions correspond to (α, θ) = (10.5, 0.3)

.

3 The case of nonlinear stiffness

We now come to the main part of our study, where we examine the effect of adding a
nonlinear stiffness term to our model to explore its influence on the dynamics. As is well–
known, realistic springs are in general not linear, and may include nonlinearities that
depend on the displacement. Thus, we will assume at first that these nonlinearities are
quadratic and later examine also the case of symmetric springs, where the lowest order
nonlinearities are cubic in the displacement. More specifically, our nonlinear hysteretic
damping model has the form

ẍ + (k + ih) x + ϸ x2
= ẍ + ω2

1 (1 + iµ) x + ϸ x2
= F exp{iωt}, (14)

with F real.
Furthermore, since the damped part of the solution vanishes exponentially after rela-

tively small time intervals, we focus on the periodic attractor to which the motion eventually
converges and study the effect of nonlinearity on its amplitude and frequency response. This
permits us to avoid the spurious numerical errors caused by the damping and concentrate
on the ultimate periodic solution, whose form can be obtained analytically as a Fourier
series that can be reliably tested against the numerical solution.

To this end, we begin by applying perturbation theory [26] to derive the first few terms
of the solution in powers of a small parameter ϸ, and then develop the full Fourier series
that represents the desired periodic solutions. Next, we demonstrate the convergence of
this series and compare its accuracy against numerical results.
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3.1 Analytical results

We seek an approximate solution of Eqn. (14) as an asymptotic series in powers of ϸ of the
following form:

x(t) = x0(t) + ϸ x1(t) + ϸ2 x2(t) + . . . (15)

Substituting this expression in Eqn. (14), we equate terms of like powers of ϸ and obtain,
as usual, an infinite sequence of linear inhomogeneous equations for the xj, with identical
homogeneous part, as follows:

ϸ0 : ẍ0 + ω2
1 (1 + iµ) x0 = F exp{iωt} (16)

ϸ1 : ẍ1 + ω2
1 (1 + iµ) x1 = −x2

0 (17)

ϸ2 : ẍ2 + ω2
1 (1 + iµ) x2 = −2x0x1 (18)

ϸ3 : ẍ3 + ω2
1 (1 + iµ) x3 = −x2

1 − 2x0x2, (19)

etc. From the lowest order terms we recover the inhomogeneous second order linear equa-
tion, given by Eqn. (12), whose solution we write here in the form:

x0(t) = α exp{g(t)} + B0 exp{iωt}, B0 =
F

−ω2 + ω2
1 (1 + i µ)

(20)

where g(t) = −ω1bt + i (ω1ct + θ).
For the term of order ϸ1 we have:

ẍ1 + ω2
1 (1 + iµ) x1 = − α2 exp{2g(t)}− (21)

2αB0 exp{g(t) + iωt} − B2
0 exp{2iωt},

whose solution is of the form:

x1(t) = λ1 exp{2g(t)} + λ2 exp{g(t) + iωt} + B1 exp{2iωt}, (22)

Substituting (22) in (21) we derive the following expressions for λ1, λ2:

λ1 =
−a2

4 (−ω1b + iω1c)2
+ ω2

1(1 + iµ)
(23)

λ2 =
2αF

(

−ω2 + ω2
1(1 + iµ)

) (

(−ω1b + iω1c + iω)2
+ ω2

1(1 + iµ)
) (24)

while for B1 we obtain:

B1 =
−F 2

(

Ω
2
1 − ω2

)2 (

Ω
2
1 − 4ω2

)

, (25)

using the notation Ω2
1 ≡ ω2

1(1 + iµ).
For the ϸ2 term we have:

ẍ2 + ω2
1 (1 + iµ) x2 = −2x0x1

= − 2

(

F exp{i ω t}
−ω2 + ω2

1 (1 + i µ)

)

















−F 2 exp{2i ω t}
(

Ω
2
1 − ω2

) (

Ω
2
1 − 4ω2

)

















= B2 exp{3iωt}, (26)
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where we kept only the exp{iωt}–part of the x0 solution and the exp{2iωt}–part of the x1

solution. The reason for this, is that from now on we will neglect the damped part and
focus on the periodic attractor, for which we will construct its Fourier series representation.
To this end, we first identify the coefficient B2 of the term exp{3iωt} in the above calculation
as:

B2 =
2F 3

(

Ω
2
1 − ω2

)3 (

Ω
2
1 − 4ω2

) (

Ω
2
1 − 9ω2

)

. (27)

Proceeding finally to the terms of order ϸ3, we find from (19):

ẍ3 + ω2
1 (1 + iµ) x3 = (−B2

1 − 2B0 B2) exp{4iωt}, (28)

and obtain a solution of the form x3 = B3 exp{4iωt}, which when substituted in Eqn. (28)
yields:

B3 =
F 4

Ω
2
1 − 16ω2

·
(

Ω
2
1 − 9ω2)

+ 4
(

Ω
2
1 − 4ω2)

(

Ω
2
1 − ω2

)4 (

Ω
2
1 − 4ω2

)2 (

Ω
2
1 − 9ω2

)

. (29)

In a similar manner, we proceed to the next higher order terms and evaluate the coefficients
B4 and B5 for the associated solutions x4 = B4 exp{5iωt} and x5 = B5 exp{6iωt}, and so on.
Thus, we write the complete Fourier series expansion of the periodic solution x̂(t) in the
form:

x̂(t) =

∞
∑

k=1

ϸk−1Bk−1 exp{kiωt}, (30)

whose coefficients are recursively given by the expression:

Bk =
−1

Ω
2
1 − [(k + 1)ω]2



























B2
ν−1δk,2ν−1 + 2

∑

i+j=k−1
i>j

BiBj



























, (31)

for k ≥ 1, ν ≥ 2, where B0 =
F

Ω
2
1 − ω2

and δ(n, m) is the Kronecker delta that equals 1 for

n = m and 0 for n , m.
Fig. 3 illustrates the absolute convergence of the obtained Fourier series, for the choice

of parameters (µ, f, g, ω, ϸ) = (0.05, 1, 0, 0.75, 0.1). This is supported by the observation that
the |Bn| coefficients in the top graph of Fig. 3, decay like n−3 for large n.

3.2 Stability of solutions and amplitude and phase response curves

It is instructive to examine the accuracy of our analytical results for the nonlinear system by
comparing the solutions obtained numerically and analytically, using the recursive relation
(31) for the Fourier coefficients. First, we examine the validity of our series expansion by
keeping 150 terms in (30) and evaluating the real and imaginary parts of the quantity:

Q = ˆ̈x + ω2
1 (1 + iµ) x̂ + ϸ x̂2 − F exp{iωt}, (32)

which is expected to be close to zero, up to machine precision. The results are quite en-
couraging as we find, for (µ, f, g, ω) = (0.05, 1, 0, 0.75) and ϸ = 0.01 that the above quantity
Q oscillates in the range

[

−2 × 10−15, 2 × 10−15
]

, at least up to t = 1000 units.
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Figure 3: Illustration of the convergence of the Fourier series expansion of the periodic
solution for the nonlinear problem. Parameters used: (µ, f, g, ω, ϸ) = (0.05, 1, 0, 0.75, 0.1).

We now increase ϸ to 0.1 and compare in Fig. 4 (top) the numerical solution (in black),
with the analytical solution (in red), for the same parameters (µ, f, g, ω) as above. The two
orbits are indistinguishable, but only for a time td ≈ 200 as we verify by plotting in Fig. 4
(bottom) the absolute error between them, |Re(xan) − Re(xnum)|.

Next, we consider different values of ϸ ∈ {0, 0.1, 0.25} and observe that with increasing ϸ

the periodic solutions become more ‘‘sharply peaked’’, while their amplitude reaches higher
values. This is very important in view of the following argument: Since the stiffness terms
of our nonlinear equation are connected with the potential function

V (x) =
1

2
x2
+

ϸ

3
x3, (33)

as is well–known from the corresponding unforced classical oscillator, if the solution am-
plitudes exceed the location of the saddle point of the above potential xs = −1/ϸ, the motion
will diverge to −∞. In the periodically forced case, this already occurs at values x(t) < xs,
since the motion in the neighborhood of xs is chaotic and orbits may well be driven to di-
vergence at much smaller amplitudes [8]. This is because, in such cases, the size of the
region of regular motion, where stable periodic solutions exist, becomes severely limited, as
the magnitude of the forcing amplitude increases, for any value of ϸ.

It is, therefore, important to examine the critical forcing amplitude Fc (leading to insta-
bility and escape of our solutions) in relation with ϸ. As we see in Fig. 5, the increase of ϸ

leads to lower critical amplitudes, thus making it ‘‘easier’’ for the orbits to escape. Moreover,
we need to consider the effects of the forcing frequency ω and the measure of damping µ

(= h/k). Specifically, higher forcing frequencies or higher damping measures both lead to
higher critical amplitudes, thus making the oscillator more ‘‘robust’’ in terms of escaping.

As was already mentioned, the amplitude and morphology of the solutions depends sig-
nificantly on the value of ϸ, which may be crucial in certain mechanical applications. To fur-
ther illustrate this important effect, we depict in Fig. 6, using (µ, f, g, ω) = (0.05, 1, 0, 0.45),
the linear (ϸ = 0) solution (black) together with the nonlinear one (red) at ϸ = 0.1. Notice
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Figure 4: Top: Numerical (black) and analytical (red) trajectory of the nonlinear system of
Eqn. (14) for ϸ = 0.01. Bottom: Time plot of the ‘‘error’’, calculated as the distance between
the numerical and the analytical solution, i.e. |Re(xan)−Re(xnum)|. For the analytical solution
we kept the first 150 terms of the Fourier expansion.

that, while the period is the same, as expected, the nonlinear attractor exhibits distinctly
larger amplitude and has a different shape when it reaches negative values.

A related very important feature of our nonlinear system is the behavior of the amplitudes
and phases of the periodic solution as functions of the driving frequency, since we now
have more frequencies present in the solution due to the nonlinear term of the equation.
In particular, we are interested in both amplitude and phase response curves and their
dependence on the crucial parameters of the system.

The amplitude response curve (magnification factor) n and phase response curve η are
given by the expressions [27, 1]:

n =













(

1 −
ω2

ω2
1

)2

+ µ2













−1/2

, η = tan−1

(

µ/

(

1 −
ω2

ω2
1

))

(34)

for the linear hysteretic damping model (i.e. ϸ = 0), and feature in its solution in the form

x = n
F

k
exp

{

i(ωt − η)
}

, (35)

as functions of the frequency ratio ω/ω1. Regarding the nonlinear model, however, since we
do not have closed form expressions, we will compute the amplitude and phase response
curves using the corresponding quantities obtained from our analytical solutions, n =

amplitude of oscillations/forcing amplitude and η =phase of oscillations−forcing phase.
In Fig. 7 we plot the amplitude (top) and phase (bottom) response curves of Eqn. (14)

for µ ∈ {0.2, 0.5} and ϸ ∈ {0, 0.05}.
In Fig. 8 we present amplitude response curves, keeping (µ, f, g) = (0.05, 1, 0) and

varying ω for different values of ϸ ∈ {0, 0.01, 0.05, 0.1}. Notice the enhancement of the
amplitude at the resonances ω ∈ {ω1, ω1/2, ω1/3, . . .} as ϸ increases.
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Figure 5: Critical forcing amplitudes Fc with respect to the parameter ϸ for the system with
quadratic nonlinearity, for frequencies ω = 0.8 (left) and ω = 1.2 (right), letting µ ∈ {0.1, 0.4}.

4 Results for cubic nonlinearity

After examining the case of quadratic nonlinearities, we now move on to symmetric springs

where the nonlinearity is cubic in the displacement. More specifically, our nonlinear hys-
teretic damping model has the form

ẍ + (k + ih) x + ϸ x3
= ẍ + ω2

1 (1 + iµ) x + ϸ x3
= F exp{iωt}. (36)

As in the previous case, since the damped part of the solution vanishes exponentially after
relatively small time intervals, we concentrate on the periodic attractor to which the motion
eventually converges and study the effect of nonlinearity on its amplitude and frequency
response.

We begin again by applying perturbation theory to derive the first few terms of the
solution in powers of a small parameter ϸ, and develop the full Fourier series that represents
the desired periodic solution. Next, we demonstrate the convergence of this series and
compare its accuracy against numerical results.

4.1 Analytical results

We seek an approximate solution of Eqn. (14) as an asymptotic series in powers of ϸ of the
following form:

x(t) = x0(t) + ϸ x1(t) + ϸ2 x2(t) + . . . (37)

In what follows, we make use of the following expansion of a finite sum raised to the third
power:















N
∑

i=1

αi















3

=

N
∑

i=1

α3
i + 3

















N
∑

i<j

αiα
2
j +

N
∑

i<j

α2
i αj

















+ 6
N

∑

i<j<l

αiαjαl. (38)

Substituting this expression in Eqn. (36), we equate terms of like powers of ϸ and obtain,
as usual, an infinite sequence of linear inhomogeneous equations for the xj, with identical
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(0.05, 1, 0, 0.45).

homogeneous part, as follows:

ϸ0 : ẍ0 + ω2
1 (1 + iµ) x0 = F exp{iωt} (39)

ϸ1 : ẍ1 + ω2
1 (1 + iµ) x1 = −x3

0 (40)

ϸ2 : ẍ2 + ω2
1 (1 + iµ) x2 = −3x2

0 x1 (41)

ϸ3 : ẍ3 + ω2
1 (1 + iµ) x3 = −3(x2

0 x2 + x2
1 x0) (42)

ϸ4 : ẍ4 + ω2
1 (1 + iµ) x4 = −

(

x3
1 + 3x2

0 x3 + 6x0x1x2

)

(43)

etc. From the lowest order terms we recover the inhomogeneous second order linear equa-
tion, whose solution (neglecting the damping part) is written in the form:

x0(t) = B0 exp{i ω t}, (44)

where B0 =
F

ω2
1 (1 + i µ) − ω2

=
F

Ω
2
1 − ω2

. For the term of order ϸ1 we thus have:

ẍ1 + ω2
1 (1 + iµ) x1 = −B3

0 exp{3i ω t}, (45)

whose solution is of the form:

x1(t) = B1 exp{3i ω t}, B1 = −
1

Ω
2
1 − (3ω)2

B3
0, (46)

where we have used the notation Ω2
1 ≡ ω2

1(1 + iµ).
For the ϸ2 term we get:

ẍ2 + ω2
1 (1 + iµ) x2 = −3x2

0 x1

= −3B2
0B1 exp{5iωt} = B2 exp{5iωt}, (47)
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Figure 7: Amplitude (top) and phase (bottom) response curves of Eqn. (14) for µ ∈ {0.2, 0.5}
and ϸ ∈ {0, 0.05}. With black lines we indicate the location of the frequencies ω1/2 and
ω1/3.

from which we obtain B2, while at order ϸ3 we also find B3:

B2 =
−3B2

0B1

Ω
2
1 − (5ω)2

, B3 =
−3

(

B2
0B2 + B2

1B0
)

Ω
2
1 − (7ω)2

. (48)

In a similar manner, we evaluate from the next higher order equations the coefficients
B4, B5, etc. write the complete Fourier series expansion of the periodic solution x̂(t) in the
form:

x̂(t) =

∞
∑

k=0

ϸkBk exp{(2k + 1)iωt}, (49)

whose coefficients are recursively given by the expression:

Bk =
−1

Ω
2
1 − [(2k + 1)ω]2
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k−1

3
δk,3ν + 3

∑
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i>j
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2
j +

3
∑

2i+j=k−1
i>j

B2
i Bj + 6

∑

i+j+l=k−1
i>j

BiBjBl



























, (50)

for k ≥ 1, with B0 =
F

Ω
2
1 − ω2

and δn,m=1 for n = m and 0 for n , m.

4.2 Numerical results

As in the case of the quadratic nonlinearity, it is possible to verify here also the absolute
convergence of our Fourier series, by plotting the coefficients |Bn | and their sum in Fig. 9
for the choice of parameters (µ, f, g, ω, ϸ) = (0.05, 0.8, 0.1, 0.7, 0.1).
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Let us now examine the accuracy of our Fourier series, by comparing in Fig. 10(top) the
numerical with the analytical solution, for the parameters(µ, f, g, ω) = (0.05, 0.8, 0.1, 0.7)

and ϸ = 0.1. Initially, the two orbits are indistinguishable, as we can also also verify by the
absolute error between them, defined |Re(xan) − Re(xnum)| in Fig. 10 (bottom). However, as
in the case of the quadratic nonlinearity, numerical instabilities also appear here at some
value of t = td that depends on the accuracy of the computations.

It is important to emphasize, however, that, unlike the model with quadratic nonlinear-
ity, the equation with a cubic nonlinearity (36) is not expected to have solutions that diverge
to infinity, since its equation is associated with the potential function

V (x) =
1

2
x2
+

ϸ

4
x4, (51)

which has no saddle points, hence all motion is bounded. This implies that all solutions of
this model must be dynamically stable and any kind of divergence, such as the one observed
in Fig. 10 must be of numerical origin. We have verified that this is indeed the case by
checking that the time td where our solutions begin to diverge depends on the selected
precision of our computations.

In order to study the differences between the linear and nonlinear system, we compare
in Fig. 11 the real parts of the associated solutions for ϸ = 0.1 (red) and ϸ = 0 (blue), using
different values of the real part of the driving amplitude. As we can see, for small driving
amplitude, the two solutions are nearly indistinguishable, except for a small amplitude
difference. For f = 1.8, however, keeping every other parameter fixed as above, we observe
a distinct difference in the shape of the periodic solution.

4.3 Comparison of the proposed models

In this section we highlight the differences between of the 3 models, namely the linear and
the ones with quadratic and cubic nonlinearity, in terms of the morphology of the periodic
solutions in phase space as well as their amplitude and phase response curves.
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Figure 9: Illustration of the (absolute) convergence of the Fourier series expansion
of the periodic solution for the nonlinear problem. Parameters used: (µ, f, g, ω, ϸ) =

(0.05, 0.8, 0.1, 0.7, 0.1).

4.3.1 Morphology of the periodic solutions

Let us begin with the effect that the forcing frequency ω has on the periodic solutions of the
quadratic nonlinear model. Keeping our parameters fixed at (k, h, f, g, ω, ϸ) = (1., 0.1, 0.8, 0., 0.1)

we first plot in Fig. 12 the solutions of the equation with the quadratic nonlinearity.
Note in Fig. 12(a) that the projections of the periodic orbits on the (x, ẋ) plane, for

various values of ω, have a ‘‘cyclical’’ form and become more complex as we vary the forcing
frequency. In Fig. 12(b) we fix ω = 0.5 and plot the corresponding solution as a function of
time, superimposing the analytical (black) and the numerical (red) results to demonstrate
the accuracy of our computations. Clearly, the convoluted form of the nonlinear oscillations
are in stark contrast with the corresponding phase space plots of the associated linear model
which are simple ellipses describing harmonic motion.

We now repeat the above study for the periodic solutions of the cubic model. Specifically,
in Fig. 13(a) we set (k, h, f, g, ϸ) = (1., 0.1, 0.8, 0, 0.05) and vary the forcing frequency ω, while
in Fig. 13(b) we present the associated time plots of the real part of the displacement, for
ω = 0.3. Notice here also a complex morphology of the orbits associated with the cubic
nonlinearity, similar to what we found in the case of the quadratic nonlinearity.

Finally, let us investigate for the cubic nonlinearity model the effects of the driving
amplitude on the periodic solutions, varying the value of F (real) for ω = 0.1. The results
are even more remarkable and are presented here in Fig. 14. It is evident that the variation
of the driving amplitude in this case results in an even greater increase of complexity in the
morphology of the periodic solutions.

4.3.2 Amplitude and phase response

As we have seen earlier in the paper, a related important feature of the nonlinear models
is the behavior of the amplitudes and phases of the periodic attractor as functions of the
driving frequency, since more frequencies are present in the solution due to the nonlinearity
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Figure 10: Top: Numerical (black) and analytical (red) trajectory of the nonlinear system of
Eqn. (14) for ϸ = 0.1. Bottom: Time plot of the error, calculated as the distance between the
numerical and the analytical solution, i.e. |Re(xan) − Re(xnum)|. For the analytical solution
we kept the first 150 terms of the Fourier expansion.

of the equation of motion. In particular, we are interested in both amplitude and phase

response curves and their dependence on the parameters of the system.
We recall that the amplitude response curve describes the ratio of the amplitude of the

nonlinear attractor to the amplitude of the driving force, with respect to the frequency ratio
ω/ω1. Similarly, the frequency response curve describes the phase delay angle of the forced
oscillation as a function of ω/ω1. As we have done for the quadratic nonlinearity model,
we also compute here the amplitude and phase response curves of the present model using
the corresponding quantities obtained from our analytical solutions.

0.5 1.0 1.5 2.0 2.5 YZ[

1

0

1

2

\

]

5

^

n

_a` = 0.2

= 0

= 0.1

0.5 1.0 1.5 2.0 2.5 abc

1

0.0

0.5

1.0

1.5

2.0

n

dbe = 0.5

= 0

= 0.1

Figure 15: Magnification factor n (amplitude response) with respect to the frequency ratio
ω/ω1 for the system with cubic nonlinearity.
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Figure 11: Time plots of real parts for the nonlinear (ϸ = 0.1) and the associated linear
system (ϸ = 0), for different values of the (real part of the) driving amplitude f , namely
f = 0.8 (top) and f = 1.8 (bottom). The rest of the parameters used (µ, g, ω) = (0.05, 0.1, 0.7).
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Figure 16: Phase response with respect to the frequency ratio ω/ω1 for the system with
cubic nonlinearity (ϸ = 0.1), superimposed with the associated response of the linear system
(ϸ = 0).

In Fig. 15 and Fig. 16 respectively we present the amplitude response curve and the
phase response curve of the cubic nonlinear model for µ = 0.2, 0.5 and ϸ = 0, 0.1, keeping
k = 1 fixed. Evidently, the results are qualitatively similar with what we found in the case
of the quadratic nonlinearity.
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Figure 12: Quadratic model: (a)Phase space projections of the real parts of the displacement
x and the velocity ẋ for the parameters (k, h, f, g, ϸ) = (1., 0.1, 0.8, 0, 0.1). (b) Time plots of
the real parts of the analytical (black) and numerical (red) solutions with parameters as in
(a) and ω = 0.5.

Figure 13: Cubic model: (a)Phase space projections of the real parts of the displacement x

and the velocity ẋ for the parameters (k, h, f, g, ϸ) = (1., 0.1, 0.8, 0, 0.05). (b) Time plots of
the real parts of the analytical (black) and numerical (red) solutions with parameters as in
(a) and ω = 0.3.

5 Reid’s hysteretic oscillator with periodic forcing

As we have seen in the previous sections there appear to be important difficulties when one
tries to study numerically Bishop’s complex hysteretic oscillator model, as introduced in
[1]. As long as the model is kept linear, its general solution can be obtained analytically
even in the case of n such coupled oscillators [9]. However, when one tries to evaluate these
solutions numerically, one finds that unavoidable errors arise, which cause these solutions
to diverge to infinity after a time interval that depends on the parameters of the problem
and the precision of the computations. These errors are also found to persist in very similar
fashion, in the nonlinear versions of the model as well. Still, if one is content with studying
the model for a specified time interval, periodic solutions are obtained which are in excellent
agreement with the analytical ones, while the dynamics of the nonlinear model has features
that are analogous to what one expects from nonlinear oscillators with viscous damping.

Hysteretic damping models, of course, have a long history, and there is a lively debate
in the literature about their comparative virtues and shortcomings. Thus, we decided to
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Figure 14: Forcing amplitude variation for the cubic model: (a)Phase space projections of
the real parts of the displacement x and the velocity ẋ for the parameters (k, h, f, g, ϸ) =

(1., 0.1, 0, 0.1, 0.05). (b) Time plots of the real parts of the analytical (black) and numerical
(red) solutions with parameters as in (a) and F = 0.3.

include in this work a preliminary investigation of another popular hysteretic (in the sense
of ‘‘frequency–independent’’) damping model, initially proposed by Reid [2]. It is expressed
in terms of a real (as opposed to complex) differential equation and hence its solutions are
directly physically interpretable.

The properties of Reid’s oscillator have been thoroughly analyzed in the literature [28,
29]. Its characteristic through-zero hysteretic loop shape in the force-displacement plot,
having a bow-tie shape [25], is clearly non-physical. Yet, for a wide range of engineering
materials, the hysteresis loops are extremely narrow to the extent that their exact shape is
neither noticeable nor significant for characterizing the dynamical response. Furthermore,
various modifications of the model have also been proposed (e.g. in Refs. [30, 25, 23]) to
make it more realistic. Its main drawback appears to be its discontinuity at the points of
stress–strain reversal, but it keeps drawing the attention of the scientific community mainly
because of its simple form and its frequency independence property. In this section, we
present a first study of its very interesting dynamical behavior in the presence of a cubic
nonlinearity term in the stiffness potential.

Specifically, the evolution of the one degree of freedom Reid oscillator under periodic
forcing is described by the following ‘‘quasi–linear’’ real differential equation:

Mẍ + c

∣

∣

∣

∣

∣

x

ẋ

∣

∣

∣

∣

∣

ẋ + kx = Mẍ + kx
(

1 +
c

k
sgn(xẋ)

)

= F sin ωt, (52)

where sgn(·) is the sign function, x denotes the particle displacement from equilibrium, c is
the damping coefficient, and k quantifies the (linear) stiffness.

The oscillator described of Eqn. (52) is frequency independent and yields work per
cycle that is proportional the squared amplitude. Interestingly, it possesses stable periodic
solutions (attractors), with frequency ω, that are verified numerically for arbitrarily long
times and are free from the spurious computational errors that plague Bishop’s model.
Here, we are interested in examining the dynamical effects of adding to the model a nonlinear
cubic stiffness term, as we did for Bishop’s oscillator, and compare the results. In this case,
Reid’s equation takes the form:

Mẍ + c

∣

∣

∣

∣

∣

x

ẋ

∣

∣

∣

∣

∣

ẋ + kx + ϸx3
= f sin ωt. (53)
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Although the original model of Eqn. (52) is strictly speaking nonlinear, due to the sign–
function term, this has limited implications for the dynamical behavior of the system. Note,
for example, the differences in the system’s amplitude response due to the cubic nonlinear-
ity, as depicted in Figure 17. Although for high forcing frequencies the two systems behave
almost indistinguishably, for low frequencies the model of Eqn. (53) exhibits secondary res-
onances. Moreover, the peaks of the curves in Fig. 17 are influenced by the nonlinearity,
as higher values of ϸ lead to peaks at higher values of ω, while we also observe that the
higher the stiffness the lower the magnification factor.
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Figure 17: Amplitude response curves of Reid’s model for varying ϸ ∈ {0, 0.01, 0.1}. We
set the damping coefficient to c = 0.2 and use two different values for the linear stiffness,
namely k ∈ {0.5, 1}.

For relatively high values of the damping (e.g. c > 0.1), both systems are attracted to
a stable periodic solution with period T *

=
2π
ω

, while, as we have already emphasized, both
the original and extended models do not suffer from numerical instabilities of the type we
encountered in the previous sections. In Fig. 18 we present the periodic solutions for the
two Reid’s models, corresponding to the parameters (c, k, f, ω) = (0.2, 0.3, 1., 1.3).
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Figure 18: Periodic solutions for the two Reid’s models, corresponding to the parameters
(c, k, f, ω) = (0.2, 0.3, 1., 1.3). Time plots (left) and phase plots (right), with ϸ ∈ {0, 0.1}.

On the other hand, for smaller damping coefficients c, the model of Eqn. (52) eventually
settles onto the stable periodic orbit with period T *, independently of the initial conditions
(x(0), ẋ(0)). This not the case, however, for the Reid’s model of Eqn. (53) with the cubic
nonlinearity. As expected from analogous nonlinear models with viscous damping, for
low values of c, one typically observes the emergence of stable periodic orbits with period
different than T *. Such interesting stable solutions are presented here in Fig. 19, for
parameters (c, k, f, ω, ϸ) = (0.01, 0.3, 1.1, 1.3, 0.1). The associated periods are 2T *, 3T *, 5T *

for the first, second and third column, respectively.
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Figure 19: Time (t, x(t)) and phase (x, ẋ) plots of periodic solutions for the modified Reid’s
model, with parameters (c, k, f, ω, ϸ) = (0.01, 0.3, 1.1, 1.3, 0.1). The associated periods are
2T *, 3T *, 5T * for the first, second and third column, respectively.

This is a remarkable observation that places Reid’s nonlinear model in the wider frame-
work of nonlinear oscillators known in the literature [26]. In fact, when we plot the projec-
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tions of Reid’s modified model on the x, dx/dt phase plane, we find a wealth of attracting
periodic orbits, whose periods are multiples of T * and can be reached, for the same param-
eter values, by merely changing the initial conditions!

In fact, we investigate here pictorially this fascinating phenomenon of coexisting attrac-
tors by plotting their basins of attraction in the x, dx/dt phase plane as follows: We select a
grid of, say, 500 × 500 equally spaced initial conditions (x(0), ẋ(0)) ∈ (−3, 3) × (−3, 1), and
color each one of them according to the attractor to which they lead as t →∞, for the same
choice parameters. We present a preliminary study of these basins of attraction in Fig. 20,
using different colors for the basins of attraction associated with the various periodic orbits.
Specifically, we use yellow (1) and beige (2) for the orbits with periods T *, red (3) and purple
(4) for the orbits with period 2T *, blue (5) and brown (6) for the orbits with period 3T * and
finally green (7) for the orbit with period 5T * (the numbers in the previous parentheses refer
to the colorbar coding of Fig. 20).

Figure 20: Basins of attraction of the modified Reid’s model for parameters (c, k, f, ω, ϸ) =

(0.01, 0.3, 1.1, 1.3, 0.1). We have used the coding 1 and 2 for orbits with period T = T *, 3
and 4 for T = 2T *, 5 and 6 for T = 3T * and 7 for the T = 5T *.

In conclusion, we have studied the dynamics of the hysteretic Reid’s model in the pres-
ence of a cubic nonlinearity and have observed significant differences in its amplitude
response with respect to the original oscillator. Depending on the magnitude of the non-
linearity parameter ϸ, a remarkable coexistence of periodic attractors is revealed, whose
periods are multiples of the driving period. This phenomenon of multistability is reminis-
cent of what one finds in nonlinear models with viscous damping, but has distinct features
of its own. Observe its fractal–looking structure in the outer part of the plotted region in
Fig. 20, where the system exhibits high sensitivity in the choice of initial conditions. The
occurrence of such phenomena in coupled systems of Reid nonlinear oscillators needs to
be further studied, as it might constitute an important first step in the analysis of materials
with nonlinear behavior, such as multistable mechanical meta-materials [31, 32, 33].
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6 Conclusions and discussion

Oscillator models that combine nonlinearity with different forms of damping have lately
attracted great interest, notably in cases where the damping involves time–dependent coef-
ficients [3], or is nonlinear due to stick–slip conditions [34]. In this paper the implications
of the use of the Bishop and Reid hysteretic models with regard to the dynamical behavior
and numerical accuracy and stability of single degree of freedom systems with quadratic
and cubic stiffness non-linearity, corresponding to a composite meta-material, was studied
under steady-state conditions. The key findings were:

1) We first solved the periodically driven Bishop’s oscillator, in the presence of small
stiffness nonlinearities, using perturbation theory in powers of a small parameter ϸ to obtain
the periodic solutions in terms of a convergent Fourier series expansion. Our analytical
findings allowed us to verify the validity of the numerical results and demonstrate that
the amplitude of the periodic solutions increases significantly in magnitude and complexity
with growing ϸ.

2) We then extended our study and performed a comparative analysis using a different
hysteretic model introduced by Reid [2], combining periodic forcing with weakly nonlin-
ear stiffness terms. Reid’s model is expressed in terms of a real differential equation that
might be considered more ‘‘physical’’ than Bishop’s complex model. Indeed, solving nu-
merically Reid’s model we always obtained stable periodic solutions as its attractors. More
importantly, we discovered some remarkable multistability phenomena involving coexisting
periodic attractors in the system’s phase space, whose frequencies are integer multiples of
the driving frequency.

The methods and results reported in this work may be used to aid in the selection and
mathematical formulation of appropriate, realistic, computationally robust and numerically
stable engineering models for nonlinear engineering materials. In this direction, we suggest
that arrays of Reid nonlinear oscillators coupled by nearest neighbor interactions may have
concrete applications. Preliminary results indicate that such arrays, when driven at one
end by periodic forcing whose frequency lies outside the linear spectrum, can transmit low
energy waves through the array in a highly controlled fashion. However, when the driving
amplitude exceeds a certain threshold, a high energy wave is suddenly excited causing the
normal operation of the system to break down [35].
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