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Abstract—The volume, veracity, variability and velocity of data
produced from the ever increasing network of sensors connected
to Internet pose challenges for power management, scalability
and sustainability of cloud computing infrastructure. Increasing
the data processing capability of edge computing devices at
lower power requirements can reduce several overheads for cloud
computing solutions. This paper provides the review of neuro-
morphic CMOS-memristive architectures that can be integrated
into edge computing devices. We discuss why the neuromorphic
architectures are useful for edge devices and show the advantages,
drawbacks and open problems in the field of neuro-memristive
circuits for edge computing.

Index Terms—Memristors, Memristor circuits, Neural Net-
works, Cellular neural network, Convolutional neural network,
Long short-term memory, Hierarchical temporal memory, Spik-
ing neural networks, Deep neural networks

I. INTRODUCTION

THE increase in the number of edge devices such as
mobile phones, and wearable electronics connected to

Internet drives the scale-up of intelligent data applications.
Edge computing is broadly defined as the method used for
moving the control of data processing from centralized core
computing nodes such as high-performance computing servers
to the last edge nodes of the Internet where data is collected
and connected to the physical world [1], [2]. The high velocity
and volume of data generated lead to the need to scale up
data centers, and puts added pressure on lowering energy
consumption. However, the inability to linearly scale power
with existing CMOS technology prompts us to look at neu-
romorphic computing architectures that can be used in edge
devices and possibly useful for replacing hardware in cloud
computing platforms. It is expected that in 2-5 years the edge
computing technologies will be in the main stream [3], along
with machine learning, Internet of Things (IoT) and smart
electronics, mutually contributing to each other areas growth
[4], [5].

The development of the neuro-memristive circuits that
can be integrated to edge computing devices is an open
research problem. Neuromorphic computing is inspired from
the biological concepts of human brain processing that has
the potential to replace traditional von Neumann computing
paradigms. In the more than Moore’s era of device scale-up
and architectures, memristive circuits and computing architec-
tures is one of the promising solutions [6]. Memristors provide
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various advantages, such as scalability, small on-chip area, low
power dissipation, efficiency and adaptability [7], [8].

In this paper, the correlation between neuromorphic memris-
tive architectures with the edge computing trends is illustrated,
we discuss the different set of neuromorphic architectures for
the edge computing that can be integrated directly to the edge
devices. We illustrate the most recent approaches to implement
neuron cell and synaptic connections and show the correlation
with biological concepts. We present the clear overview of
various neuromorphic architectures, such as different types of
neural networks [9], Hierarchical Temporal Memory (HTM)
[10], [11], Long Short-Term Memory (LSTM) [12], [13],
learning architectures and circuits for memory-based com-
puting and storage. We discuss the advantages and primary
challenges in the simulation and implementation of such archi-
tectures. Also, we present the main drawbacks and challenges
that should be improved in existing neuromorphic architecture
to use them in edge computing applications.

The paper is organized as the following. Section II pro-
vides the overview of edge computing on hardware and edge
computing architectures. Section III provides the review of
neuron models, relates the biological concepts to the existing
neuron architectures and covers the most common circuits
for hardware implementation of CMOS-memristive synapses
and neuron cells. Section IV introduces various neuromorphic
architectures that can be used for edge computing application.
Section V illustrates the advantages, issues and open problems
of the CMOS-memristive architectures. Section VI concludes
the paper.

II. EDGE DEVICES AND EMERGING NEURAL COMPUTING

Figure 1 shows the overall concept of the edge computing
system. The sensors in the edges of the concept map collect the
data for processing in the edge devices, which in essence move
part of information processing and computing tasks from cloud
to edge devices. The increased demand on the edge devices to
process information in intelligent and useful ways triggers the
development of emerging hardware and edge AI computing.

The real-time data produced by the ever increasing number
of sensors in edge devices pushes for near-sensor computing
for various intelligent information processing applications.
There is an emerging market of artificial intelligence chips
in edge devices for utilizing machine learning and neural net-
works [14], [15]. The information from the sensor is converted
to digital domain by analog to digital converter, followed by
filtering methods and co-processors for implementing different
neural network configurations [14], [15]. However, with major
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Fig. 1. Overall concept of edge computing system.

issues in scaling the devices to sub-10nm range, emerging
devices such as memristors become promising to increase the
speed and on-chip area. Further, these emerging devices also
promote the analog domain processing of information as many
neural networks in hardware can be mapped to memristive
array based computing architectures [16].

Mobile devices largely has driven the growth in high-
performance logic and low-power digital logic chips in the
last several years. And the limitation and challenges in device
scaling has forced the community to move towards neural
computing solutions that can incorporate more than Moore’s
law [17] and beyond CMOS technologies [18], [19] as a
key aspect of future hardware development. In edge devices,
such as mobiles, the key computing drivers are towards
having higher performance and more functionality at lower
cost and energy which is constrained by battery. Several
hardware technology aspects drives this development, they are:
Logic technologies, Ground rule scaling, Performance boost-
ers, Performance-power-area (PPA) scaling, 3D integration,
Memory technologies, DRAM technologies, Flash technolo-
gies and Emerging non-volatile-memory (NVM) technologies
such as memristors. The key performance benchmarks for
node scaling for edge devices in more than Moore’s era
integration in the next 2-3 years includes [20]: (1) increasing
the operating frequency by 15% relative to the scaled supply
voltage, (2) for a given performance reduce the energy per
switching by 35%, (3) reduce the area on chip footprint by
35%, and (4) reduce the scaled die cost by 20%, while limit
wafer cost to increase within 30%.

Memory and logic technologies together shape the de-
velopment of near sensor neural computing solutions for
edge devices. Memristive devices are emerging non-volatile
memories that offer several potential features to support the
growth in this field. There are several non-volatile variants of
memristor devices such as magnetic or MRAM [21], phase-
change or PCRAM [22], and resistive or ReRAM [23] that
can be used for building neural networks. The two-terminal
resistive structure requires a selector device such as a transistor
to program these devices in an array. The two common use of
memristors in a neural computing paradigm is as a memory
and as a dot-product computing unit [24]. The main purpose

Fig. 2. 3D XP Memory Architecture [25].

of memristor as a memory is as a storage unit for weights
during the learning stages in digital or discrete analog domain
processing. While, a memristor crossbar array can be used for
computing the dot product between the input and weights in
a neural network layer in analog domain.

The development of high density crossbar memristor archi-
tecture has been limited by the lack of a good and energy
efficient selector device. Being a resistive device, memristors
such as ReRAM require either bi- or unipoloar operation for
programming to a particular state. The 3D XP memory shown
in Fig. 2 [25] is been a promising direction to solve this
bottleneck, and the major issue that remains is the device to
device variability of the resistive state. Even with variability,
the neural networks have shown robust performances, as dur-
ing the learning phase, any variability in the states translates
to the variability in weights, which are compensated by the
learning algorithm to find the optimal set of weights that works
best for the given neural network configuration.

The growth in hardware for edge computing is driven by
Internet of things, where the sensors-humans-computers col-
laborate to provide efficient and useful intelligent application
[1]. The data analysis for these application often needs to be
fast, and also need to ensure security and privacy. Hardware
level security is an essential advantage offered by the emerging
devices [26] that can be integrated into edge devices. The
progress in NVM memristor devices and arrays due to its
lower operating voltages, compatibility with CMOS devices
and faster speeds allows to develop a large variety of energy
and area efficient neural networks configurations [16], [27].

In the edge computing concept (Fig. 1), the data processing
is shifted from the data centers to the edge devices [28]. The
edge computing relies on billions of various devices connected
to the Internet. Each device collects the information and can
process this data locally. The data processed on edge level is
collected in the aggregation nodes at the intermediate fog level
that incorporates the networking devices, aggregation devices,
and gateways required for sending processed data to the cloud
data centers [1], [2]. Cloud is on the top level of the data
processing containing data warehouses, which is responsible
for large data processing. The edge computing is a basis for
IoT systems, which incorporates the ideas of smart devices,
smart vehicles, and connected systems and can be extended to
a system of systems solutions involving big data analytics. The
development of IoT networks and amount of data transferred
and processed in cloud stresses the limits of the data centers.
If the current trends continue developing at the same pace,
in few decades, the amount of energy required to process the
ever growing data will overload the bandwidth requirements,
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and cloud computing requirements to a point that it would not
be feasible to meet the demands of speed, and cost [29].

The main idea of edge computing is the local processing
of the data, which does not require sending of significant
amount of data to the servers. All these decision making and
processing mechanisms should be performed in low power
levels. This removes the need to have complex data centers.
The edge computing becomes more relevant because the power
required for data processing in the data centers on servers
increased significantly in the last few years. And if the growth
of processed data continues, it would increase the costs for
powering the data centers to support of same speed and amount
of data processed on servers. As all the edge devices are
limited in terms of on-chip area and low power consumption
requirements, the conventional von Neumann architectures
with traditional CMOS devices become less feasible for such
purposes in the long-term as transistor scalability is expensive
and energy per computation saturates. The neuromorphic non
von Neumann architectures discussed in Section IV are con-
sidered to be a promising solution for energy-related issues
and optimization of such systems. Moreover, neuromorphic
architectures can be used to solve the cloud computing energy-
related issues in memory and processing units and to achieve
energy-efficient computing [30].

The distributed nature of the edge computing architectures
allows to integrate neural chips as co-processing units within
the edge devices. The neural chips make use of neuron
models inspired from the biological understanding of neuronal
behaviour and function. The neuron models are used to build
different types of neural network configurations that can mimic
functions and capacity of human brain. There are several
neural architectures such as deep learning neural network
(DNN) [31], [32], convolutional neural network (CNN) [33],
[34], long short term memory (LSTM) [12], [13], hierarchical
temporal memories (HTM) [10], [11] and generative adver-
sarial networks (GAN) [35] that has grown prominence in the
last decade.

Edge processing often involves real-time localized data
processing. Therefore, the primary goal of the edge computing
is to make edge devices more intelligent, faster and less power
hungry. Also, it is essential to consider the issues related to
communication protocols, bandwidth, and correlation of data
from all edge devices. It is important to make the device
more intelligent and understand which information should be
processed. Therefore, the learning process [9] in neuromorphic
systems is essential.

The memristive neuromorphic architectures aim to reduce
the processing power, which allow integrating these archi-
tectures to the edge devices. The lower energy consumption
increases the battery life, allows to pack more computing
hardware modules and also decreases the overall cost of
computation. The cost-effectiveness is achieved, because the
memristor-based neuromorphic architectures require a smaller
amount of memory for processing and networks can be learned
to understand the information rather than storing and retrieving
it using energy consuming hardware and software algorithms.
The learning process in neuromorphic architectures allows
achieving faster processing time. In memristive hardware

architectures, the learning process is slow, while the decision
making and processing of data after learning is very fast.
Once the memristive neuromorphic architecture is learned, the
information processing on local edge devices can be performed
quickly. Also, the faster data processing can be achieved using
analog learning architectures, which are useful for near-sensor
processing. The analog neuromorphic architectures [9] can be
integrated directly to the sensors avoiding intermediate data
conversion stage.

The data security issues are addressed in memristive neu-
romorphic architectures because the information processing
is performed at a hardware level, where encryption level is
high [26], [36]. There are growing incidents for hacking on
chip data in digital hardware [37]. Neuromorphic architectures
encode the data, and the memristive weights are learned,
so it is impossible to predict the weights. Therefore, the
natural encoding process is performed, and the system is
more secured. The neuromorphic architectures are more robust
to variations because of the learning process and weight
adjustment. The interoperability can be ensured because the
networks become more adaptable to the process variations
in chip. Therefore, decision fusion and collaborative sensing
also can be performed between the chips to ensure higher
security levels. In addition, memristor based key generators
can be incorporated into the chip to implement functional data
security algorithms [26], [36], [38]–[40].

III. NEURON MODELS

In this section, we focus on the memristive models of neuron
cells and synaptic connections that can be adapted and scaled
for the edge computing applications.

A. Inspiration from biological concepts

Neuromorphic circuits and architectures attempt to mimic
different types of biological neural networks responsible for in-
formation processing in human brain [41], [46]. The biological
neuron architecture is shown in Fig. 3 (a). A biological neuron
consists of the soma (cell body) with many dendrites that serve
as connections to the other neurons and carry the information.
The axon (output of the neuron) collects the information from
all the dendrites and transmits it to the other neurons. The
transmission of a signal from one neuron to another happens
through the synapses. Synapses can either reinforce or inhibit
the transmitted signals [41]. The neuron fires (generates the
output response), if the information that is collected in the
axon exceeds the particular threshold [42].

The equivalent structural and mathematical representation
of biological neuron is shown in Fig. 3 (b) [47] and Fig. 3
(c). The neuron models can be divided into two categories:
(1) simple threshold logic based linear neuron based models,
where the neuron is presented as a most straightforward linear
computing unit, and (2) dendritic threshold non-linear neuron
based models, which has more complex computing units and
is inspired by recent works [43].

The simplest threshold logic based linear neuron model is
known as McCulloch-Pitts neuron model [48] and Rosenblatt‘s
perceptron [49]. Fig. 3 (b) and Eq. 1 shows the threshold
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(a) (b) (c) (d)

Fig. 3. (a) Biological neuron [41], (b) threshold logic based linear neuron model [41], [42], (c) dendritic threshold non-linear neuron model [43], (d) HTM
neuron [44], [45].

logic based linear neuron model. The synapses are represented
as weighted connections [42]. The parameter wj represent
the weights of the synapses, and yo is a neuron output. The
central concept of this model is that the weighted summation
of the inputs xj is higher than the threshold θ. This threshold
determines the neuron firing.

yo = f(

n∑
j=1

wjxj) (1)

The particular case proposed in [49] is shown in Eq. 2, where
the hard threshold function is used an activation function.

yo =

+1

n∑
j=1

wjxj ≥ θ

−1 otherwise

(2)

In the dendritic threshold non-linear neuron model the
dendrites of the neuron can be nonlinear. Each dendritic unit
in the neuron consists of various subunits (dendritic branches),
and neurons are represented as complex computing unit [43].
Fig. 3 (c) and Eq. 3 shows the structure of non-linear dendritic
neuron model. A single dendrite can have multiple inputs and
specific threshold function.

yo = f(

n∑
j=1

wjgj(

m∑
i=1

uixi)) (3)

Comparing to threshold linear neuron model, like perceptron,
which fails to compute particular functions, threshold non-
linear neuron can compute linearly non-separable functions.

The volatility principle in human brain-inspired architec-
tures is also important. The research work [50] claims that it
is of importance not only to remember important data but also
forget the unnecessary information. An HTM neuron emulates
this process. HTM neuron is a particular case of dendritic
threshold non-linear neuron model recently proposed to mimic
functionality of pyramidal neurons [51] in human neocortex
[44], [45]. The HTM neuron is shown in Fig, 3 (d). The
neuron cell has three different inputs: feedforward, feedback,
and contextual inputs. The feedforward input corresponds to
the synapses of proximal soma known as proximal dendritic
connections. The feedback inputs correspond to apical con-
nections learned from the previous inputs, and the contextual
inputs correspond to distal connections that connect different
cells.

B. Memristive circuit as a synapse

1) Single memristor as a synapse: Most of the implemen-
tations of the neuron models propose to use memristor as a
synapse. The least complex representations of the synapse in
memristive architectures is a single memristor (1M) structure.
The single memristor synapses in a memristive crossbar array
are shown in Fig. 4 (a). The 1M structure is more efficient
in terms of on-chip area and power consumption. The recent
works attempt to use 1M synapses for neural networks to
avoid additional CMOS elements in the architectures [8], [59],
[60]. However, the neuromorphic circuits with 1M synapses
usually required additional control circuits and suffered from
sneak path problems. Moreover, the update process of the
memristor values in such structures requires complex switch
circuits, which disconnect the memristors from presynaptic
and postsynaptic neurons and connect the input signals used
for memristor programming. Also, such configurations do
not allow to obtain negative synaptic weights, and additional
circuits should be involved to obtain the negative weights in
neural networks.

2) Synapses with two memristors: The alternative to 1M
synapses is the synapses with two memristors (2M) shown
in Fig. 4 (b) [52], [61], [62]. This architecture doubles the
size of the crossbar and requires complex postsynaptic neu-
rons. However, this allows implementing negative weights of
the synapses. In 2M structure the weight of the synapse is
represented as Wij = G+

ij − G−
ij , where G±

ij is an effective
conductance of a memristor [52], [61].

The alternative 2M synapse with PCMO memristors is
shown in [63]. In this particular example, memristors are
connected to long-term depression (LTD) and long-term poten-
tiation (LTP) neurons and correspond to LTD and LTP opera-
tions, which occur during particular periods of time. When the
synapse is potentiated, only the LTP memristor conductance
is increase, while LTP memristor remain unchanged, and vice
versa. This allows to remove the effects of asymmetric changes
of the resistance level from RON to ROFF and ROFF to
RON , avoiding abrupt changes in overall resistance of the
synapse comprised of the resistances of two devices.

The 2M synapses, where two memristors are connected in
series, are presented in [64]. In this work, the synapse is
presented by two types of devices: diffusive memristor device
SiOxNy : Ag (a device based on silver nanoparticles in a
dielectric film that can be used as a selector device [64] or even
neuron [65]) and drift memristor device TaOx (usual non-
volatile device). The synapse was designed to realize dynamic
behavior, LTD and LTP of biological synapses.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Memristive synapses: (a) 1M synapse in a crossbar array, (b) 2M synapses [52], (c) 2M1R synapse [53], (d) 1T1M synapses [47], [54], (e) 2T2M
synapses [55], (f) 4M synapse [56], [57] and 5M synapse [58].

The two memristor one resistor (2M1R) synapse is shown
in Fig. 4 (c). The research work [53] proposes the modified
dynamic synapse for SNN based on the two memristors
and the resistor adjusted for TaOx devices, which includes
temporal transformations and static weight and helps to realize
the spiking behavior in large-scale simulations.

3) Synapses with transistors: The memristive synapses
with transistors are also popular because the transistor is
used as a switch, especially for read and update cycles. The
synapse with one transistor and one memristor (1T1M) is
shown in Fig. 4 (d) [47], [54]. This architecture is one of
the possible solutions for sneak path problems. The synapse
with two transistors and one memristor (2T1M) is illustrated
in Fig. 4 [55], [66]. While 1T1M architecture is used to
control memristor switching, program the memristor within a
crossbar and eliminate sneak path problems, 2T1M also allows
to control the sign of the memristor, as it is connected to
two inputs: original and inverted input signal. The enabling
signal e controls the switching of the CMOS transistors. The
transistors control the current flowing through the memristor
and voltage across the memristor. The parameter e represents
the enable signal. If e = 0, the state variable of memristor
does not change. If e = VDD or e = −VDD, the current is
flowing either through NMOS transistor or PMOS transistor,
respectively. The enable signal is used to control the direction
of current and to update the memristor value. This also allows
achieving negative and positive sign of memristor weight. In
this circuit, it is important to ensure that the transistor is in
a linear state. The drawback of such circuit is a size of the
synapse, which is appropriate for small-scale problems [67],
and can be a critical issue for large-scale edge computing
systems.

4) Memristor bridge synapses: The other type of synap-
tic weight implementations is a bridge arrangement. The
memristor-bridge synapse with 4 memristors (4M) shown in
Fig. 4 (f) was tested in various neural network architectures
and applications [56], [57]. The circuit consists of 4 mem-
ristors that form Wheatstone bridge-like circuit and is able
to represent zero, positive, and negative synaptic weights. To
increase the resistance of M2 and M3 and decrease of resis-
tance of M1 and M4, positive pulse should be applied as an
input and vice versa. The weight is positive, if M2

M1
> M4

M3
. The

negative weight can be formed as M2

M1
< M4

M3
. A zero weight

is formed as M2

M1
= M4

M3
. This ensures the implementation of

positive and negative weights and allows to change the weight

sign, which depends on the direction of the current.

C. Neuron cell models

1) Integrate and fire neuron model: The earliest neuron cell
models are based on capacitors that emulate the membrane of
a biological neuron and integrate current [7]. One of the basic
and first neuron models is Integrate and Fire (I&F) neuron
model. In this model, single membrane capacitance sums the
currents flowing into the neuron from all the synapses and
membrane resistance causes the leakage of the membrane
current [74]. However, due to the large on-chip area and power
consumption, such neurons are not applicable for large-scale
circuits and edge devices, where the power consumption is
limited. Even the novel I&F neuron circuits proposed recently
[75]–[79] cannot be extended for the use in the large-scale
systems due to the number of the components.

There are only a few attempts to use the I&F based neuron
models in large-scale architectures. The modified I&F neuron
used for neural network implementation is shown in Fig. 5 (a)
[68]. The neuron circuit consists of current integration part
with capacitor Cu, spike generation Schmitt trigger circuit,
reset circuit and control circuit for current input range and
injection. When the voltage is applied to the terminals of
transistors M1 and M2, the input current Iin is injected to
the leaky integration part of the neuron through the current
mirror. This current is integrated and leaked though M3. Then,
the Schmitt trigger generates a spike, and the neuron is reset
using M4. The firing threshold of the neuron is determined by
the Schmitt trigger circuit.

In one of the recent works, the integrate and fire effect was
achieved by a neuron based on a single diffusive memristive
device [65], illustrated in Fig. 5 (b). The diffusive memristor
exhibits capacitive effect and a temporal behavior due to the
doping of Ag nanoclusters between two electrodes of memris-
tive material [64], [65]. In the application of such memristor as
a neuron [65], it integrates the pre-synaptic signals, and when
the memristor threshold is reached, the diffusive memristor
changes its state and resistance of a memristor decreases
causing a spike. The delay of a spike depends on the internal
material properties and Ag doping in the diffusive memristor.

2) Neuron model based on summing amplifiers and com-
parators: Most of the ANN implementations use the neuron
structures based on the summing amplifiers and comparators
[67], [69], [70]. This model is usually used to represent
threshold logic based linear neuron model. In most of the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Neuron cells: (a) Modified I&F neuron [68]; (b) memristor-based capacitive neuron [65]; variations of neuron models based on summing amplifier and
comparator: (c) [69], [70], [32], (d) [71], (e) [33], and (f) [60]; (g) neuron models with sigmoid activation function [72], (h) neuron model for memristor-bridge
architectures [56], [57]; (i) stochastic neuron [73]; and (j) HTM SP neuron [8].

cases, this structure is used for postsynaptic neurons, while
presynaptic neurons have various configurations depending on
the application of the architectures, or are not even shown in
several research works. Different variations of such neurons
are shown in Fig. 5 (c), Fig. 5 (d), Fig. 5 (e) and Fig. 5 (f).

Fig. 5 (c) represents the conventional summing and thresh-
olding neuron configuration [69], [70]. The summing amplifier
sums the input currents and outputs the equivalent voltage.
The comparator output the spike or pulse (depending on the
configuration of the circuit), when the amplifier output is
above the threshold [69], [70]. Fig. 5 (d) shows a similar
configuration of the output neuron with the summing amplifier
combining the outputs from negative and positive memristive
arrays and comparator circuit [71]. The other configuration is
shown in Fig. 5 (e). The first amplifier is used to scale the
output voltage and implement the sigmoid activation function,
while the second unity gain amplifier inverts the output [33].
Fig. 5 (f) shows a neuron consisting of three amplifiers [60]
used to sum the currents, invert the output and calculate the
error, which allows updating the synapses.

3) Neuron models with different activation functions:
There are different ANN implementations which use various
activation functions to implement the behavior of the neuron,
such as sigmoid [72] and tangent [80]. One of such sigmoid-
based neurons is shown in Fig. 5 (g) [72]. The neuron
contains a sigmoid activation function with input current and
output voltage and additional circuit to ensure the accurate
performance and absence of loading effects. The currents from
the memristive synapses are summed, and the current mirror
is used to reduce the loading effect. The current is applied
to the sigmoid activation function [81], and voltage buffer is
used to normalize the sigmoid output. The voltage buffer is
optional in this configuration.

4) Neuron models for memristor bridge architecture: The
other possible implementation of the neuron is shown in
Fig. 5 (h). These neurons correspond to the bridge synapse
structure from [56], [57] and were proposed to be used only

with those synapses. In this neuron, the voltage weighted by
the memristor bridge synapses is converted to the current
using differential amplifiers [57]. Three transistors connected
to the synapse represent voltage-to-current converter (VIC)
acting as a current source. The neuron contains a self-biasing
circuit to provide DC output current, an active load connected
to all synaptic circuits which sum up the currents from all
synaptic currents, and memristor load that converts output
current into voltage. This circuit is used in various neural
network architectures [57], [82]. Such configuration shows
good performance for ideal simulations, however, if the circuit
is constructed from the real memristors, the problems, such as
switching response, switching time and connection issues of
two memristors may occur. Also, if the number of connected
synapses increases, the number of transistors in the neurons
will increase significantly. Therefore, this is not the most
efficient solution for very large architectures.

5) Stochastic neurons: In recent year, the exploration of the
stochastic systems with added noise and memristor stochastic-
ity gained the popularity. Such neuromorphic systems emulate
the stochasticity in the cortex, where the biological noise helps
the learning and information processing. In CMOS-memristive
systems, stochasticity is introduced by ejecting the noise into
the circuit. Either stochastic memristive synapses or stochastic
neuron can be used for these purpose [73], [83]. One of the
possible implementations of a stochastic neuron is shown in
Fig. 5 (i). Memristor is arranged in parallel with original
simple neuron circuit consisting of membrane resistor Rm and
capacitor Cm [84]. The variable threshold of the memristor
allows to randomize the firing threshold of the neuron and
ensures random neuron spiking behavior. This stochastic
memristor based neuron model tested for the architectures
with 16 and 32 stochastic neurons is proposed in [73]. The
stochastic neuron with memristor allows removing random
number generator from the stochastic circuits. However, the
application of such neurons for large-scale arrays is still
questionable because of the size of the neuron due to the
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Fig. 6. One layer artificial neural network [61].

capacitor.
The application of the stochastic neurons for digits recogni-

tion problem is investigated in [73]. The accuracy that can be
achieved is about 60 % for a system with stochastic neurons
and 65 % for the stochastic synapses. The approach was tested
for a small scale problem; however, it is mentioned that the
90 % of recognition accuracy can be achieved using 300
neurons or 235200 synapses. However, such architecture will
have a large area and power consumption. The simulation of
the system with stochastic memristive synapses in [85] allows
achieving the recognition accuracy up to 82 % for MNIST
database. The other stochastic spiking WTA network used for
handwritten digits recognition with 78 % accuracy is shown
in [83].

6) HTM Spatial Pooler neuron: The implementation of
HTM neuron is not fully explored in terms of hardware
realization. The implementation of inhibition phase of HTM
Spatial Pooler (SP) that can be considered as a neuron cell is
shown in Fig. 5 (j) [8]. The neuron consists of a comparator
and inverter. This neuron of a part of modified HTM archi-
tecture, where the mean operation replaces the summation.
The comparator performs the comparison of the mean voltage
with the threshold, and the inverter normalizes the comparator
output and produces the binary output. The variations of HTM
neuron based systems are shown in [8], [86] and [87].

IV. NEUROMORPHIC ARCHITECTURES

A. Neural network architectures

There are different memristive neuromorphic architectures
that can be used for edge computing applications. The sum-
mary of these architectures is shown in Table I. Also, there are
several other memristive architectures proposed in the recent
years, which are less common and not considered in this paper,
such as Probabilistic Neural Networks [88], [89] and Binarized
Neural Networks [90].

1) One layer neural network with learning: The structure
of one-layer ANN with learning is similar to the feed-forward
neural network but contains the learning phase. Learning
can be performed using various learning rules, like Hebbian
learning, backpropagation and different modifications of them.
One of the implementations of one-layer ANN is shown in
Fig. 6 [61]. The 2M Pt/T iO2−x/Pt memristor synapses are
used to ensure the negative sign of synaptic weights. The
output is calculated as a binary activation function of a sum
of all the synapses, which is equivalent to a perceptron [49].
The learning is performed using a perceptron learning rule,
where the memristive synapses are strengthened or weakened

Fig. 7. Two layer neural network [59], [60].

depending on the desired output: ∆wi = ±ηxi(yi−yo), where
yi is an ideal output, yo is a real output, η is a learning rate
and xi is an input. The architecture was tested for small-scale
pattern classification problem.

The other implementation of one-layer ANN is proposed
in [91]. The architecture is designed as an array of 2T1M
synapses (Fig. 4 (e)). The performance was tested for hand-
written digits recognition, and the obtained accuracy is ap-
proximately 83%. The implementation of one-layer ANN for
face classification using single layer RRAM-based percep-
tron is shown in [54]. The architecture is constructed using
TiN/TaOx/HfAlyOx/T iN 1T1M synapses (Fig. 4 (d)).
The achieved average face recognition accuracy for Yale Face
Database [92] is 88.08%.

2) Two layer neural network: The typical example of two
layer neural network is a perceptron with a single hidden
layer. Such architecture is shown in Fig. 7 [59], [60]. The
architecture contains two crossbars with Ag/AgInSbTe/Ta
1M synapses [60] and neuron cells shown in Fig. 5 (f). The
control cell in the architecture contains either transmission gate
[59] or memristive switch [60]. Both networks were tested
for pattern recognition applications. The design is simulated
for digits recognition problem with the accuracy up to 100%
without noise [60].

Partially fabricated two-layer ANN with 64 input, 54 hidden
and 10 output neurons shown in [93]. The 128×64 fabricated
crossbar array was used in the network, while activation func-
tions were implemented in software. The simulation was per-
formed with rescaled images of size 8×8 pixels from MNIST
database with the classification accuracy of 92%. The training
was performed online, the update values for memristors have
been calculated in software, according to backpropagation
algorithm, and the corresponding update pulses were applied
to the crossbar.

The other architecture for two-layer ANN proposed in [82]
is based on 4M bridge synapses (Fig. 4 (f) and Fig. 5 (h)).
The architecture is shown in Fig. 8. The architecture is similar
to Radial Basis Network structure and consists of the artifi-
cial neurons with 7 CMOS transistors and memristor bridge
synapses. The network with 432 inputs, 10 hidden neurons



8

Fig. 8. Two layer neural network with memristor bridge synapses [82].

and 1 output neuron was tested for car detection problem using
images of size 24 × 18 pixels. The results showed that the
results obtained from circuit simulation are comparable with
software simulation results. A similar approach is proposed in
[57] with the implemented ANN is based on Random Weight
Change (RWC) learning algorithm. The circuit implementation
shows promising results in terms of processing time, which
equals to 115ns in total for feedforward processing and the
memristor programming.

3) Deep Neural Networks: Deep Neural Network (DNN)
is a large class of the neural networks that consists of many
cascaded layers and contains various activation functions be-
tween the layers. The number of layers in deep neural net-
works cause the scalability issues. Moreover, the application
of memristive crossbars opens an opportunity to scale such
networks staying at an acceptable level of power consumption.
Therefore, memristor-based deep neural networks have been
explored in the recent years. The architecture of memristive
DNN is similar to two-layer neural networks but contains more
crossbar arrays. The research work [33] explores the deep
memristive convolutional neural network with 5 layers and
reports the accuracy of 91.8% for MNIST handwritten digits
classification. While [94] investigates the implementation of
deep stochastic spiking convolutional 5 layer neural network
with the MNIST classification accuracy of 97.84%, selecting
the output class based on the largest number of output spikes
produced by the output neurons. The energy consumption and
on-chip area of this memristive network is 6.4 and 8 times
smaller than in equivalent CMOS-based design, respectively.

4) Cellular Neural Network: The architecture of the cel-
lular neural network (CeNN) is illustrated in Fig. 9. The
architecture implies that the cells are connected only to the
closest neighbor cells in the network. The first analog hardware
implementation of cellular neural networks was proposed in
the 1980s. The cells were designed with the capacitor, current
source and resistive elements [96]. In contrast to this early
design, the architecture of recently proposed CeNN is based
on the memristive-CMOS circuits as shown in [56], [95]. The
most commonly implemented memristive CeNN architecture

Fig. 9. Cellular neural network [95].

is based on 4M bridge synapses (Fig. 4 (f) and Fig. 5 (h)).
The research work [97] illustrates the use of the memristor
bridge circuit application with 5M synapses. This architecture
is useful for the image processing tasks, such as edge detection
[95], [98] and image filtering [56], [97]. The two dimensional
CeNN architecture in the flux-charge domain is described in
[99]. The CeNN can also be used for noise removal, extraction
of horizontal lines and hole filling tasks.

5) Convolutional Neural Network: Convolutional Neural
Network (CNN) is a machine learning algorithm based on a
convolution operation that has been proven to be an efficient
solution for various classification tasks, image recognition
problems [100], [101] and video analysis [102]. Comparing
to the software implementations of CNN, there are not many
hardware implementations of CNN based on memristive cir-
cuits. Most of the hardware solutions for implementing CNN
architecture are based on 1M memristive crossbar arrays or
ReRAMs, while the processing units such as for implementing
learning algorithm are digital [103], [104].

One of the hardware solutions for CNN is shown in Fig. 10
[33], [34]. The architecture is divided into feature extraction
parts with convolution and sub-sampling (smoothing) layers
and classification part. In CNN, the number of data features
is reduced with the propagation through the network but the
number of feature maps increases, which improves feature
quality for inter-class discrimination. The convolution layer is
followed with a fully connected multi-layered neural network
that act as the classifier. The learning in such system is
performed on software and the values of the memristors in
each layer are programmed. The testing and classification
are performed on hardware. In convolution layer, memristors
represent the convolution filters and perform dot product
calculation, similar to the fully connected layer. The output
current from the crossbar is converted into voltage using the
system with two amplifiers (as in Fig. 5 (d)). The number of
memristors in each layer is determined by the initial size of
images and number of required feature maps in this layer [34].
In [33] and [34], the size of the input images is 28×28. In the
first convolution layer, the image is filtered by 6 convolution
filters producing 24 × 24 feature maps, while sub-sampling
layer reduces the size of feature maps to 12 × 12. In the
second convolution layer the feature maps are filtered by 12
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Fig. 10. Convolutional Neural Network [33], [34].

convolution filters producing feature maps of size 8×8, which
are reduced to the size of 4 × 4 in the second sub-sampling
layer. The accuracy for handwritten digits recognition that can
be achieved is 92% [33] and 94% [34], comparing to 98.92%
of software simulation with MNIST database.

The research work [105] illustrates the memristive cross-
bar based accelerator for CNN implementation consisting of
analog and digital components. In such systems, the analog
components include only memristive crossbar; and most of
the other components are digital. The power efficiency of
such accelerator is 644.2 giga-operations per seconds (GOPS)
per Watt (GOPS/W). The CNN accelerator based on the
crossbar architecture with digital ReRAM is shown in [106]
and [107]. The accuracy results are 98.3% and 91.4% for
MNIST and CIFAR-10 databases, respectively. The area and
power consumption of the system are 1.02mm2 and 6.3mW .
The system throughput is 792 (GOPS) and energy effi-
ciency is 126 tera-operations per second (TOPS) per Watt
(TOPS/W ). The accuracy of CNN varies with the number of
output feature maps from the convolution layer. The research
work [108] illustrates that the implementation of CNN for
MNIST character recognition using memristive crossbar has
the on-chip area of 0.5033947mm2 and power consumption
of 0.001785W , which is more efficient in comparison to the
implementation of CNN on the traditional RISC processor.

One of the most recent works in memristive convolutional
filtering is illustrated in [109]. In this work, parallel vector
matrix multiplication of array of size 128×64 is implemented.
The current from all fabricated crossbar columns are read in
parallel, which illustrates the speed of 1.64 TOPS for reading
cycle. The power consumption of such crossbar is 13.7mW ,
and the power efficiency is 119.7 TOPS/W . Even though the
image quality after convolution operation is worse comparing
to software based convolution operation, memristive solution
consumes 17 times less energy comparing to ASIC implemen-
tation. The recent work [110] illustrates the implementation
of CNN in spike domain with digital memristor-based neuron
using Time Division Multiplexing Access (TDMA) technique
to reduce the number of required neurons. The classification
accuracy of the network for handwritten digits recognition is
97%. However, the size and scalability of such network for
the application on edge devices is an open problem.

6) Spiking Neural Network: In Spiking Neural Networks
(SNN) the data signals are transmitted as spikes of a specific
shape. This emulates the brain processing and is based on the
particular spike events [42]. SNN focuses on the realization
of plasticity rules and timing difference between pre- and
postsynaptic spike. The spike based architectures are mostly

Fig. 11. Spiking Neural Network [74].

represented by Spike Timing Dependent Plasticity (STDP)
implementation. STDP is based on biological concepts of
presynaptic and postsynaptic impulses. The implementation of
the neuromorphic architectures with STDP are based on the
memristive crossbar arrays. The crossbar represents synapses
and connected with the neuron models [111]. The possible
implementation of such system is shown in [112]. Based on
the correlation of the presynaptic and postsynaptic spikes, the
synapse value between presynaptic and postsynaptic neurons
represented by memristor is updated. Based on the postsy-
naptic neuron mode, the memristor is potentiated, depressed
or stay unchanged. One of the advantages of SNN hardware
implementation is that the power dissipation of such systems
is smaller than in the pulse based systems. SNN can be used
for handwritten digits recognition and letter recognition with
the accuracy of up to 99% [113].

The basic SNN architecture is shown in Fig. 11; it consists
of presynaptic neurons and postsynaptic neurons connected
by 1M synapses [74], [114]. In most of the cases, the SNN is
used with Winner-Takes-All (WTA) approach. One of such
architectures for object position detection is introduced in
[115]. Each input neuron corresponds to a particular position
of the object, and the output neuron determines the exact
position of the object based on the spiking frequencies. If
the object is located between the input neurons, the spiking
frequencies of the output neurons are proportional to the
exact position of the object in the input neurons. Such
position detector consisting of 5 × 5 neurons has maximum
power consumption of 15.6µW , which is about 70% less than
equivalent CMOS design, and on-chip area of 6.1×10−5cm2.

The recent works introduce the stochasticity to SNN. The
stochasticity implies the probabilistic behavior of neurons
or synapses and represents the biological concept of the
importance of neural noise during the information processing
in the brain. In [84], the stochasticity is introduced to the
simple Spiking WTA architecture shown in Fig. 13, where the
output is determined by the first firing neuron from the output
neurons. The simulation results from MNIST handwritten
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Fig. 12. Stochastic spiking neural network [84].

Fig. 13. Capacitive spiking neural network [116].

(a) (b)

Fig. 14. (a) Recurrent neural network, and (b) Mixed Signal Implementation
of one layer RNN [117].

digits recognition vary with the size of the layer of output
neurons and reach 78.4% for 128 output neurons. The increase
on the number of output neurons allows the network to capture
more different patterns corresponding to the input data, which
enhance the performance of majority voting procedure and
allows to increase classification accuracy.

The alternative approach to implement SNN is a capacitive
switching network presented in [116]. The resistive synapses
are replaced with capacitive synapses concept. Capacitive
synapses are based on non-volatile pseudo-memcapacitors
formed by integrating non-volatile memristor in series with a
capacitor. To form the capacitive neurons, the neuro-transistor
is introduced, where dynamic pseudo-memcapacitors, formed
by integrating recently proposed diffusive memristor with
intrinsic capacitance [64], [65] in series with capacitor, are
integrated onto the gate of a MOSFET. If the neuron is
triggered by high capacitive state synapses, the post-synaptic
neuron fires. The learning in such network is performed if
presynaptic and postsynaptic neurons fire together causing
the potentiation of low capacitance state in the synapses.
Capacitive spiking network has an advantage of sneak-path
free outputs.

Fig. 15. Long Short Term memory [12].

7) Recurrent Neural Network and Long Short Term Mem-
ory: Recurrent Neural Network (RNN) is a neural network
type, which involves the feedback calculation and the output
of the layer effects the consequent outputs [118]. There are
various architectures for RNN implemented in software; how-
ever, memristor-based hardware implementations of RNN is an
open problem. There are several modifications of RNN, and
simple RNN architecture is shown in Fig.14 (a). Fig. 14 (b)
shows the implementation of one layer RNN with fabricated
iron oxide memristive synapses [117], containing two parallel
memristors representing positive and negative conductance, as
in Fig. 4 (b). RNN design involves digital neuron, ADC and
DAC, pulse modulator and learning block based on recursive
least-squares algorithm.

The RNN architecture, especially in analog domain, has not
been fully explored yet. Most of the works on memristive RNN
focus on a mathematical analysis of system stability [119],
[120]. The hardware implementation of memristive RNN is
presented in [121]. The work illustrates analog implementa-
tions of the RNN using 0.5µm CMOS technology and applied
for combinatorial optimization problems. Even though there
are FPGA-based implementations of RNN [122], and some
of the works show the possibility to integrate RNN with
the memristive crossbar [121], the implementation of a full
memristor based RNN architectures is an open problem. One
of the main problems in analog implementations of RNN
is the implementation of feedback and complexity of the
architectures.

LSTM is a modification of RNN. One of the main features
of LSTM is the feedback and selection of the information that
effects future outputs. LSTM is based on modified dendritic
threshold non-linear neuron model, where the output depends
on the current input and previous outputs. The LSTM structure
shown in Fig. 15 includes output gate, input gate, write gate
and forget gate. These gates are responsible for how much
the current output should be affected by the current inputs
and previous outputs of LSTM. Memristor-based implemen-
tation of LSTM is proposed in [12]. The LSTM weights are
presented as crossbars with 1M synapses, and the implemen-
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Fig. 16. Hierarchical Temporal memory [87].

tation of the activation function circuit that can be used as
sigmoid or tangent is shown in Fig. 15. As LSTM algorithm
requires multiplication, the analog multiplier is used. While
the research work [12] shows the implementation of separate
LSTM components, the full implementation of LSTM system
is illustrated in [123] and [124]. Both systems are tested for
the prediction of the number of airline passengers, and show
the successful prediction of a trend, where LSTM system
in [123] achieved the accuracy of 75%. The implementation
RNN for edge inference with fabricated LSTM units based
on memristive crossbar are shown in [13]. The implemented
RNN consists of 15 LSTM units followed by fully connected
layer. The LSTM is tested for prediction of the number of
airline passengers and classification of an individual human
by the persons gait, showing the precise prediction results and
classification accuracy of 79%.

8) Hierarchical Temporal Memory: HTM is a machine
learning algorithm and architecture mimicking the structure
and functionality of human neocortex [10], [125]. HTM
consists of HTM Spatial Pooler, which encodes the input
patterns and produces sparse distributed representation of input
data useful for visual data processing, and HTM Temporal
Memory (TM), which can be used for prediction making [10].
Both HTM SP and HTM TM involve learning process. There
are several CMOS-memristive hardware implementations of
HTM proposed in recent years [8], [86], [87]. The mixed
signal design of HTM is shown in [87], and the hierarchical
structure of the proposed circuit is illustrated in Fig. 16. In
this architecture, each level of HTM is presented by the mem-
ristive crossbar and spin-neuron devices are used as neurons
for the processing. This architecture was used for MNIST
handwritten digits recognition with the maximum accuracy of
95 % [87]. . The architecture in [86] shows the alternative
implementation of crossbar-based analog HTM SP circuit,
which was tested for face recognition with AR [126] and
speech recognition with TIMIT database [127] and achieved
the accuracy of 86 % and 70%, respectively.

HTM architecture in [8] proposes the analog circuit level
implementation of the modified HTM SP and HTM TM,
inspired from HTM neuron shown in Fig. 3 (d). This ar-
chitecture is shown in Fig. 17. In this system, HTM is
used in combination with traditional supervised classification
methods. Also, the implementation of HTM is modified to
reduce the hardware level complexity. In this HTM system,
HTM SP is used for encoding the input data patterns and

Fig. 17. Modified HTM Spatial Pooler and HTM Temporal Memory [8].

Fig. 18. Online backpropagation training architecture for memristive ANN
[9].

presenting the inputs as sparse distributed binary patterns. In
comparison with the traditional HTM algorithm, the HTM
system uses HTM TM only for generation of the templates for
all data classes stored in the memristive memory array. The
classification is performed by the memristive pattern matcher,
which compare the inputs processed by HTM SP with the
ideal image templates. The synaptic weights are represented
as separate memristors. The HTM SP part is based on the
hardware implementation of HTM neuron shown in Fig. 5
(j). While the HTM TM part consists of the comparator and
summing amplifier. The output of the HTM TM is used to
update the training template stored in a memristive memory
array [128]. The system is tested for face with AR database
and speech recognition with TIMIT database, achieving the
accuracy of 87% and 95%, respectively. There are several
other HTM related works that propose different variations of
hardware for memristive HTM [129], [130].
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TABLE I
MEMRISTIVE NEUROMORPHIC ARCHITECTURES

Architectures Applications
and simulation results Scalability Open problems

Drawbacks to improve
for application

in edge computing
One
layer
ANN

handwritten
digits recognition (83%) [91],
face recognition (88.08%) [54]

Scalable
with 1M devices

Investigation of the scalability
of the system with 2T1M synapses Investigation of the performance

with real devices, processing
speed, scalability, on-chip
area and power dissipation

for large scale systems,
improvement of CMOS

components

Two
layer
ANN

simple
digits recognition (100%) [60]

Scalable
with 1M devices,
not scalable for
bridge neuron

Investigation of the scalability
of bridge neuron based

systems and reduction of
power dissipation of CMOS

components

Deep
neural
networks

various applications
Scalable
with 1M
devices

Investigation of the possibility
of application for various problems,

investigation of the effects
of real memristors

Improvement of power
dissipation and

scalability issues

CeNN image filtering Not scalable

Investigation of the possibility to
improve architecture for
large scale simulations

and to create the multilayer
architectures

Investigation of
the possibility to use

with 1M devices
to ensure the

scalability of the system

CNN handwritten
digits recognition (94%) [34],

Partially
scalable

Investigate the possibility of
implementation of

fully on-chip system without
software part

As the number
of layers is large,

the scalability
should be investigated

SNN

handwritten
digits recognition(78.4%) [84],

letter
recognition [113] (99%)

Scalable

Investigation of the advantages
over pulse-based systems

and possibility to replace pulse
based systems with spike based

Design of the scalable
neurons producing spikes

with small of chip
area and power dissipation

RNN pattern recognition
Scalable
with 1M
devices

Full circuit level design of the architecture,
investigation of scalability and different applications

LSTM prediction making Scalable

HTM

face recognition (98%) [86], [131],
speech recognition (95%) [8],

handwritten
digits recognition (95%) [87]

Partially
scalable

Implementation of full system
performance, implementation of the exact

algorithm for HTM SP and HTM TM,
implementation

of sequence learning in HTM TM

Improvement of CMOS
components

to ensure scalability

B. Neural Network learning architectures

The learning process in the neural networks is important,
especially for large-scale edge computing architectures. In
memristive architectures for edge computing, the concept
of online training is important [55], [132]. In most of the
designs, the learning and online training of memristive ar-
chitectures is performed on software. For example, partially
fabricated neural network with online backpropagation training
on software and online update of memristive weights of the
crossbar is shown in [93]. However, it is important to ensure
the scalability and low power dissipation in edge devices;
therefore, separate software components and training units
are not efficient for edge devices, and development of the
architectures with online on-chip digital, mixed-signal and
analog training architectures is important.

The online digital training and learning architectures based
on the combination of memristive crossbars with digital train-
ing circuits for neural network implementation have been re-
cently proposed in [66], [55], [31]. In [31], the digital training
architecture for memristive DNN is proposed to accelerate the
learning process and transfer it to hardware. The work [32]
illustrates a mixed-signal design of neural network with analog
neurons and digital error calculation and on-chip training.

For near sensor processing, it is essential to use analog
systems that can be easily integrated with analog sensors

without additional stages of analog to digital and digital
to analog conversion. Several works investigate the analog
learning circuits for neural networks [72], [9], [60] and HTM
[8]. In the implementation of backpropagation shown in Fig. 7
[60], the errors from the output neurons in the second layer are
propagated back, and the memristors of the second and first
neural network layer are updated sequentially. The memristors
of the layer, which is not currently updated, are isolated by the
memristive switch. The amount of the update value is proposed
to be calculated on FPGA or using Look-Up Table (LUT).

The other recently proposed training architecture is illus-
trated in Fig. 18 [9], showing the completer hardware imple-
mentation of the calculation of backpropagation of error with
the derivative of the activation function, relevant multiplication
circuits, control transistors and analog weight update circuit.
Also, the research work [9] illustrates the application of analog
backpropagation circuit for different analog learning archi-
tecture, such as Multiple Neural Network (MNN) containing
several neural networks processing different types of data and
ANN decision layer, Binary Neural Network (BNN) based
only on two state memristors, DNN, LSTM and HTM. Even
though, several memristive analog implementations of neural
networks has been proposed recently, the optimization and
testing of fully analog learning systems with control circuitry
without digital processing is still an open problem.
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In the online training, one of the main issues of the learning
process in memristor-based architectures is the update speed
of the memristive weights. To update weights in a memris-
tive crossbar, different update techniques can be used. The
memristive synapses containing only memristors (1M,2M) and
memristive synapses with transistors (1T1M and 2T1M) can
be updated one at a time, which is a slow process. In this
scheme, 1T1M and 2T1M allow to disconnect the memristors
which are not involved in the update process completely and
eliminate the leakage currents and effect on those memristors.
To speed up the learning process, memristors in a crossbar
can be updated in 2 steps: 1) update all memristive weights
requiring the change from RON to ROFF , and 2) update the
others requiring the change from ROFF to RON [133]. This
method can be more efficient for the small crossbars with
negligible leakage current and for modular crossbar approach,
which is proposed to reduce the leakage currents in the
memristive crossbar by dividing a large crossbar into smaller
sub-crossbars [134], where all sub-crossbars can be updated
in parallel reducing the training time.

V. DISCUSSION

This section includes the discussion of the advantages of
memristive neuromorphic architectures, challenges that may
occur during the simulation and implementation of the real
system and open problems that should be addressed for
efficient implementation and integration of neuromorphic ar-
chitectures into the edge devices. In the simulation of such
large neuro-memristive networks, the selection of memristor
model is one of the challenging tasks, which is discussed in
Appendix A.

A. Advantages of memristive architectures

The main advantages of the memristor-based systems for
edge computing applications are the small on-chip area, low
power dissipations, and scalability of the memristor-based
systems. Therefore, the memristor circuits are a promising
solution for edge-computing devices, where the computation
is performed on the device without sending information into
the cloud.

1) Push from market and users: The increased number of
edge devices in Internet of things and Cyber Physical System
frameworks is driven by the needs from the users for applica-
tions such as for gaming, object detection, augmented reality,
artificial intelligence, video analytic, and mobile computing
[135], [136]. This demands devices and chips that consume
low energy, smaller area, and can provide higher compu-
tational capacity. The memristive architectures is envisaged
to have this potential to achieve these objectives promoting
more than Moore’s law integration, and emerging intelligent
applications [20].

2) On-chip area and power dissipation: The advantages of
the implementation of memristive circuits include the signifi-
cant reduction of on-chip area and power dissipation. In several
systems, memristor is proposed to be used instead of resistors
due to the small on-chip area and low power dissipation.
For example, in comparison to CMOS-based design,for the

memristive CAM array design, on-chip area and average
power consumption are reduces by 45% and 96%, respectively
[137]. The area of memristive devices varies based on the
used materials and the required resistive levels. The area of
memristive devices of various materials can vary from micron
to sub-10 nm depending of the required device properties [47],
[52], [113], [138].

3) Scalability: The application of memristive devices al-
lows scaling the systems because memristor does not exhibit
leakage current problems, comparing to transistors and resis-
tors. One of the most efficient solutions is scalable memristive
crossbar structures. However, large crossbars can exhibit sneak
path problems and the small variability of crossbar outputs. As
a solution to this problem, the scalability of the memristive
circuits and arrays can also be achieved by dividing the
large memristive arrays into smaller sub-arrays [139]. Other
well known solutions are to use selector devices along with
memristors as outlined in previous sections, which however
increases the cell area.

B. Major issues, open problems, and future work prospective

Even though there are a lot of benefits of memristor-based
systems for edge computing applications, the research field
of memristive circuits is not mature enough for commercial
chip design solutions. Therefore, there is many drawbacks
and open problems that can be investigated in future, such as
compatibility issues, unstable switching behavior, limitations
in the range of resistance and number of resistive levels, the
complexity of fabrication of memristive systems and various
issues of implementation of large-scale complex systems.

1) Memristor materials and compatibility issues: One of
the major issues of the memristive circuits based design is
the compatibility of memristive elements with the CMOS
technology and fabrication issues. Several memristive devices
are proven to be compatible with the CMOS fabrication
process [137], [140]. While TiO2−x memristors were quite
popular, there are other growing list of memristors based on
materials such as HfOx, TaOx, MoOx, La1xSrxMnO3,
InGaZnO [141], organic memristors with electrografted re-
dox thin film [142], ferroelectric tunnel memristors (FTM),
Ge2Sb2Te5 (GST) memristors [132], SiOx [143], SiNx [141]
and Pr0.7Ca0.3MnO3 (PCMO) [63]. As the memristor tech-
nology is only at early stages of development, the properties,
stability issues, switching behavior and compatibility with
CMOS devices of various memristive elements and selection
of most stable material stack is an open problem.

2) Variability in switching behavior: The variability issues
are common in the memristive devices due to the immaturity
of the memristive technology. The switching behavior of the
memristive devices may vary, which affects the performance
accuracy of many architectures [144]. Even though most of
the memristor models used for simulations illustrate the ideal
switching behavior, the real devices show the variability in
switching behavior. Several works investigate the probability
of switching of the memristive devices and apply this property
in the stochastic systems [145]. While the stochasticity in
switching may be useful for some systems, the effects of this
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behavior on various neuromorphic architectures and learning
systems have not been investigated yet. While, there have been
works that have shown that the use of learning can compensate
for variability at system level in digital neural architectures,
implementation of learning algorithms with memristors for
analog neural network remains a challenging problem. In
addition, the effect on the learning process and training speed
should also be explored. It should be also noted that there are
several memristor devices proposed in the last decade, device
to device variability is high and large majority of them are
still in its infancy for industrial use.

3) Range of resistance and number of stable states in
memristive devices: According to the material and physical
properties, different memristive devices can be programmed
into different ranges of resistance different and the number of
stable resistive states. In most of the cases, the neuromorphic
architectures are designed for a specific range of resistance
and do not take into account the restricted number of resistive
levels when simulating the overall system. In the real devices,
depending on the material and fabrication process by changing
the width of active layer, these parameters can vary, and the
number of resistive states is finite. The recent research works
show the memristive devices can achieve up to 64 stable re-
sistive states [109]. One of the solution to increase the number
of resistive level is to use parallel and series combination
of memristive devices, which also implies that the issue of
memristor interconnection should be considered. The issue of
limited number of the resistive levels can be mitigated adding
the additional circuits and components, however this increases
complexity, number of components and power dissipation.

From the device perspective, the open problems include
the investigation of the possibility to improve the number of
resistive states and the investigation of possible materials that
can be used for such purposes. From a mathematical modeling
perspective, the model of the memristor incorporating the
limited number of stable resistive states and non-linearity of
the switching between different states that reflect a realistic
memristor is still an open problem. From circuit and system
design perspective, it is essential to consider the limited
number of stable resistive states in the design and investigate
the effect of this issue on the overall system performance.

4) Endurance of the memristor: Lifetime and reliability of
memristive devices is a subject for the investigation, as there
is a large number of memristive materials, in which endurance
properties may vary. For example, [146] reports that TiOx and
TaOx devices have an endurance of 105 and 109 cycles for
1µs applied voltage pulses, respectively. The endurance and
reliability of memristive devices depend on process variability,
including device-to-device and cycle-to-cycle variations, and
endurance degradation referring to limited number of update
cycles [147]. Cycle-to-cycle variability depends on the mate-
rial of a memristor, while device-to-device variability refers to
time-varying device stability depending on the manufacturing
process and operation parameters, such as voltage, temperature
and duration of applied voltage pulses [147]–[149].

In the edge computing architectures, especially involving
the learning and training process, the lifetime of the memristor
and number of possible update cycles is critical. For example,

the online learning process to train simple two layer ANN
for simple XOR problem requires 5000 training iterations
[9], and involves the continuous update of the memristive
synapses. Moreover, to achieve a high-performance accuracy
of the neural network, usually the learning rate is decreased,
which leads to the requirement to increase the number of
update cycles [9]. Therefore, it is important to investigate the
endurance, reliability and lifetime limits of various memristive
devices.

5) Integration with CMOS devices and CMOS issues:
Considering the current trends in the technology market, it
will be impossible to avoid the integration of the memristive
devices into the CMOS architectures. Considering the impor-
tance of the implementation of the read and write circuits
for the memristive devices, which are mostly based on the
CMOS transistors, the number of CMOS devices per chip
will be increased with the increase of the size of memristive
architectures, primarily when the synapses or neurons in
the neuromorphic architectures are based on hybrid CMOS-
memristive designs.

Even though the memristor is a two terminal vertical ele-
ment [150], which ensures the reduction of the on-chip area of
the CMOS-memristive circuits, the fabrication process of the
complex neuromorphic architectures may still be difficult. In a
complex multilayer structure, where the memristive arrays are
combined with CMOS circuits, the fabrication temperature is
a critical issue. In combination with CMOS devices, high de-
position temperature can damage the devices, while low tem-
perature cannot guarantee the reliable connection between the
elements. This also may increase the cost of such memristor-
based architectures and systems. There is a variety of materials
that exhibit memristive behavior; however, not all of them
can be used for the fabrication of the complex architectures.
The fabrication issues should be considered during the design
stage and selection of the memristive elements. In the recent
years, the successful integration of memristive devices into
CMOS architectures is performed using Back End Of Line
(BEOL) process and building a layer of memristors on top of
the existing chip [151].

In addition, the increase in the number of CMOS devices
on a chip, especially for such complex architectures as neural
networks, leads to high power consumption. To avoid this
issue, the size of CMOS devices should be decreased leading
to lower supply voltages. As it is impossible to decrease the
size of the CMOS devices further and maintain an accurate
and precise performance of the device at the same time, the
replacements of the CMOS devices, such as FinFET devices,
should be further investigated and used in the memristive
circuits.

6) Implementation of large scale systems: The investigation
of complex multilayer architectures and systems is essential to
ensure the scalability and accuracy of edge computing devices.
Most of the recent works representing the complex multilayer
systems are digital and based on Field Programmable Gate
Arrays (FPGA). However, for edge devices that are restricted
in terms of area and power consumption, FPGA is not an
efficient solution. The number of complex mixed-signal and
analog implementations of the neuromorphic systems and
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architectures is limited. There are plenty of implementations of
simple neural networks, such as perceptron and feedforward
neural network, which proves the concepts and illustrates a
solution of a particular problem using a particular database.
However, more complex and generalized systems have not
been investigated yet, and it is important to consider scalability
and performance issues of multilayer systems. Also, in a full
chip design of a complex system, it is important to consider the
interconnection of memristive circuits with the other elements
and complexity of datapath. These are design specific and
application dependant issues. For signal processing in analog
domain, the interconnection of elements can introduce para-
sitics having a significant impact on a system performance,
comparing to digital signal processing, where the effect of
signal integrity issues can be easily mitigated. The interconnect
networks for memristive crossbars are studies in [152], [153].
As a memristor is a vertical device and the number of layers
in the deep learning systems can be substantial, the possibility
of implementation of vertical on-chip systems can also be
investigated.

VI. CONCLUSION

In this paper, we presented an overview of a range of neuro-
memristive circuits and architectures that is suitable to be de-
veloped as integrated circuit chips in edge computing devices.
The pressing hardware issues and challenges involving emerg-
ing memristive circuits are presented. The growth of Internet
of things and its growing impact on applications for drives the
need to have smarter and faster computing in edge devices.
Neuro-memristive architectures aims to emulate algorithms
such as that based on neural networks and information process-
ing mechanisms in human brain. The ability to (1) have lower
on-chip area and power requirements, and (2) incorporate
analog dot-product computing with memristive arrays, enables
a highly efficient and scalable implementation possibility for
on-chip neural networks. While these architectures can be a
promising solution for efficiency and energy issues of edge de-
vices, various challenges and drawbacks should be considered
during the design to make their architectures applicable for
edge devices. The open problems include various memristive
device issues, the ability of integration and implementation of
complex systems.

APPENDIX A
SELECTION OF MEMRISTOR MODEL

To move from theoretical designs and simulations of the
neuromorphic architectures to the implementation of the real
chips and integration on the neuromorphic designs into the
existing sensors, it is important to consider side effects,
nonlinearities and drawbacks of the memristive circuits during
the simulation process [154]. The selection of the memristor
model can affect the simulation results significantly. The ideal
memristor models will not consider non-linear effects of the
real implementation, and the simulation results will not be
reliable. While the memristor models that are not designed
for large-scale simulations may cause the simulations errors
and non-convergence issues in the SPICE simulation of large

architectures. Table II illustrates the most commonly used
memristor models and their characteristics. More comprehen-
sive review and consideration of the other memristor models
is provided in [155]–[157].

1) Early linear approximations and equivalent circuits:
One of the earliest works on linear approximations and
equivalent circuits for current and voltage-based memristor
models is proposed in [166]. The circuits introduce the basic
memristor concepts and are not used in the recent memristive
architectures and systems. The equivalent circuit based mem-
ristor macro models are shown in [167]–[169]. These models
are rarely used in the large-scale system simulation due to
the complexity and lack of consideration of non-linearity and
physical parameters of real devices.

2) Linear memristor models: The other major class of the
memristor models is linear ideal models. Linear memristor
model emulates the switching behavior of the devices and
does not consider the effects of electric field on the device
performance. The simplest linear memristor model is shown
by Pickett at al. in [158]. This model is based on drift
mechanism of ionized dopants and emulates TiO2 memristor
[84]. The linear relationship between the voltage and current
in the memristor can be described as v(t) = (RON × x(t) +
ROFF (1x(t))) × i(t), where x(t) = w(t)/D and D is a
width of the device and w(t) is a width of a doped region
at a particular time [170]. The linear window function can
be shown as: f(w) = w(Dw)/D [159]. Even though this
memristor model is frequently used in the simulations of
neuromorphic circuits [171], it does not show various effects
of non ideal behavior of real memristive devices.

3) Nonlinear memristor models: In the real device, the
drift, diffusion, and thermophoresis due to ionic motion cause
the nonlinear relationship between memristor current and
voltage as well as nonlinear dynamical switching behavior
[172]. In comparison to the ideal linear memristor models, like
as Pickett model [158], that was used earlier to simulated the
memristive architectures and prove the concept of the design of
various neuromorphic architectures, the recent research works
focus on memristor model containing nonlinearity effects. It
is vital to consider non-idealities of the memristive devices
because the memristive technology is not mature yet. The
lack of stability makes the nonlinearity factor to be relevant
to investigate, primarily when the large-scale simulations are
performed.

One of the known nonlinear memristor models is Joglekar‘s
model that allows controlling a non-linearity windowing func-
tion [161]. The main parameters causing non-linearities are
W/D ratio and p, where W are the actual width, D is a width
of the thin film, and p is a parameter of the window-function
for modeling of nonlinear boundary conditions. The Joglekar’s
window function is represented as f(x, p) = 1− (2x− 1)2×p.
According to this equation, the parameter p is responsible for
the linearity of the memristor model that increases with the
increase of p. The example of the application of this model is
the CeNN architecture shown in [99].

The memristor shown in research work [162] is used in
several neuromorphic architectures. The macro model is based
on the study of the behavior of the TiO2 memristor illustrated



16

TABLE II
COMPARISON OF THE MEMRISTOR MODELS

Memristor model Description Linearity
Consideration of

physical parameters
of the memristor

Application
for large scale simulations

Linear dopant
drift models
[158], [159]

Emulate the switching behavior of the devices
and do not consider the effects of electric
field and nonlinearities

Linear partially
considered

less computationally complex than
non-linear models; however can only
be used for a proof of concept [156]

Nonlinear dopant
drift models
[160]–[162]

Models with different window functions
and consider the non-linear switching behavior Non-linear not considered reduced simulation speed due to the

complexity of window function

TEAM model
[163]

Generalized model containing various
window functions, nonlinear switching and
effect of.physical parameters

Non-linear considered difficult to use in extremely large
arrays due to the complexity

Modified
Biolek‘s models
[156], [164]

Modification of the existing models designed
for simulation improvement

Linear and
non-linear

partially
considered

can be used for large scale simulations
without numerical problems and
convergence issues

Data driven
simplified model
[165]

Model contains a window function allowing the
derivation of a resistive state time-response
expression for constant bias voltage

Non-linear considered
includes data driven parameters
and can be used for large scale
simulations without convergence issues

in [159]. The model allows modifying the nonlinear boundary
conditions that are not considered by the simplified linear
memristor models. The model is based on the modification
of non-linear window function from [161] demonstrating non-
linearities caused by non-linear dopant drift. The main param-
eters causing non-linearities are i, W/D ratio and p, where i is
a current flowing through the memristor. The window function
is represented as: f(x, i, p) = 1 − (x − step(−i))2×p, where
step(−i) = 0 for i < 0 and step(−i) = 1 for i ≥ 0. The
window function is involved into the calculation of the resis-
tance value of the memristor and the speed of the movement
of the boundary between the doped and undoped regions of
the memristor, which determines how fast the resistive state
of a memristor changes. The main difference between the
Joglekar‘s and Biolek’s memristor models [162] is the ability
of Biolek’s model to reversely change the memristance after
a reaching one of the resistance boundary [63].

The non-linear model that can be adjusted and scaled is
proposed in [160]. This window function for this model is
the following: f(w) = j(1 − [(w − 0.5)2 + 0.75]p), where
j represents a control parameter to specify highest value of
window function [160], [170].

Even the memristor models proposed in [161], [160] and
[162] contains the nonlinear switching behavior of the memris-
tor, the nonlinearities of the device, parasitic effects, leakages
and other physical imperfections are not considered. The
physical imperfections of the device are considered in [173]
and [163].

The memristor model that is used in many neuromorphic ar-
chitectures is ThrEshold Adaptive Memristor (TEAM) model
[95]. The model is proposed in [163]. The model represents a
generalized solution for Simmons Tunnel Barrier model [173],
[174] that is complicated and designed for a particular mem-
ristor type [170]. This model illustrates a generalized approach
and can be adjusted for the behavior of different memristive
devices and different window functions considering various
physical effects [173]. The model is used in different system
level simulations and is proven to be useful for fast digital
systems [121].

4) Memristor models for large-scale simulations: Most of
the architectures are realized on memristive crossbars and the
amount of processed data is significant, especially in edge
computing when the data is not sent to the cloud. While
the proof of the concept and overall ability of the system to
perform a certain task can be tested using ideal memristors,
the real performance of the memristive systems require more
accurate non-linear memristor models. Therefore, one of the
most important aspect in memristor modeling is to take
into account the non-linearity problem and physical effects.
However, the large-scale simulations of memristive systems
cause various numerical problems and make it impossible
to check the performance of the large-scale system. The
large number of internal equations in the models and the
mathematical form of those equations, especially the ones
incorporating non-linear dynamics of memristive devices, can
cause the problems of data overflow and convergence issues
[156]. Therefore, it is important to find a trade-off between the
accuracy of memristor models and computational complexity.

The modification of memristor model that can be used for
large-scale simulations is shown in [164] and [156]. The model
does not contain the window functions and allows to avoid dif-
ferent numerical problems and non-convergence issues [156].
The research work [156] proposes the modification of complex
physicalphenomenological nonlinear models appropriate for
large-scale simulations of multilayer architectures for edge
computing. The other recent model suitable for large scale
simulations is shown in [165]. This model simplifies the
data fitting process, introduces a window function allowing
the derivation of a resistive state time-response expression
for constant bias voltage, and provides the possibility to
perform computationally efficient simulations of the designed
architectures for more realistic conditions. The model is data
driven and provides the example of fitting parameters for TiOx

and TaOx devices.
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