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Abstract. A hierarchical sequential Gaussian cosimulation method is applied in this study for model-
ing the variables with an inequality constraint in the bivariate relationship. An algorithm is improved
by embedding an inverse transform sampling technique in the second simulation to reproduce bi-
variate complexity and accelerate the process of cosimulation. A heterotopic simple cokriging (SCK)
is also proposed, which introduces two moving neighborhoods: single and multiple searching strate-
gies in both steps of the hierarchical process. The proposed algorithm is tested over a real case study
from an iron deposit where iron and aluminum oxide shows a strong bivariate dependency as well as
a sharp inequality constraint. The results showed that the proposed hierarchical cosimulation with a
multiple searching strategy provides satisfying results compared to the case when a single searching
strategy is employed. Moreover, the proposed algorithm is compared to the conventional hierarchi-
cal cosimulation, which does not implement the inverse transform sampling integrated into the sec-
ond simulation. The proposed methodology successfully reproduces inequality constraint, while con-
ventional hierarchical cosimulation fails in this regard. However, it is demonstrated that the proposed
methodology requires further improvement for better reproduction of global statistics (i.e., mean and
standard deviation).

Keywords. Multivariate geostatistics, Inequality constraint, Cosimulation, Heterotopic sampling, Cok-
riging neighborhood, Carajas mine.
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1. Introduction

Multivariate geostatistics is an essential tool for re-
source modeling in the presence of moderate or

∗Corresponding author.

strong correlation between coregionalized variables
[Goovaerts, 1997, Chilès and Delfiner, 2012, Pyrcz
and Deutsch, 2014, Rossi and Deutsch, 2014]. Re-
cent industry requirements for uncertainty quantifi-
cation motivate the use of stochastic cosimulation
instead of deterministic cokriging estimation meth-
ods. The most widely used cosimulation approaches

ISSN (electronic) : 1778-7025 https://comptes-rendus.academie-sciences.fr/geoscience/

https://doi.org/10.5802/crgeos.58
https://orcid.org/0000-0003-4261-2518
https://orcid.org/0000-0002-5833-9758
mailto:sultan.abulkhair@nu.edu.kz
mailto:nasser.madani@nu.edu.kz
https://comptes-rendus.academie-sciences.fr/geoscience/


116 Sultan Abulkhair and Nasser Madani

are based on multi-Gaussian assumptions such as
turning bands cosimulation [Emery, 2008] and se-
quential Gaussian cosimulation [Verly, 1993, Tran,
1994]. One drawback of these traditional cosim-
ulation techniques is that they cannot reproduce
complexities in the bivariate relationships between
variables, such as nonlinearity, heteroscedasticity,
and geological constraints. Alternatively, implemen-
tation of geostatistical factorization, namely projec-
tion pursuit multivariate transform [Barnett et al.,
2014, 2016], flow anamorphosis [van den Boogaart
et al., 2017], among others, are designed to deal with
complexities. However, these factorization methods
have difficulty in reproducing geological inequal-
ity constraints present in bivariate relationships.
Modeling of variables with inequality constraints
has been attempted by using stepwise conditional
transformation [Leuangthong and Deutsch, 2003],
minimum/maximum autocorrelation factor [Des-
barats and Dimitrakopoulos, 2000, Vargas-Guzmán
and Dimitrakopoulos, 2003] with changing to new
variables free of inequality constraint [Abildin et al.,
2019], log-ratio transformation [Pawlowsky-Glahn
and Olea, 2004, Pawlowsky-Glahn and Egozcue,
2006], projection pursuit multivariate transform on
variables changed into ratios [Arcari Bassani et al.,
2018] and stoichiometric relations of original vari-
ables [Mery et al., 2017, Adeli et al., 2018]. One sig-
nificant limitation of these factorization algorithms
is that they can be applied mostly on isotopic data
sets, wherever the sample observations of variables
are required to share the exact locations. Another
impediment of some of these approaches is that
the marginal distributions of both cross-correlated
variables should be identical.

Another method of modeling variables with in-
equality constraints is to use hierarchical sequen-
tial Gaussian cosimulation integrated with an
acceptance–rejection technique [Madani and Ab-
ulkhair, 2020]. This algorithm enables simulating
values iteratively in order to meet the requirements
that are imposed by an inequation. The method
works with any bivariate marginal distributions and
any sampling patterns, including partially and en-
tirely heterotopic. However, there are two issues
with this algorithm. The first one is related to the
acceptance–rejection methodology that acts as a
speed bump in the cosimulation procedure. The
second one is related to the definition of the search-

ing neighborhood, which is based on a heterotopic
simple cokriging in the first step and multicollo-
cated cokriging in the second step of this hierar-
chy. Although these two neighborhood strategies
are satisfying in terms of global and local reproduc-
tion of statistical parameters, using other types of
moving neighborhoods might also be of interest.
In this research, to come up with the first difficulty,
an inverse transformation sampling is substituted
for the acceptance–rejection method to accelerate
the process of cosimulation. In addition, a hetero-
topic SCK is also embedded into the algorithm as a
replacement of the multicollocated cokriging. This
type of SCK allows attending more data in the estab-
lished neighborhood, which boosts the simulation
quality. For this purpose, single and multiple search-
ing strategies are introduced and examined in the
hierarchical cosimulation algorithm proposed.

The paper proceeds as follows: (1) Proposed
methodology of hierarchical cosimulation is de-
scribed. (2) Presentation of a real case study from
Carajas mine with a bivariate data set of iron and
aluminum oxide grades. (3) Exploratory data anal-
ysis and multi-Gaussianity check of the data set.
(4) Cosimulation using both methodologies (i.e.,
proposed and conventional) with single and mul-
tiple search strategies. (5) Comparison of methods
in terms of reproduction of mean, standard devia-
tion, correlation coefficient, bivariate relationship,
direct- and cross-variograms. (6) Conclusion with
recommendations for future work.

2. Methodology

In this study, the proposed algorithm is inspired
by a hierarchical cosimulation algorithm integrated
with an acceptance–rejection technique developed
by Madani and Abulkhair [2020]. Traditional hier-
archical sequential Gaussian cosimulation [Almeida
and Journel, 1994] is different from traditional cosim-
ulation in terms of the simulation process. In the
case of a bivariate data set, hierarchical cosimulation
proceeds in two stages: (1) it simulates the primary
variable in the entire region, (2) it simulates the sec-
ondary variable accounting to previously simulated
values using collocated cokriging. The selection of
primary and secondary variables can depend on their
availability in the case of a partially heterotopic sam-
pling pattern [Wackernagel, 2003]. However, if the
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sampling pattern is isotopic, a variable with better
spatial continuity is selected as the primary variable
[Goovaerts, 1997]. The following sections contain
background information on different types of in-
equality constraints, the methodology of the algo-
rithm developed by Madani and Abulkhair [2020],
and main improvements of the proposed algorithm,
including an inverse transform sampling and het-
erotopic searching strategies. Throughout the paper,
the conventional hierarchical sequential Gaussian
cosimulation refers to the algorithm with the same
searching strategies but without inverse transform
sampling integrated into the second simulation.

2.1. Inequality constraints over the bivariate
relationship

In multivariate modeling of coregionalized variables,
it is common to deal with some type of inequality or
equality constraints. Generally, there are three types
of such constraints in the bivariate relationship in
the case of denoting the primary variable as Z1 and
secondary variable as Z2:

(1) Strict inequality constraint is related to the
cases where the secondary variable is either
less than (Z2 < Z1) or greater than (Z2 > Z1)
the primary variable.

(2) Nonstrict inequality constraint is similar to
the previous one. However, in this case, bi-
variate relationship is not restricted, thus the
secondary variable can be less than, greater
than or equal to the primary variable. Such a
relationship can be expressed in the follow-
ing fashion: Z2 ≤ Z1 or Z2 ≥ Z1.

(3) Inequality constraint is expressed by an in-
equation, which can be linear or any other
type. For example, when dealing with linear
inequation with slope w and intercept b, the
bivariate relationship is expressed by Z2 <
w Z1 +b or Z2 > w Z1 +b for strict cases, Z2 ≤
w Z1 +b or Z2 ≥ w Z1 +b for nonstrict cases.

This paper focuses on the third type of inequality
constraints, which can be modeled using the follow-
ing algorithms of a hierarchical cosimulation.

2.2. Hierarchical cosimulation with inequality
constraint

Madani and Abulkhair [2020] proposed an adapted

algorithm for geostatistical modeling of variables
with inequality constraints using a hierarchical
cosimulation framework. This approach made sev-
eral modifications to the original algorithm by inte-
grating an acceptance–rejection method to simulate
the linear constraint in the bivariate relationship; by
implementing SCK to simulate the primary variable
and simple multicollocated cokriging (SMCCK) for
the secondary variable. The steps are described as
follows:

(1) Define a hierarchical order of variables from
the most important variable Z1 to less im-
portant Z2. Primary variable Z1 needs to
have the best autocorrelation; thus it may
be more exhaustively available than the sec-
ondary variable Z2.

(2) Transform both variables to their normal
scores independently so that Y1 and Y2 are
normal scores of primary and secondary
variables, Z1 and Z2, respectively.

(3) Define the simulation path (the path can be
random or regular) in such a way that each
grid node xi is visited only once.

(4) At each node xi obtain global statistical
parameters by determining Gaussian con-
ditional cumulative distribution function
(CCDF) for simulation of the primary vari-
able Y1. For this purpose, a SCK is used to
simulate n realizations of this variable Y n

1 (xi )
at the particular grid node xi .

Y n
1 (xi ) = Y1SCK(xi )+

√
σ2

SCK(xi ) ·U1
n
i , (1)

where Y1SCK(xi ) is SCK estimator; σ2
SCK(xi )

is the estimation variance; and U1
n
i is an in-

dependent standard Gaussian random value.
This step should be implemented for all the
target grid nodes so that Y n

1 will be available
throughout the entire region.

(5) At each node xi , determine global param-
eters from the Gaussian CCDF of the sec-
ondary variable Y2. In this step, an SMCCK
is implemented, taking into account the hard
data of the primary variable and previously
simulated collocated value Y n

1 in addition
to the hard data of the secondary variable
Y2. Multiple n realizations of the simulated
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value of the secondary variable Y n
2 (xi ) are

obtained in the following way.

Y n
2 (xi ) = Y2SMCK(xi )+

√
σ2

SMCK(xi ) ·U2
n
i , (2)

where Y2SMCK(xi ), σ2
SMCK(xi ) are SMCK esti-

mator and variance, respectively, and U2
n
i is

an independent standard Gaussian random
value.

During the simulation of the secondary
variable Y n

2 (xi ), an acceptance–rejection
method is implemented to simulate this
variable according to the preidentified lin-
ear restriction of the inequality constraint
imposed by the bivariate relationship:

(i) Back-transform of simulated values
Y n

1 (xi ) and Y n
2 (xi ) to the original scale.

(ii) Check whether the secondary variable
Z n

2 (xi ) lies under/over the fitted in-
equation that can be either Z n

2 (xi ) ≤
w Z n

1 (xi ) + b or Z n
2 (xi ) ≥ w Z n

1 (xi ) + b,
negative or positive inequations, re-
spectively. If the above requirement is
met, a normal score of simulated value
is accepted, and the algorithm proceeds
to the next step. Otherwise, the sim-
ulated value is rejected, and the node
xi is resimulated until the underlying
inequality constraint is met.

2.3. Proposed cosimulation algorithm

In this study, we propose an alternative of this hierar-
chical cosimulation algorithm for modeling variables
with inequality constraint where the acceptance–
rejection method is replaced with an inverse trans-
form sampling technique, which accelerates the
algorithm. Another improvement is related to the
searching neighborhood. For this, two searching
strategies are examined that will be discussed in the
subsequent sections.

2.3.1. Inverse transform sampling

Generating random numbers that follow a par-
ticular probability distribution is a core principle
of statistics. One method for obtaining such ran-
dom numbers is based on inverse transform sam-
pling. This method can be summarized in three steps
[Devroye, 1986]: (1) calculate the cumulative distri-
bution function (CDF); (2) generate the uniformly

distributed random number between 0 and 1; and
(3) compute the inverse CDF of the generated ran-
dom number.

Inverse transform sampling can also be used to
generate a random number in a predefined inter-
val [Burkardt, 2014]. If a target variable Z lies within
two consecutive truncated thresholds [α,β], so that
α ≤ Z ≤ β, inverse transform sampling proceeds as
follows [Devroye, 1986]:

V = F−1(F (α)+ (F (β)−F (α)) ·U ), (3)

where V is random inverse transform, U is a random
number distributed uniformly between 0 and 1, F is
the conditioned CDF and F−1 is its corresponding
quantile function.

This method replaces the acceptance–rejection
method [Madani and Abulkhair, 2020] in the pro-
posed algorithm. For this purpose, step 5 in Sec-
tion 2.2 is modified to:

(i) Back-transform simulated values of the pri-
mary variable Y n

1 (xi ) to the original units.
(ii) Obtain minimum and maximum thresh-

olds according to the fitted inequation
(Figure 1), so that Z n

2 min = min(Z2) and
Z n

2 max = w Z n
1 (xi ) + b in the case of neg-

ative inequation, or Z n
2 min = w Z n

1 (xi ) + b
and Z n

2 max = max(Z2) in the case of positive
inequation.

(iii) Transform both Z n
2 min and Z n

2 max to normal
scores Y n

2 min and Y n
2 max, making the min-

imum and maximum threshold for simula-
tion of the target variable.

(iv) Among n realizations, find simulated values
of the secondary variable Y n

2 that lie outside
computed thresholds. Store faulty values by
indicating realizations as c.

(v) Use the inverse transform sampling follow-
ing a truncated distribution on the inter-
val [Y c

2 min,Y c
2 max] to calculate the secondary

variable Y c
2 (ui ) for faulty values found in

step (iv).

Y c
2 (xi ) = Y2SCK(xi )+

√
σ2

SCK(xi ) ·V c
2 (xi ), (4)

where V c
2 (ui ) is an independent random

number generated within a truncation
threshold for c faulty realizations.
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Figure 1. Obtaining minimum and maximum thresholds [Z m
2 min, Z m

2 max] for the simulated value of
secondary variable conditional to the simulated value of the primary variable Z n

1 (ui ) in the case of
(A) negative and (B) positive inequations.

2.3.2. Definition of search strategies

In the hierarchical cosimulation algorithm, select-
ing an appropriate neighborhood strategy is of para-
mount importance because the secondary variable’s
simulation is substantially impacted by the previ-
ously simulated values of the primary variable. In
the algorithm described in Section 2.2, two searching
strategies are identified. The first searching neighbor-
hood involves a heterotopic SCK (i.e., single search-
ing strategy), and the second one uses an SMCK.
For the proposed methodology, however, heterotopic
SCK is presented as an alternative. Simple cokriging
estimator and estimation variance for the primary
and secondary variables are the following:

Y1SCK(x0) = m1 +
n1∑
α=1

w1
α[Y1(x1,α)−m1]

+
n2∑
β=1

w2
β[Y2(x2,β)−m2] (5)

Y2SCK(x0) = m2 +
n1∑
α=1

w1′
α [Y1(x1,α)−m1]

+
n2∑
β=1

w2′
β [Y2(x2,β)−m2] (6)

σ1
2
SCK(x0) =C11(x0 −x0)−

n1∑
α=1

w1
αC11(x1,α−x0)

−
n2∑
β=1

w2
βC21(x2,β−x0) (7)

σ2
2
SCK(x0) =C22(x0 −x0)−

n1∑
α=1

w1′
α C12(x1,α−x0)

−
n2∑
β=1

w2′
β C22(x2,β−x0), (8)

where w1
α and w2

β
are the weights assigned to the

data of Y1 and Y2 at the αth and βth data locations,
respectively; m1 and m2 are the mean values of vari-
ables Y1 and Y2, respectively; x1,α (α = 1, . . . ,n1) and
x2,β (β = 1, . . . ,n2) are the data locations of primary
Y1 and secondary Y2 variables, respectively; C11 is the
direct covariance of primary variable, C11 is the direct
covariance of secondary variable, C21 and C12 are the
cross-covariances between Y1 and Y2; and x0 is the
target location for estimation.

For the searching of n1 and n2 samples of primary
and secondary variables, two types of heterotopic
searching strategy are offered in this study:

(1) Single search: a neighborhood strategy that
searches for n closest data locations, whether
only one or both variables are known at these
locations.

(2) Multiple search: a neighborhood strategy
that first searches for n closest data of pri-
mary variable, then it searches for the n clos-
est data of secondary variable, irrespective of
the primary variable.

Therefore, in this study, two cases are considered:

• Case I: first and second searching strategies
are both single.

• Case II: first and second searching strategies
are both multiple.

C. R. Géoscience — 2021, 353, n 1, 115-134
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Figure 2. Schematic illustration of the (A) unique neighborhood, (B) single, and (C) multiple search
strategies of moving neighborhood for nine closest data points.

During the second run of hierarchical cosimula-
tion, the previously simulated primary variable is
exhaustively known at all locations, while the sec-
ondary variable is sparsely located. Figure 2 shows
the schematic example of searching strategies listed
above, where a unique search (Figure 2A) demon-
strates the case of selecting all data points. Single
search in a moving neighborhood (Figure 2B) se-
lects nine closest data locations, which contain 9 sec-
ondary data points and only 4 primary data points.
On the other hand, the multiple searching strategy
(Figure 2C) first selects 9 data points of the primary
and then 9 data points of the secondary variable. It
can be clearly seen that in a multiple searching strat-
egy, the neighborhood captures more data.

3. Results

3.1. Presentation of case study

Conventional and proposed hierarchical cosimu-
lation algorithms integrated with single and mul-
tiple search strategies proposed in this study are
applied to a real case study from the Carajas iron
deposit. The study area is located in the munici-
pality of Parauapebas, Para state, Northern Brazil,
about 550 km from Belem city. A geological map with
a stratigraphic sheet is given in Figure 3. The geo-
logical formation of the deposit is characterized by
volcanic rocks of the Parauapebas formation [Meire-
les et al., 1984] and metasedimentary ironstones of
the Carajas formation [Beisiegel et al., 2018]. Cara-
jas iron deposit is composed of heterogeneous and
anisotropic rock masses with different shear strength
values [BVP, 2011]. This deposit is considered as one

C. R. Géoscience — 2021, 353, n 1, 115-134
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Table 1. Statistical parameters of the original
data set after declustering

Statistical parameter Iron (%) Aluminum
oxide (%)

Minimum 25.10 0.10

Maximum 69.17 32.10

Mean 63.07 2.27

Standard deviation 8.19 4.66

Coefficient of variation 0.13 2.05

of the largest iron ore mines, with a high concentra-
tion of iron-bearing formations, such as mafic rocks
and ironstones. The latter is classified into jaspilite,
soft hematite, hard hematite, and low-grade iron ore
[Paradella et al., 2015].

For this study, iron and aluminum oxide grades
are used as a hard conditional data set due to the
inequality constraint in their bivariate relationship.
The data set consists of 608 sample points with iron
and aluminum oxide grades measured in a homo-
topic sampling pattern, which means that both vari-
ables share the exact locations [Wackernagel, 2003].
This is demonstrated in Figure 4 with location maps
of iron and aluminum oxide grades. The southern
part of the deposit is highly concentrated with iron
and has considerably low aluminum oxide content,
whereas the northern part has both low- and high-
grade samples of iron and aluminum oxide.

3.2. Exploratory data analysis

According to visual inspection of location maps, it
can be stated that there is a preferential sampling
strategy. The sampling pattern is clustered in the
area with high iron and low aluminum oxide grades;
thus, the global equally weighted statistics of iron
and aluminum oxide is biased. To alleviate this prob-
lem, a cell-declustering methodology [David, 1977,
Deutsch, 1989] is implemented to eliminate the effect
of clustering in the sampling pattern. After checking
different possible declustered cell sizes, a 335 m ×
770 m × 167.5 m cell dimension is selected as the
most appropriate one. The declustered statistical pa-
rameters are shown in Table 1.

Figure 5 shows grade distributions of iron and alu-
minum oxide in the histogram plots and bivariate

distribution as a scatter plot. The majority of iron
samples are higher than 65%, while most aluminum
oxide grades are lower than 4%, with a strong nega-
tive correlation coefficient of −0.81. The histograms
also show that these two variables possess two com-
pletely different distributions with positive and neg-
ative skewness (Figure 5A). Figure 5B demonstrates
that most samples are disseminated in 60–70% iron
content and 0–5% aluminum oxide content, where
they show a clear inequality constraint in the bivari-
ate relationship. The blue dashed line in Figure 5B
represents this inequality constraint, which was ob-
tained using Huber loss [Huber, 1964] shifted up-
wards to identify the minimum support line [Madani
and Abulkhair, 2020]. Obtained coefficients of this
line are with the slope w = −0.89 and intercept b =
62, thus an inequation is characterized as follows:

Al2O3 ≤−0.89Fe+62 (9)

Traditional cosimulation approaches are not able to
reproduce such bivariate relationships. Battalgazy
and Madani [2019] applied different stochastic geo-
statistical algorithms on the same data set by projec-
tion pursuit multivariate transform (PPMT) [Barnett
et al., 2014, 2016], and turning bands simulation and
cosimulation (TBSIM and TBCOSIM) [Matheron,
1973, Lantuéjoul, 1994, Emery and Lantuéjoul, 2006,
Emery, 2008]. They showed that although PPMT can
reproduce the correlation coefficient, unlike TBSIM
and TBCOSIM, it could not reproduce the inequal-
ity constraint in the bivariate relationship. Madani
and Abulkhair [2020] also verified that PPMT fails
to reproduce such inequality constraint once they
tested this on another data set. In this study, we aim
to model the iron and aluminum oxide contents in
this deposit by the proposed approach to examine
which searching strategy is optimum honoring the
inequality constraint in bivariate relationship.

3.3. Variogram modeling

In order to perform hierarchical sequential Gauss-
ian cosimulation, both variables (Z1 and Z2) must
be transformed to normal scores (Y1 and Y2) taking
into account the declustering weights [Deutsch and
Journel, 1992]. The proposed hierarchical cosimula-
tion algorithm is based on the multivariate Gaussian-
ity assumption. Indeed, univariate Gaussian distri-
bution and strong correlation do not mean that the
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Figure 3. (A) Simplified geological map of the Carajas region. (SR = Serra do Rabo region; CCG = central
Carajas granite). (B) Tectonostratigraphic description of the Carajas region (BIF = banded ironstone
formation) [Holdsworth and Pinheiro, 2000].

Figure 4. Location map of homotopic case study with two continuous variables: iron (left) and aluminum
oxide (right).

multivariate distribution is Gaussian as well. The col-
located scatter plot of the normal score transforms
of both variables is presented as a check for bivari-
ate Gaussianity. Figure 6A shows that both variables
transformed to normal scores have univariate Gauss-
ian distributions. The correlation between them is
−0.71 and the shape of correlation is elliptical, mean-
ing that bivariate Gaussianity can be reasonably as-

sumed. A displaced bivariate Gaussianity check is
implemented by producing lagged scatter plots for
each transformed variable. At a specific distance, the
points must be disseminated along with the elliptical
shape [Rivoirard, 1994]. Using a 15 m lag and 50% lag
tolerance for lagged scatter plot, the bivariate distri-
bution in the case of iron and aluminum oxide (Fig-
ure 6B) is also close to an elliptical shape. It can be
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Figure 5. (A) Histogram plots of iron and aluminum oxide; and (B) scatterplot between variables. The
minimum support line (blue dashed) is an inequation.

concluded that the multi-Gaussianity assumption is
reasonable and the proposed algorithm can be em-
ployed.

Next, the anisotropy is detected on the origi-
nal data set before the transformation. As a result,
three directions are identified: horizontal along the
azimuth of 0° (north) as maximum continuity, hor-
izontal along the azimuth of 90° (east) as medium
continuity, and vertical as minimum continuity. Ex-
perimental direct- and cross-variograms required
for the hierarchical cosimulation are calculated in
these particular directions. Theoretical variograms
are then fitted manually, and a two-structured lin-
ear model of coregionalization of iron (Fe) and alu-
minum oxide (Al2O3) is derived as in (Figure 7):

(
γFe γFe/Al2O3

γAl2O3/Fe γAl2O3

)
=

(
0.45 −0.30

−0.30 0.45

)
Sph(100 m,60 m,30 m)

+
(

0.40 −0.40

−0.40 0.47

)
Sph(500 m,300 m,150 m) (10)

3.4. Simulation results

Before conducting the hierarchical cosimulation, pri-
mary and secondary variables must be selected.
Investigation of omnidirectional variogram of iron
and aluminum oxide demonstrated that iron has a
better spatial continuity that makes it worth being
selected as the primary variable. Another reason for
selecting the iron as the primary variable is that the
iron in this deposit plays an important role and is
indicated as the main variable of interest. However,
aluminum oxide is deemed as a deleterious element,
meaning that its influence on long- and short-term
mine planning is inevitable.

The hierarchical cosimulation proposed in the
case of two cross-correlated variables can be carried
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Figure 6. (A) Scatter plot between normal scores of iron and aluminum oxide accompanying their
marginal distributions; (B) lagged scatter plots of normal scores of iron and aluminum oxide.

out in two consecutive steps; first to simulate the pri-
mary variable in the entire region, and second to sim-
ulate the secondary variable conditional to the first
run of the simulation. Therefore, in this study, two
searching strategy combinations are examined:

• Single & Single (S&S): Implementing the first
step of cosimulation by single and second
step by single searching strategies, respec-
tively.

• Multiple & Multiple (M&M): Implementing
the first step of cosimulation by multiple and
second step by multiple searching strategies,
respectively.

Integration of these moving neighborhood strategies
was assessed in the proposed algorithm (i.e., tak-
ing into account an inequality constraint) and com-
pared with the conventional hierarchical cosimula-
tion (i.e., without inequality constraint). The latter

does not consider the inequation restriction in con-
trast to the former, where an inverse transform sam-
pling is applied to reproduce the identified inequality
constraint. The abbreviation “IC” indicates the pro-
posed algorithm all over the paper because it is gen-
erated to reproduce inequality constraints between
coregionalized variables. Therefore, the conventional
approach is identified by (A) Single & Single search
(S&S) and (B) Multiple & Multiple search (M&M); and
the proposed approach is identified by (C) Single &
Single search (S&S IC) and (D) Multiple & Multiple
search (M&M IC). For this purpose, one plane of a
grid with dimensions of 15 m × 15 m × 15 m is con-
sidered for comparison. Figure 8 demonstrates one
realization from each search strategy integrated into
conventional (A and B) and proposed (C and D) hier-
archical cosimulation algorithms.
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Figure 7. (A) Direct and (B) cross-variograms of the normal scores of iron and aluminum oxide, where
experimental variograms are indicated as point crosses and theoretical variograms with solid lines. Red:
horizontal direction with the azimuth of 0°; blue: horizontal direction with the azimuth of 90°; and green:
vertical direction.

3.5. Reproduction of global statistical parame-
ters

In order to examine the proposed algorithm, valida-
tion of geostatistical algorithms mainly consists of a
reproduction of first-order statistics or histogram re-
production, and second-order statistics or variogram
reproduction. First-order statistics includes global
statistical parameters such as mean, standard devi-
ation, coefficient of variation, and correlation coeffi-
cient. To validate the reproduction of global statisti-
cal parameters, original declustered means, standard
deviations, and correlation coefficients are compared
to average statistical parameters over 100 realiza-
tions (Table 2) from both hierarchical cosimulation
approaches. In addition to the four cases (i.e., S&S,
M&M, S&S IC, M&M IC), two other alternatives are

also taken into account for the validation part. These
two cases are (1) Single & Multicollocated IC search
(S&MC IC), and (2) Multiple & Multicollocated IC
search (M&MC IC), for which they are compatible
with the approaches proposed in Madani and Ab-
ulkhair [2020], where the second searching strategy
follow a multicollocated neighborhood.

As can be seen, all the searching strategies more
or less are the same and capable of reproducing
the declustered original statistical parameters of iron
(Table 2). Nevertheless, global statistical parameters
of aluminum oxide are considerably underestimated.
In this regard, conventional cosimulation methodol-
ogy underestimates the original mean of aluminum
oxide by 9–17%, while the proposed methodology
shows a deviation of 31–36%. Similarly, standard de-
viations are underestimated by 10–20% using the
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Figure 8. Realization maps of iron and aluminum oxide obtained from conventional hierarchical cosim-
ulation with (A) Single & Single search, (B) Multiple & Multiple search; from proposed hierarchical cosim-
ulation with, (C) Single & Single search, and (D) Multiple & Multiple search.

conventional methodology and by 37–45% using the
proposed methodology. Therefore, it can be observed
that there is a severe underestimation of global statis-
tical parameters of the secondary variable when us-
ing the proposed methodology. This issue has not yet
been resolved by the authors. However, it is worth
mentioning that the implementation of an M&M
strategy demonstrated better reproduction of global
statistics for both conventional and proposed cosim-
ulation algorithms.

Figure 9 shows the reproduction of the univariate
marginal distribution of the secondary variable, alu-
minum oxide, in the first realization of each simula-
tion. The objective of histogram validation is to ana-
lyze how using the proposed methodology affects the
reproduction of the shape of the marginal distribu-

tion. In this case, all the algorithms are able to repro-
duce the shape of aluminum oxide’s histograms, al-
though the conventional cosimulation is better in the
reproduction of basis statistical parameters.

The main objective of the proposed hierarchi-
cal cosimulation with inequality constraint is to re-
produce the original declustered data set’s bivariate
relationship. Figure 10A, B demonstrates scatter plots
between two simulated variables in the first real-
ization and compares them to the original bivariate
relationship. Conventional hierarchical cosimulation
fails to reproduce the original scatter plot consid-
ering the bivariate relationship and its results have
some unrealistic points with high grades of both
iron and aluminum oxide above the inequation line.
However, there is no significant difference between
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Figure 9. Histogram reproduction of aluminum oxide simulated by (A) conventional and proposed
hierarchical cosimulation using single and multiple search strategies, (B) hierarchical cosimulation
using single and multiple searching strategies in the first simulation and multicollocated in the second
searching strategy.

Table 2. Average statistical parameters over 100 realizations

Statistical parameter Original S&S M&M S&S IC M&M IC S&MC IC M&MC IC

Correlation coefficient −0.81 −0.60 −0.62 −0.67 −0.68 −0.66 −0.67

% vs original — 74% 77% 83% 84% 81% 83%

Iron (%)

Mean 63.07 63.74 63.48 63.74 63.48 63.74 63.48

% vs original — 101% 101% 101% 101% 101% 101%

Standard deviation 8.19 7.04 7.48 7.04 7.48 7.04 7.48

% vs original — 86% 91% 86% 91% 86% 91%

Aluminum oxide (%)

Mean 2.27 1.88 2.07 1.48 1.57 1.45 1.54

% vs original — 83% 91% 65% 69% 64% 68%

Standard deviation 4.66 3.73 4.20 2.65 2.94 2.55 2.82

% vs original — 80% 90% 57% 63% 55% 61%

S&S and M&M searching strategies. Besides, the re-
sults produced by the cosimulation algorithm using
a multicollocated searching strategy as in the sec-
ond search (Figure 10C) show similar bivariate char-
acteristics to the scatter plots of S&S IC and M&M
IC. This type of validation can only confirm the re-
production of the underlying inequality constraint,
while the visual inspection of scatter plots may not
significantly contribute to identifying the best strat-

egy among the searching strategies with IC method.

3.6. Reproduction of local statistical parameters

Previous statistical validations focus on global sta-
tistical parameters, but it has less importance com-
pared to local statistics. The simplest way of local
statistics validation is variogram reproduction. The
proposed and conventional cosimulation algorithms
are identical in simulating the iron, since this is the
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Figure 10. Reproduction of bivariate relationship between iron and aluminum oxide simulated by
(A) conventional and (B) proposed hierarchical cosimulation using single and multiple search strategies,
(C) hierarchical cosimulation using single and multiple searching strategies in the first simulation and
multicollocated in the second. Blue: scatter plot of simulated values for realization #1; and red: scatter
plot of original values.
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Figure 11. Direct variograms of iron simulated by hierarchical cosimulation using (A) single and (B) mul-
tiple search strategies. Green: variograms of 100 realizations; red: north direction; blue: east direction;
dashed: average over realizations; and solid: theoretical. (Direct variograms are standardized to prevent
numerical instabilities.)

first run in hierarchical paradigm. The only differ-
ence is related to the searching neighborhood used in
these algorithms. Figure 11 shows the reproduction
of direct variograms of iron over the simulated results
to compare such a difference. As can be seen, multi-
ple searching strategy produces better results com-
pared to the case when the neighborhood follows a
single searching strategy.

Comparison between two searching strategies in-
tegrated into conventional and proposed hierarchi-
cal cosimulation techniques using direct variogram
reproduction of aluminum oxide in maximum and
minimum horizontal directions is shown in Fig-
ure 12A, B. Although the M&M strategy produces
more fluctuations, its average variograms resemble
the theoretical model. On the other hand, the S&S
strategy can only reproduce the first structure but
ultimately fails to reproduce the second structure’s
desired sill and range. Figure 12C shows direct var-
iogram validation of aluminum oxide simulated by
the algorithm, where a multicollocated searching
strategy is used in the second simulation run instead
of a heterotopic one. It can be observed that choosing
an appropriate neighborhood configuration in the
first simulation can affect the overall quality of real-
izations for the second variable. This means that us-
ing a single search in the first simulation always dete-
riorates the reproduction of the second variable’s var-
iogram ranges as well. On the other hand, a combina-
tion of M&MC searching strategies shows better var-

iogram reproduction, particularly when both search-
ing strategies are M&M.

Another essential objective of hierarchical cosim-
ulation is the reproduction of cross-correlation
structure between variables, and one way to as-
sess this feature is to examine the reproduction of
cross-variograms. Figure 13A, B shows that the S&S
strategy cannot reproduce the theoretical shape of
cross-variogram, while the M&M strategy perfectly
meets the theoretical model of cross-variogram.
Moreover, conventional and proposed approaches
have a very insignificant difference in terms of vari-
ogram reproduction, which shows the effectiveness
of the hierarchical cosimulation algorithm in the case
of M&M whether the inequality constraint is consid-
ered or not. In order to investigate how heterotopic
searching strategies perform in combination with
multicollocated configuration, this part validates the
reproduction of cross-variograms using S&MC IC
and M&MC IC strategies as well (Figure 13C). Unlike
single search, multiple searching strategy is able to
reproduce the second structure’s ranges. However,
M&M IC show better results in cross-variogram re-
production even when it is compared with M&MC IC.

4. Conclusion

A methodology based on a hierarchical sequential
Gaussian cosimulation is proposed in this study in-
tegrated with an inverse transform sampling tech-
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Figure 12. Direct variograms of aluminum oxide simulated by (A) conventional, (B) proposed hierarchi-
cal cosimulation using single and multiple search strategies, and (C) proposed hierarchical cosimulation
using single and multiple searching strategies in the first simulation and multicollocated in the second.
Green: variograms of 100 realizations; red: north direction; blue: east direction; dashed: average over re-
alizations; and solid: theoretical. (Direct variograms are standardized to prevent numerical instabilities.)

C. R. Géoscience — 2021, 353, n 1, 115-134



Sultan Abulkhair and Nasser Madani 131

Figure 13. Cross-variograms between iron and aluminum oxide simulated by (A) conventional, (B) pro-
posed hierarchical cosimulation using single and multiple search strategies, and (C) proposed hierarchi-
cal cosimulation using single and multiple searching strategies in the first simulation and multicollocated
in the second. Green: variograms of 100 realizations; red: north direction; blue: east direction; dashed: av-
erage over realizations; and solid: theoretical.
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nique to simulate the values of the secondary vari-
able conditionally to the primary variable, where
both show inequality constraint. In this technique,
an inequation can be imposed so that the simulated
values fall below the preidentified linear function de-
rived by an inequation. This sampling technique en-
sures the higher speed of the algorithm compared
to an acceptance–rejection technique. A heterotopic
SCK is also embedded into the process of cosimu-
lation with two alternatives of search strategies for
establishing a moving neighborhood for both steps
of this algorithm: Single & Multiple searching strate-
gies. The comparison of results with conventional
hierarchical cosimulation is made using a real case
study from an iron deposit. It showed that the pro-
posed algorithm is able to reproduce the bivariate
inequality constraint between two underlying cross-
correlated variables. The comparison between the
Multiple searching strategy and the Single searching
strategy also revealed that the former outperforms
the latter in reproducing statistical parameters. Al-
though histogram and variogram validations showed
promising results for a M&M searching strategy in all
algorithms; however, the reproduction of mean and
standard deviation of the secondary variable in the
proposed algorithm is questionable. For this, inte-
gration of an inverse transform sampling likely re-
sulted in the reproduction of aluminum oxide’s mean
value that is being underestimated by around 31–
36%, compared to an underestimation of 9–17% in
the conventional algorithm. Likewise, standard devi-
ation results showed an underestimation of 37–45%.

Effects of heterotopic searching strategies are also
investigated in combination with multicollocated
search integrated into the second simulation of the
proposed algorithm. Histogram, scatter plot, and var-
iogram validations are presented for S&MC IC and
M&MC IC strategies. Results of variogram validation
demonstrated that a single searching strategy poorly
reproduces the spatial continuity of iron. Poor repro-
duction of the primary variable negatively affects the
simulation of the secondary variable either. Overall,
using a multiple searching strategy in both simula-
tions of a hierarchical cosimulation process is proven
to be more suitable for this particular iron deposit.
The findings of this research are also compatible with
Madani and Emery [2019] results, where they argued
that single search is less precise than multiple search-
ing strategies in establishing the cokriging systems.

However, there is still more work to be done
with the proposed algorithm. For instance, a cosim-
ulation can be adopted to the hierarchical algo-
rithm where geological domains regulate the cross-
correlated variables with inequality constraints. In
the case of a soft boundary, this algorithm can be up-
dated to a joint simulation paradigm, where a Gibbs
sampler with multivariate Gaussian distribution is
required to be adjusted. Another improvement can
be related to the involvement of more continuous
variables in the algorithm. The proposed algorithm
also needs further improvement in order to better
reproduce basic statistics when imposing inequality
constraints.
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