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Identification of geochemical anomalies is of particular importance for tracing the footprints
of anomalies. This can be implemented by advanced techniques of exploratory data analysis,
such as fractal/multi-fractal approaches based on priori or posteriori distribution of geo-
chemical elements. The latter workflow involves analysis of 2D/3D produced maps, which
can be mostly obtained by geostatistical algorithms. There are two challenging issues for
such an analysis. The first one corresponds to handling the cross-correlation structures
among the data, and the second one relates to the compositional nature of data. To tackle
these problems, this paper investigates the application of Gaussian co-simulation for mod-
eling the cross-correlated compositional data in order to recognize the multivariate geo-
chemical anomalies in integration with fractal analysis. In this context, an innovative
algorithm, namely co-simulated size number (CoSS-N), is introduced for this purpose. The
compositional nature of data is addressed by additive log-ratio transformation of original
data while the Gaussian co-simulation handles the reproduction of cross-correlation among
the components. The co-simulated outputs are then taken into account for capturing dif-
ferent geochemical populations, showing different levels of backgrounds and anomalies. The
algorithm is illustrated via a real case study located in Philippine wherever seven geo-
chemical components are required to be considered. The accuracy of results is examined by
statistical validation techniques, indicating the capability of the CoSS-N algorithm for
multivariate identification of geochemical anomalies.

KEY WORDS: Fractal/multi-fractal analysis, Turning bands co-simulation, Geostatistical analysis, Co-
simulated size number, Compositional data.

INTRODUCTION

Identification of geochemical anomalies by
separation of geochemical data into different popu-
lations is an essential aspect of mineral exploration.
Unlike traditional approaches of anomaly recogni-

tion, which are based only on statistical parameters,
fractal/multi-fractal modeling takes into account not
only the frequency distribution of data but also
spatial deviation of data from background due to
‘‘self-similar’’ fractal geometry (Mandelbrot 1983;
Feder 1988; Cheng 2012; Sadeghi et al. 2012, 2015;
He et al. 2013; Luz et al. 2014; Zuo and Wang 2016).

Fractal analysis for delineation of geochemical
anomalies can be classified mainly into two groups
(Madani and Sadeghi 2019). The first group deals
with global distribution of a variable, in which the
input to fractal analysis is based on sample fre-
quency. For instance, the number–size model de-
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scribes the relationship between number of objects
(i.e., samples) and their sizes, which can be element
concentration or metal grade (Mandelbrot 1983;
Agterberg 1995). Although this methodology has
vast applications in the analysis of geochemical data
for mineral exploration, the spatial distributions of
sample locations are not absolutely effective in
capturing geochemical anomalies. In the particular
case of scarce data, the sample distributions may not
represent reliable statistical parameters of data
populations, leading to bias in the inference of
thresholds for defining data populations. In this case,
the algorithm proposed by Madani and Sadeghi
(2019) using Monte Carlo simulation algorithm
(GSS-N) overcomes the problem of scarce data and
thus facilitates straight-line fitting on log–log plots,
leading to less bias in the identification of thresholds
for defining data populations.

The conditional or posteriori distribution of a
geochemical variable is the basis of the second group
of fractal analysis related to the description of
sample data that are mapped in either regular or
irregular grid locations. For instance, the concen-
tration–area (C–A) and concentration–perimeter
(C–P) fractal models (Cheng et al. 1994, 1996),
spectrum–area (S–A) fractal model (Cheng et al.
1999, 2000), concentration–volume (C–V) fractal
model (Afzal et al. 2010), spectrum–volume (S–V)
fractal model (Afzal et al. 2011), wavelet-number
(W-N) fractal model (Chen and Cheng 2018) and
simulated size-number (SS-N) fractal model (Sade-
ghi et al. 2015) pertain to this group. The last model,
which was developed based on integration of simu-
lated values and their number (or frequency), com-
bines geostatistical simulation and fractal modeling
to identify reliable thresholds. For this model,
Gaussian simulation, either by sequential Gaussian
simulation (SGS) (Almeida and Journel 1994) or by
turning bands simulation (TBSIM) (Emery and
Lantuéjoul 2006) as the two widely used geostatis-
tical algorithms in uncertainty quantification, is
recommended for construction of a stochastic local
distribution that is suitable in distinguishing deposit-
related geochemical anomalies. The SGS relies on
the sequential paradigm of simulating Gaussian
random fields conditioned to the set of data derived
from a simple kriging exercise (Chilès and Delfiner
2012). Although this approach is considered reliable
in geostatistical modeling, it has major difficulty in
ascertaining moving neighborhood and in repro-
ducing short-scale continuity (Lantuéjoul 1994). To
address these shortcomings of SGS, it has been

shown that simulation results can be optimized by
increasing the size of neighborhood ranges (Emery
2004). The TBSIM, the fundamental concept of
which is based on simulation of one-dimensional
Gaussian random fields and spanning those to d-di-
mensional random fields, has the ability to address
the issue of increasing neighborhood ranges. How-
ever, it may create stripping artifacts in the case of
few turning lines, and so the idea is to increase the
number of turning lines to weaken this kind of
artifacts (Lantuéjoul 1994; Gneiting 1999; Emery
and Lantuéjoul 2006). These two geostatistical sim-
ulation algorithms are adequate for univariate spa-
tial modeling; however, when one is dealing with
more than one cross-correlated variable, the mod-
eling becomes challenging. One reason is that these
univariate simulation approaches insufficiently take
into account the dependency characteristics among
variables and subsequently lead to deficient results.
In the case of dealing with cross-correlated vari-
ables, however, co-simulation algorithms are highly
advocated. Sequential Gaussian co-simulation (Gó-
mez-Hernández and Journel 1993; Pebesma 2004)
and turning bands co-simulation or TBCOSIM (Carr
and Myers 1985, 1989; Emery 2008), for example,
offer much flexibility to construct outcomes (sce-
narios) that preserve inter-relationships between
variables while spatial variability is preserved.
Comparing and contrasting the performance of
these two algorithms, Paravarzar et al. (2015)
demonstrated that TBCOSIM outperforms sequen-
tial Gaussian co-simulation with respect to repro-
ducing the cross-correlation calculated by spatial
continuity and statistical parameters. Broadly
speaking, Gaussian (co)-simulation approaches are
the offshoot of deterministic approaches such as
kriging. Although this most commonly used inter-
polation method is robust, it suffers from some
impediments such as smoothing effect such that
maps of estimated variables show squeezed distri-
bution compared to the distribution of original data
(Chilès and Delfiner 2012; Rossi and Deutsch 2014;
Afzal et al. 2015; Battalgazy and Madani 2019). This
impacts over- and underestimation of de-clustered
original low and high values in data, respectively.
Moreover, using this biased result for further
examination, such as fractal analysis and capturing
of anomalies, leads to serious biased inference of
essential thresholds (Sadeghi et al. 2015).

It is quite often that Gaussian co-simulation of
cross-correlated variables is dealt with geochemical
compositional data. In this case, the implementation
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of conventional geostatistical modeling on the orig-
inal scale of these data may be problematic and
produce inconsistent results (Reimann et al. 2008;
Pawlowsky-Glahn et al. 2015; Pawlowsky-Glahn and
Egozcue 2016). In this respect, two main issues must
be addressed: one related to closure problem
(Aitchison 1986) and the other concerns spatial
continuity analysis of compositional data (Paw-
lowsky-Glahn 1984; Pawlowsky-Glahn and Egozcue
2016). Considering the spatial structure of data
means that the covariance structure of sample points
should be taken into account in compositional data,
and whenever it is recognized through the Aitchison
geometry with Euclidean vector space structure, the
additive log-ratio transformation becomes an oblige
coordinate system with only limited use in multi-
variate statistical analysis (Pawlowsky-Glahn and
Egozcue 2016). A simple solution, namely logarith-
mic transformation of original data (Reimann et al.
2008), although well suited for right-skewed distri-
butions, is not appropriate for tackling the closure
problem. Instead, log-ratio transformation devel-
oped in the 1980s for this purpose (Aitchison and
Shen 1980; Aitchison 1982, 1986) has to be applied
prior to any geostatistical analysis in the case of
dealing with geochemical compositional data (Paw-
lowsky-Glahn 2003; Pawlowsky-Glahn and Olea
2004; Tolosana-Delgado 2006; Tolosana-Delgado
and van den Boogaart 2013; Pawlowsky-Glahn and
Egozcue 2016; Tolosana-Delgado et al. 2018). Three
log-ratio transformations have been proposed: (1)
additive log-ratio (alr) transformation (Aitchison
1986); (2) centered log-ratio (clr) transformation
(Aitchison 1986); and (3) isometric log-ratio (ilr)
transformation (Egozcue et al. 2003). Other ap-
proaches were introduced based on converting
original compositional variables by stoichiometric
closure characteristic (Mery et al. 2017; Adeli et al.
2018), which is not ascribed to logarithmic trans-
formation.

In this paper, we propose an innovative algo-
rithm, namely co-simulated size-number (CoSS-N),
based on integration of geostatistical co-simulation
of cross-correlated compositional data with frac-
tal/multi-fractal analysis to enhance characterization
of multivariate geochemical anomalies. This ap-
proach is illustrated through a case study pertaining
to a geochemical exploration campaign in the
Philippines. The geochemical compositions consist
of seven components (arsenic, copper, zinc, nickel,
cobalt, manganese and fill-up (or un-determined
component)).

The main aim of this research is sixfold: (1) to
present methodologies for fractal analysis, geosta-
tistical co-simulation and compositional data analy-
sis; (2) to propose an innovative algorithm, namely
co-simulated size-number (CoSS-N); (3) to trial this
algorithm on a real case study and discussing the
relevant statistical analysis; (4) to compare results
obtained from Gaussian co-simulation with inde-
pendent simulation through global and local statis-
tical validation techniques; (5) to derive multivariate
geochemical anomalies by CoSS-N; and (6) to
combine Gaussian co-simulation results and inferred
thresholds for probabilistic description of anomalous
areas for predictive mapping of epithermal Au de-
posits.

METHODOLOGY

Number–Size Fractal Model (N–S)

The N–S fractal model was proposed by Man-
delbrot (1983) for describing the distribution of
geochemical data. According to this model, there is
a relation between the number and size parameters
of evaluated data, which can be expressed as
(Mandelbrot 1983):

Nð� qÞ ¼ Fq�D ð1Þ

where q denotes element concentration, Nð� qÞ
denotes cumulative number of samples with con-
centration values greater than or equal to q, F is a
constant and D is the scaling exponent or fractal
dimension of the distribution of element concen-
trations. According to Mandelbrot (1983), log–log
plots of Nð� qÞ vs. q show straight-line segments
with different slopes, �D, corresponding to different
concentration intervals.

Agterberg (1995) proposed a ‘‘concentration–
size’’ multi-fractal model based on the N–S model
in order to determine and describe the spatial dis-
tribution of geochemical attributes in large mineral
deposits. Monecke et al. (2005) used the N–S model
to describe geochemical data, which indicate
enrichment of minerals by replacement due to
metasomatic processes resulting in the formation of
hydrothermal deposits in the Waterloo massive
sulfide deposit, Australia. The power-law frequency
model, which has been suggested based on the N–S
model, measures the frequency distribution of ele-
ment and mineral concentrations based on the
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number of samples (Li et al. 1994; Turcotte 1996;
Shi and Wang 1998; Zuo et al. 2009; Sadeghi et al.
2012). The first 3D modeling work based on the N–
S fractal model was demonstrated by Sadeghi et al.
(2012) for the separation of mineralized zones
and wall rocks, and the precision, and thus, the
applicability of the model was proven by compar-
ison of results with those of the concentration–
volume (C–V) fractal model. The most important
advantage of this model is that there is no need for
preprocessing of data for pre-estimation before
modeling. Sadeghi et al. (2015) presented the sim-
ulated size-number (SS-N) approach considering a
Monte Carlo simulation over the local distribution.
In this respect, different geostatistical simulation
algorithms such as (TBSIM) (Emery and Lantué-
joul 2006) or SGS (Almeida and Journel 1994) have
been recommended for construction of such a
stochastic local distribution that can be used sub-
sequently for distinguishing deposit-related anoma-
lies. Sadeghi et al. (2015) used the TBSIM in their
study for probabilistic modeling and further analysis
of SS-N model, and they showed that the SS-N
model outperforms the C–V model in terms of local
and global statistical parameters reproduction.
However, this algorithm is valid either when cor-
related covariates do not exist or when the global
distribution and local distribution of the underlying
variables are independent in the region.

Turning Bands Co-simulation

The existence of cross-correlation among cer-
tain variables motivates one to use Gaussian co-
simulation approaches rather than independent
simulation (Wackernagel 2003; Chilès and Delfiner
2012; Eze et al. 2019; Abildin et al. 2019). The rea-
son relates to taking into account the inter-depen-
dency characteristic among certain variables, for
which it leads to generate results that reproduce the
local and global multivariate statistical parameters
of data in the area of study. Among the Gaussian co-
simulation techniques, TBCOSIM has received wide
acceptance among practitioners because of its ver-
satility and straightforwardness and it outperforms
other Gaussian co-simulation algorithms with regard
to reproducing cross-correlation parameters (Par-
avarzar et al. 2015). Therefore, in this study, we used
TBCOSIM to show the capability of the proposed
algorithm.

TBCOSIM is an extension of TBSIM, indicat-
ing an approximate algorithm based on the multi-
Gaussian distribution assumption of the underlying
random field as first introduced by Matheron (1973)
and then extended in some organized program codes
(Lantuéjoul 1994; Emery and Lantuéjoul 2006). The
principal concept of this algorithm is based on, first,
drawing plenty of lines with random orientations
and, second, simulating a one-dimensional Gaussian
random field along each line (Lantuéjoul 1994,
2002). In other words, the concept of the turning
bands algorithm is to make simpler the problem of

simulation in R3 or R2 into an R problem. The

random field fYðxÞ; x 2 Rdg in Eq. 1 has zero mean
and isotropic covariance CY (Eq. 2), where U is a
uniform distribution over Sd, which is unit sphere of
Rd.

YðxÞ ¼ Xðhx;UiÞ for any location of 8x 2 Rd ð2Þ

CYðrÞ ¼ N

Sd
CXðhh; uiÞxdðduÞ ð3Þ

where h and i is the inner standard products in Rd, h

is a vector of Rd, xd is a uniform distribution over Sd
and r is modulus of Rd. Matheron (1973) first
introduced and proved Eq. 2 as a relationship be-

tween continuous and isotropic covariances in Rd

with continuous covariances in R. By using this
algorithm, one can substitute multi-dimensional
simulation by one-dimensional simulation.

Having the covariance model fitted to the pri-
mary de-clustered normal score variable, the
covariance function is derived from one-dimensional
random fields. TBSIM provides a non-conditional
multi-dimensional random field compatible with the
target covariance model, in which the simulated
values are practically standard Gaussian (Emery and
Lantuéjoul 2006). In order to generate the condi-
tional realizations, the non-conditional simulation
obtained should be progressed through one post-
processing of kriging step (Journel and Huijbregts
1978; Emery 2008; Chilès and Delfiner 2012).

In TBCOSIM, it is of interest to simulate
stochastically the cross-correlated variables (more
than two). In this case, the cross-covariance function
is needed to construct such one- and multi-dimen-
sional Gaussian random fields in the region. The
non-conditional step is the same as TBSIM per
variable; however, as part of the conditioning
mechanism, co-kriging must be used rather than
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kriging in order to keep the multivariate character-
istics (Carr and Myers 1985; Myers 1989; Emery
2008); thus:

YCCSðxÞ ¼ YSCKðxÞ þ YSðxÞ � YSCK
S ðxÞ

� �
ð4Þ

where YSCKðxÞ is the simple co-kriging of YðxÞ from
the conditioning data; YSðxÞ is the non-conditional

simulation at location x for variables; YSCK
S ðxÞ is the

simple co-kriging of the non-conditional simulation
from its value at the data locations. This simple co-
kriging system can also be substituted for ordinary
co-kriging paradigm (Emery 2007).

The general workflow in the latter case is sim-
ilar to TBSIM, as previously explained; however, in
the variogram analysis, since the co-kriging system is
established on the basis of the cross-covariance
matrix, it is necessary to calculate the direct and
cross-variograms. In order to fit the theoretical di-
rect and cross-variograms models, linear model of
co-regionalization (LMC) as an alternative can be
used to fit all experimental variograms as a linear
combination of equivalent structures together with
the identical ranges, but different in sills (Wacker-
nagel 2003; Chilès and Delfiner 2012). The most
tedious part of this job is to construct the permissible
positive semi-definiteness conditions in fitting the sill
matrices. Once this constraint is corroborated, the
model can be used in the variance–covariance ma-
trix required in the conditioning process (Goovaerts
1997).

Compositional Data Analysis

In modeling of cross-correlated variables, it is
common to deal with compositional data. In this
context, these data are variables of a set of compo-
nents forming a whole such that their sum can be
chosen arbitrarily, without loss of information as a
positive constant D on the scale of the underlying

random vector, such as 1 (parts per unit), 100%, 106

(parts per million) and 109 (parts per billion)
(Aitchison 1986; Pawlowsky-Glahn et al. 2015). A
vector of d components ZðxÞ ¼
fZ1ðxÞ;Z2ðxÞ; . . . ;ZdðxÞg is a composition of
(Aitchison 1986; Pawlowsky-Glahn et al. 2015):

8ZiðxÞ[0
Xd

i¼1

ZiðxÞ ¼ D ð5Þ

The compositional space satisfying the condi-

tion in Eq. (5) is known as simplex Sd.
It is also common that the sum of components

may not be bounded by D and one needs to intro-
duce the sub-composition by complementing the
given components with a further component, namely
fill-up or filler variable (Tolosana-Delgado et al.
2005, 2018). This characteristic is of paramount
importance if the fill-up variable has a physical
interpretation, in which it represents the totality of
elements that were not assayed (Filzmoser et al.
2009; Tolosana-Delgado et al. 2018).

The modeling strategy of compositional data by
geostatistical algorithms entails using some trans-
formation techniques in order to preserve the sum-
mation constraint. Because the geostatistical-based
algorithms have been mostly developed for original
data without constraints, they implicitly follow the
assumption of Euclidean geometry. Therefore, in
the case of constant sum constraint, the statistical
parameters such as global and local correlation
coefficients may be deemed unrealistic (Pawlowsky-
Glahn 1984; Aitchison 1986; Pawlowsky-Glahn and
Egozcue 2016; Tolosana-Delgado et al. 2018). To
address this difficulty, several log-ratio transforma-
tions have been introduced to remove the positively
and sum constant of compositional data. Among
others, the alr transformation, as a widely used ap-
proach, converts original data into log ratios as
(Aitchison 1982, 1986; Pawlowsky-Glahn and Olea
2004):

FðxÞ ¼ ln
Z1ðxÞ
ZdðxÞ

; ln
Z2ðxÞ
ZdðxÞ

; . . . ; ln
Zd�1ðxÞ
ZdðxÞ

� �
ð6Þ

where the denominator ðZdðxÞÞ can be any of the
components, yet the same one should be used for all
the points and must be strictly positive. This
denominator can be, for instance, the fill-up variable
because it does not impact the final results of for-
ward and backward transformation (Job 2010) and
subsequently results in one less transformed variable
than the original number of components. The reason
for choosing alr transformation in this study relates
to the suitability of spatial covariance structure
analysis of a regionalized composition that is needed
for the proposed algorithm (CoSS-N) (Pawlowsky
and Burger 1992). The backward alr is represented
(Aitchison 1982, 1986; Pawlowsky-Glahn and Olea
2004) as:

17Co-simulated Size Number

Author's personal copy



Once the transformed components are ob-
tained, the geostatistical algorithms can be incor-
porated to the regionalized components FðxÞ rather
than original data and the modeled results should be
back-transformed to the compositional space after-
ward (Pawlowsky-Glahn and Egozcue 2016). Geo-
statistical simulation of compositional data in a
studied region provides alternative scenarios with
equiprobable and representative compositional
random function at unsampled locations taking into
account the transformed conditioning data (Goo-
vaerts 1997; Chilès and Delfiner 2012; Talebi et al.
2019). Establishment of the co-kriging systems for
co-simulation of transformed compositional data,
however, requires modeling the direct and cross-
spatial continuity (e.g., variogram or covariance).
This can be attained from fitting a linear model of
co-regionalization carrying direct variograms in the
diagonal and cross-variograms off-diagonal (Tolo-
sana-Delgado and van den Boogaart 2013). In order
to validate the simulation results, Mueller et al.
(2014) illustrate that co-simulation reproduces glo-
bal statistical parameters of the mean value, vari-
ance and distribution of both variables, either in
original scale or in log-ratio transformed values, in
the case wherever the log-ratio transformed data do
not significantly deviate from multi-normality
assumption. Furthermore, satisfactory or unsatis-
factory reproduction of spatial continuity shows the
same characteristics because the conventional co-
simulation methods (Van den Boogaart et al. 2017;
Tolosana-Delgado et al. 2018). Van den Boogaart
et al. (2017) also use the same validation techniques
on transformed variables to the original scale for
comparing different simulation algorithms.

Co-simulated Size-Number Fractal Model (CoSS-N)

This proposed idea is based on relating the co-
simulated size (CoSS) and number of involved
compositional data (N) through integration of the
TBCOSIM and N–S fractal analysis with the fol-
lowing equation:

NðCoSS � qÞ ¼ Fq�D ð8Þ

where q denotes element concentration, Nð� qÞ is
cumulative number of samples with the average of
simulated concentration values greater than or equal
to q, F is a constant andD is the fractal dimension of
the distribution of co-simulated element concentra-
tions. In this model, a large number of possible
scenarios can be reproduced using any Gaussian co-
simulation algorithm (e.g., TBCOSIM) taking into
account the global and spatial cross-correlation
structure among the compositional data. The gen-
erated realizations not only reproduce the multi-
variate statistical parameters up to an
acceptable level, but also more precisely distinguish
different anomalies through fractal analysis by N–S.
In the proposed algorithm (Fig. 1), first, exploratory
data analysis must be implemented to reveal the
inherent characteristics of compositional data. In
this regard, if the dataset is not bounded by a con-

stant D, such as 1, 100 or 106, a fill-up or filler vari-
able, representing the not assayed elements, should

Figure 1. Overall workflow for the proposed

algorithm based on CoSS-N model.

BðxÞ ¼ expðF1Þ
Pd�1

i¼1 expðFiÞ þ 1
;

expðF2Þ
Pd�1

i¼1 expðFiÞ þ 1
; . . . ;

expðFd�1Þ
Pd�1

i¼1 expðFiÞ þ 1

 !

� D ð7Þ
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be considered. Second, the compositional data
should be de-clustered prior to log-ratio transfor-
mation. Third is the transformation of original
compositional random vectors by log ratio to obtain
FðxÞ as in Eq. 6. Fourth is the transformation to
normal score standard Nð0; 1Þ. Fifth is the (co)-
spatial continuity analysis in order to infer the linear
model of co-regionalization. Sixth, apply the
TBCOSIM algorithm over normal score data. Se-
venth is the back-transformation of realizations from
normal score into first, compositional data BðxÞ
(Eq. 7) and, second, original scale. Finally, apply the
CoSS-N models on simulated results to capture
geochemical anomalies.

DATASET

The geochemical dataset used here pertains to
135 stream sediment samples representing a total
catchment area of � 101 km2 in the Aroroy gold
district (Philippines). This is the same dataset used
in Carranza (2008, 2010a, b, 2011). The data are
concentrations of six elements (As, Cu, Zn, Ni, Co
and Mn) determined from the stream sediment
samples by atomic absorption spectroscopy after
aqua regia decomposition (JICA-MMAJ 1986).
Among the uni-element data, the As data contain
censored values (i.e., values below the detection
limit of 0.5 ppm) associated with 35 of 40 sample
catchment basins in the northeastern part of the
district underlain mainly by diorite, which is neither
genetically nor spatially associated with the
epithermal gold deposits in the district (cf. Mitchell
and Leach 1991; Carranza 2009), and none of the
sample catchment basins associated with censored
As values contains any of the known epithermal
gold deposits. The censored As values were replaced
by one half the detection limit. Then, each step as
stated in the ‘‘Co-simulated Size-Number Fractal
Model (CoSS-N)’’ section was performed on the
basis of the proposed algorithm (CoSS-N) for cap-
turing geochemical anomalies over cross-correlated
compositional data.

EXPLORATORY DATA ANALYSIS

Each of the variables in the dataset was assayed
in a homotopic pattern, implying that each of them
was measured from the same sets of sample points
and all sample locations are in common (Wacker-

nagel 2003). The location map of each variable is
shown in Figure 2.

A straightforward tool for examining the spatial
characteristic of data as a part of exploratory data
analysis is trend analysis (Rossi and Deutsch 2014),
which illustrates a cross-plot of the data against
spatial coordinates. The interpretation of this plot in
conjunction with the location map of data con-
tributes to better understanding of the spatial vari-
ability of a variable being examined in a region.
Figure 3 shows the variability of all six variables vs.
principal coordinates, along west–east and south–
north directions. Consideration of the plots from
west to east (Fig. 3a) reveals that As is significantly
decreasing while Mn, Co and Zn are mildly
decreasing. However, the variability of the elements
is different in the south–north direction, along which
As is increasing notably while Mn, Zn and Cu are
smoothly decreasing (Fig. 3b). The other variables
do not show significant variation along these direc-
tions (Fig. 4).

Statistical parameters are crucial for describing
the global characteristics of geochemical variables
and possibly compositional data. If the sampling
pattern is irregular, it is of particular importance to
de-cluster the dataset in order to compute more
representative statistical parameters (Goovaerts
1997). In this technique, each datum receives a
weight between 0 and 1 based on spatial closeness to
the surrounding data. Histograms and all summary
statistics can then be calculated from the weighted
data (Rossi and Deutsch 2014). In this study, cell de-
clustering (Deutsch and Journel 1998) as a com-
monly used de-clustering technique was applied. In
this technique, the area should first be divided into a
grid of cells. The weights then can be calculated
according to the number of data falling in the same
cell. Each cell occupied by sample points is assigned
the same weight regarding the number of data while
an unoccupied cell receives no weight. A dimension
of 3000 9 3000 based on average sampling pattern is
selected for the cell of interest to obtain the weights
of each sample point. This cell size approximately
corresponds to the spacing of the data in sparsely
sampled regions (Rossi and Deutsch 2014). Table 1
shows the summary statistical parameters before and
after de-clustering. For comparing the global statis-
tics of the variables, the coefficient of variation
(COV) is also provided. This unit-less measure of
variability, which for all, is less than 2.5, indicating
that one is not dealing with mixture of very high and
very low values (Rossi and Deutsch 2014), and thus,
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the separation of geological domains is not required,
although As shows the highest COV among the
variables. As can be seen from Table 1, the de-
clustered mean for all the variables increased by
20.61% for As, 1.36% for Cu, 5.93% for Zn, 5.76%
for Ni, 3.81% for Co and 0.35% for Mn. These sig-
nificant ranges of variations indicate that the data
are mostly clustered in low-valued areas (Rossi and
Deutsch 2014).

Because the scope of this study is multivariate
geostatistical modeling of variables, multivariate
statistics of the variables are discussed. Correlation
coefficients as popular measure for this quantify the
global dependency that might exist among variables.
The cross-correlation coefficient matrix for both
clustered and de-clustered is provided in Table 2
(upper diagonal and lower diagonal, respectively).
Note that there are strong correlations (i.e., above
50%) among Zn and Ni, Co, Mn, between pairs of
Ni–Co and Co–Mn in both cases, indicating a high
level of dependency in global relationship. All the

variables also are positively correlated. Since the de-
clustering weights are determined on the basis of
geometric configuration, only one set of weights is
computed for correlation coefficients (Rossi and
Deutsch 2014).

LOG-RATIO TRANSFORMATION

The studied variables were transformed to log
ratios for further analysis. Prior to this transforma-
tion, a fill-up variable was introduced to constrain

the sum of components to 106 ppm. This variable
represents the components in the samples that were
not assayed. The descriptive statistical parameters of
the compositional data may be uninformative
(Aitchison 1986). In particular, statistical correlation
of such data may be spurious and unrealistic (Paw-
lowsky-Glahn 1984; Pawlowsky-Glahn and Olea
2004). One of the reason for this relates to the
Aitchison distance between two compositional

Figure 2. Location maps of values of six variables at Aroroy gold district. All element values are in parts per million (ppm).
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observations, ZaðxÞ and ZbðxÞ, which does not follow

the typical Euclidean geometry (Aitchison 1986):

DistAitchison ZaðxÞ;ZbðxÞ
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2d

� �
�
Xd

i¼1

Xd

j¼1

ln
ZaiðxÞ
ZajðxÞ

� ln
ZbiðxÞ
ZbjðxÞ

� �2
vuut ð9Þ

In this respect, for inferring the central ten-
dency of each component, Aitchison proposed the
use of compositional center for a dataset of size n,
regardless of the type of log-ratio transformation:

M ¼ g1; g2; . . . ; gd½ � with gi ¼
Yn

j¼1

ZijðxÞ
 !1=n

;

i ¼ 1; 2; . . . ; d:

ð10Þ

Furthermore, Aitchison (1986) defined the dis-
persion measure of a compositional dataset that can
be described by variation matrix T ¼ ½tij�:

Figure 3. Trend analysis per variable against the principal axis of coordinates; the ordinate values are shown in

standardized measure.

Figure 4. Lognormal probability plot of six cross-correlated

variables.
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tij ¼ Var ln
ZiðxÞ
ZjðxÞ

	 

ð11Þ

This can also be an approximation to measure
correlation between two components (Buccianti and
Pawlowsky-Glahn 2005), although it cannot be seen as
a typical correlation coefficient. The low values of this
measure represent that all two side observations show
about the same ratio, while high variability reflects
substantiallydifferent ratiosof the twoparts among the
observations (Filzmoser et al. 2009). Its normalized
version exp(� tijÞ transforms the values to the interval

½0; 1� (Buccianti and Pawlowsky-Glahn 2005). The
compositional center (closed geometric mean) and the
variation matrix for all six compositional dataset and
one fill-up variable are presented in Table 3.

NORMAL SCORE TRANSFORMATION

In order to implement the geostatistical co-
simulation algorithm, the alr-transformed variables
(i.e., alr.As, alr.Cu, alr.Zn, alr.Ni, alr.Co and alr.Mn)
should be transformed to standard Gaussian, with
mean and variance of 0 and 1, respectively. The
reason for Gaussian transformation relates to the
multi-Gaussian distribution assumption that makes
the inference of the conditional distribution in geo-

statistical algorithms convenient (Goovaerts 1997).
However, several variables in the geosciences rarely
obey this assumption and rather show asymmetric
distributions, positively or negatively skewed
(Deutsch and Journel 1998; Van den Boogaart et al.
2017). The transformation can be carried out
through Gaussian anamorphosis (Rivoirard 1994) or
quantiles-based approach (Deutsch and Journel
1998). In multivariate cases, it is common practice to
transform each variable separately to normal stan-
dard score and employ one of the widely used
functions of Gaussian co-simulation. In this study,
the quantiles-based approach was applied to trans-
form the six cross-correlated variables to normal
standard score. The normal score transformed vari-
ables are depicted in normal probability plots
(Fig. 5). The straight-line plots confirm that the
distributions of the transformed variables follow the
normal standard (ordinate), compared to the stan-
dard Gaussian distribution (abscissa).

Univariate Gaussian characteristics of the vari-
ables for (co)-simulation are required but not suffi-
cient to ensure that a random function is
multivariate Gaussian (Chilès and Delfiner 2012).
This examination can be done by checking the
experimental variogram of different order (w) over
the transformed Gaussian variables. In this respect,
modogram ( w ¼ 1) and rodogram ( w ¼ 1=2) can be
defined as (Deutsch and Journel 1998):

Modogram:

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

a¼1

z uað Þ � z ua þ hð Þj j1 ð12Þ

Rodogram:

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

a¼1

z uað Þ � z ua þ hð Þj j1=2 ð13Þ

where ½zðuaÞ � zðua þ hÞ�: is an h-increment of the
variable z and NðhÞ is the number of pairs.

Table 1. Summary statistics of six variables before and after de-clustering

Before/after de-clustering As Cu Zn Ni Co Mn

Number of data 135 135 135 135 135 135

Mean 4.61/5.56 64.03/64.90 56.86/60.23 12.59/13.36 17.31/17.97 796.92/799.70

Variance 111.92/149.06 1421.63/1358.89 1044.01/1200.43 46.76/53.80 53.90/55.14 118,621.74/118,464.71

Minimum 0.25/0.25 8/8 13/13 3/3 3/3 260/260

Maximum 82/82 200/200 230/230 42/42 42/42 1800/1800

Coefficient of variation 2.29/2.19 0.58/0.56 0.56/0.57 0.54/0.54 0.42/0.41 0.43/0.40

Table 2. Cross-correlation matrix among the six variables (upper

diagonal: before de-clustering, lower diagonal: after de-clustering)

As Cu Zn Ni Co Mn

As 1 0.095 0.213 0.363 0.285 0.333

Cu 0.082 1 0.304 0.405 0.288 0.304

Zn 0.19 0.298 1 0.496 0.636 0.733
Ni 0.384 0.423 0.519 1 0.717 0.399

Co 0.28 0.288 0.656 0.712 1 0.686

Mn 0.312 0.285 0.718 0.401 0.704 1

Bold values indicate that the correlation among variables are

strong
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Once the two functions are computed, in order
to show that the spatial bi-normality distribution
assumption between transformed pairs is also ho-
nored, the experimental modograms and rodograms
should be examined whether they are approximately
proportional to the square roots of their experi-
mental variograms (Emery 2005). This can be vali-
dated by plotting the former functions vs. the latter
functions in a log–log coordinate. The application of
this theory to the six cross-correlated variables
shows that experimental points follow relatively the
theoretical lines (Fig. 6), implying that the trans-
formed variables are in satisfactory agreement with
the bi-normality distribution assumption, and thus,
the Gaussian (co)-simulation can be performed.

Experimental variograms were calculated for
the transformed Gaussian variables in order to
model their joint cross-correlation structures. This
joint structure is required to solve the co-kriging
system in co-simulation algorithm. The computation
of direct variogram per variable in different azimuth
directions (0�, 45�, 90� and 135�) revealed no sig-
nificant geometric and zonal anisotropies, indicating
that omni-directional variograms are sound enough
for modeling such a joint spatial structure. In this
regard, two spherical nested structures with ranges
of 2000 and 8000, considering a nugget effect, were
inferred through the linear model of co-regional-
ization. This fitting procedure was advocated due to
its simplicity and versatility (Journel and Huijbregts
1978; Goovaerts 1997; Wackernagel 2003) and can
be obtained by semi-automatic fitting algorithm
(Emery 2010). For brevity, the outcomes of fitting
for direct variograms are displayed in Figure 7,
imposing the semi-definiteness condition, which
guarantees the validity of the linear model of co-
regionalizations. The complete formula of vari-
ogram analysis including the linear model of co-re-
gionalization fitted sills is given in Eq. (14). The

main diagonal of the matrix relates to the fitted sills
of direct variograms associated with upper and lower
diagonals detailing the fitted sills of cross-vari-
ograms.

cAs cAs=Cu cAs=Zn cAs=Ni cAs=Co cAs=Mn

cCu=As cCu cCu=Zn cCu=Ni cCu=Co cCu=Mn

cZn=As cZn=Cu cZn cZn=Ni cZn=Co cZn=Mn

cNi=As cNi=Cu cNi=Zn cNi cNi=Co cNi=Mn

cCo=As cCo=Cu cCo=Zn cCo=Ni cCo cCo=Mn

cMn=As cMn=Cu cMn=Zn cMn=Ni cMn=Co cMn

0

BBBBBBBB@

1

CCCCCCCCA

¼

0:093 �0:039 �0:058 �0:037 �0:060 �0:060

�0:038 �0:067 0:004 �0:099 �0:079 �0:009

�0:058 �0:004 0:129 0:133 0:0833 �0:018

�0:037 �0:099 0:133 0:341 0:237 0:0519

�0:060 �0:079 0:083 0:237 0:284 0:102

�0:060 �0:009 �0:018 0:051 0:102 0:122

0

BBBBBBBB@

1

CCCCCCCCA

nugget

þ

0:055 0:208 0:071 0:124 0:123 0:087

0:208 0:803 0:276 0:448 0:454 0:317

0:0715 0:276 0:096 0:147 0:153 0:105

0:124 0:448 0:147 0:348 0:290 0:236

0:123 0:454 0:153 0:290 0:379 0:225

0:087 0:317 0:105 0:236 0:225 0:166

0

BBBBBBBB@

1

CCCCCCCCA

Sph(2000 m; 2000 m; 2000 m)

þ

1:043 0:333 0:667 0:477 0:471 0:661

0:333 0:222 0:194 0:183 0:037 0:098

0:667 0:194 0:911 0:283 0:442 0:832

0:477 0:183 0:283 0:347 0:292 0:159

0:471 0:037 0:442 0:292 0:460 0:416

0:661 0:098 0:832 0:159 0:416 0:930

0

BBBBBBBB@

1

CCCCCCCCA

Sph(8000 m; 8000 m; 8000 m)

ð14Þ
Once the variograms analysis was achieved, the

co-simulation was implemented on a regular 2D grid
of 50 m by 50 m. The TBCOSIM algorithm was used
with a moving neighborhood in the shape of circle
with radius of 5000 m, incorporating up to 200
sample points regardless of considering any quad-
rant for splitting the neighborhood circles to equal
portions. The number of realizations and the turning

Table 3. Compositional center of the dataset and variation matrix (lower diagonal: original, upper diagonal: normalized)

Center (ppm) As Cu Zn Ni Co Mn Fill-up

1.399 53.67 49.62 10.74 15.68 696.89 9.9 9 105

As 0 0.172 0.213 0.181 0.169 0.195 0.109

Cu 1.760 0 0.701 0.699 0.707 0.697 0.678

Zn 1.543 0.354 0 0.736 0.818 0.893 0.760

Ni 1.708 0.357 0.305 0 0.869 0.719 0.703

Co 1.775 0.346 0.200 0.140 0 0.846 0.802

Mn 1.634 0.360 0.112 0.328 0.167 0 0.815

Fill-up 2.211 0.387 0.274 0.352 0.220 0.203 0
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Figure 5. Normal probability plots for normal scores of six alr-transformed variables of interest.
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bands were set to 100 and 5000, respectively. Indeed,
each of this number of realization mostly corre-
sponds to the efficient characterization of the space
of uncertainty (Goovaerts 1999) and should be
based on minimum acceptance criteria for geosta-
tistical simulation (Leuangthong et al. 2004). Abil-
din et al. (2019) showed that 100 realizations are an
adequate number in co-simulation of cross-corre-
lated variables for convergence of statistical
parameters of the simulation results to the original
de-clustered ones. The reason for arranging the lat-
ter number of turning bands to 5000 also relates to
elimination of stripping effects that should be as
large as possible (Emery 2008).

In the process of conditioning, as explained
above, simple co-kriging is required to be consid-
ered. Multiple searching strategy was also selected,
because Madani and Emery (2019) showed that this
type of neighborhood is more precise and reliable.
This strategy was performed in six parts, in which
the neighborhood was searching for 200 closest data
of the first, second, third, fourth, fifth and sixth
variable in turn, independent of each other. Ordi-
nary co-kriging can likewise be taken into account in
the conditioning step, but in such a case the mean
values of cross-correlated variables are uncertain
(Emery 2007). In order to compare the results of
joint simulation based on the methodology proposed
(CoSS-N), independent TBSIM was also performed
for each variable following Sadeghi et al. (2015) (i.e.,
SS-N) regardless of cross-correlation among the
variables and compositional nature of the dataset. In
this workflow, simple co-kriging in TBCOSIM was
substituted for simple kriging taking into account the
only normal score conditioning data that were ob-
tained from Gaussian transformation of de-clustered
original dataset. Then, direct variograms were
computed on the normal score dataset and inde-
pendent simulation (TBSIM) was implemented on
each variable with the same number of realizations
and turning bands as considered for TBCOSIM. The
simulation results were then back-transformed to
original scale. In TBCOSIM, however, we needed
one extra back-transformation. In this case, the co-
simulated realizations that keep the normal score
distribution were back-transformed first and re-
scaled to alr-transformed variables and were then
back-transformed to original scale (ppm) by Eq. 5.

E-type maps, obtained by geometric averaging
the back-transformed variable of interest across 100
realizations of TBCOSIM per block, are depicted in
Figure 8. As can be seen, the results are compatible

with the trend analysis already provided in the
above section. For instance, As is concentrated in
the left corner of the region and is decreasing toward
the east. Another confirmation of the reproduction
of dependency among the variables is related to the
strong correlations between the pairs of Co–Mn
(0.704), Ni–Co (0.712) and Zn–Mn (0.718) and rel-
atively weaker correlations between the pairs of Zn–
Ni (0.519) and Zn–Co (0.656), which can be visual-
ized from the produced maps, implying that the
TBCOSIM was capable of qualitatively reproducing
the de-clustered correlations among the variables
through all the realizations.

VALIDATION

In this section, it is of interest to validate the
simulated results obtained from TBCOSIM and
compare to the outputs of independent simulation,
TBSIM. The scope of this work is mainly on the
basis of reproduction of global and local correlation
coefficient and its application to enhance charac-
terization of geochemical anomalies. The CoSS-N
model is proposed for compositional data as an
innovative algorithm for showing the capability of
Gaussian co-simulation to fit the latter purpose. In
this regard, we decided to make this comparison
(i.e., between TBSIM and TBCOSIM) over the
conventional statistical parameters for several rea-
sons. First of all, in this paper, the algorithm for
TBSIM deems that the original dataset is non-com-
positional while neglecting the meaningful interre-
lationship among the variables (i.e., following the
algorithm provided by Sadeghi et al. 2015 that is for
univariate modeling). Second is the lack of practical
guidelines in commercial software from the indus-
trial perspective for dealing with modeling of com-
positional data (Tolosana-Delgado et al. 2018) and
the corresponding statistical analysis, even after
providing the monographs (Pawlowsky-Glahn and
Olea 2004) despite enhanced development of log-
ratio transformation techniques (Pawlowsky-Glahn
2003; Tolosana-Delgado 2006; Tolosana-Delgado
and van den Boogaart 2013). Third, subject to the
behavior of log-ratio transformed variables and their
deviations from normal distribution, alternative
examination for reproduction of histogram and
variogram on both original scale and log-ratio
transformed variables shows similar results (Mueller
et al. 2014). Fourth, alr-transformed variables are no
longer constrained by constant sum and common
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geostatistical methods can be incorporated to derive
the spatial relationships among the variables (Paw-
lowsky and Burger 1992). Fifth, there may be some
sound arguments against using the original correla-
tion and statistical parameters among the primary
variables for decision-making that may lead to spu-
rious decisions (Pawlowsky-Glahn and Egozcue
2016 and references therein). This reason is advo-
cated, because the original variables are just a sub-
group of a whole family known as compositional
dataset, and the original de-clustered correlation still
can be considered as an approximation of inherent
dependency among the compositional data and may
be examined as criteria for comparison between
alternative geostatistical simulation methodologies.
Sixth, there are several case studies based on geo-
statistical simulation of log-ratio transformation of
original variables and contrasting to other methods
that the validation parts are mainly based on con-
ventional statistical parameters (e.g., Rubio et al.
2016; Van den Boogaart et al. 2017; Hosseini and
Asghari 2019 and references therein).

Multivariate Statistical Parameters Reproduction

In order to validate the results, it is firstly of
interest to check that the realizations reproduce the
global dependency relationships among the vari-
ables. In this respect, one can compute the correla-
tion coefficients between the back-transformed
values of simulated variables in each realization
(Eze et al. 2019). It is expected that these coeffi-
cients fluctuate around the experimental correla-
tions as provided in Table 2, for instance 0.704 for
Co–Mn, 0.712 for Ni–Co, 0.718 for Zn–Ni and 0.656
for Zn–Co. This situation occurs in the case of
TBCOSIM, but not in TBSIM (Fig. 9). In the latter
algorithm, the produced correlations through 100
realizations are, on average, lower than the expected
de-clustered correlations. This bias can be explained
because, compared to TBCOSIM, TBSIM does not
consider the cross-dependency among variables,
leading to poor reproduction of the cross-correlation
among the simulated variables. The reproduced
correlation coefficients are given in Table 4. Nev-
ertheless, as mentioned earlier, there are some

legitimate arguments concerning computation of
Pearson correlation coefficients among composi-
tional variables that may be deemed spurious.
Therefore, in order to examine the interrelation
dependency regardless of measure of correlation
coefficient for comparison of two algorithms, the
scatter plot between pairs of Zn–Ni, Co–Zn, Mn–
Zn, Co–Ni and Mn–Co are depicted in Figure 10. In
this plot, one can examine the reproduction of
bivariate relation between the variables whether or
not it follows the original de-clustered bivariate
relation regardless of any correlation coefficient
measures. As can be seen, the plots demonstrate
that, compared to TBSIM (Fig. 10), not only is the
reproduction of bivariate relations in TBCOSIM
improved but also the bivariate relations are roughly
in agreement with those obtained from correlation
coefficient measures (Fig. 9, Table 4).

Another way to examine the quality of the
simulation results is to check the reproduction of
spatial continuity in the region, implying whether
the local cross-correlation is reproduced well.
Computation of direct and cross-variograms of the
simulated Gaussian random fields is an option for
this purpose. In this respect, spatial continuity
measures of simulated realizations should converge,
on average, to the fitted theoretical model, obtained
either from linear modeling of co-regionalization or
from any other fitting procedures (Emery 2004). If
this variogram curve, on average, is not in agree-
ment with the theoretical model, it indicates that the
simulation algorithm was not appropriate for the
studied dataset and leads to produce biased results.
In this study, the results of spatial continuity analysis
show that although the direct variograms are
reproduced well by both TBCOSIM and TBSIM
algorithms, the cross-variograms reproduction were
not satisfactory for the TBSIM outputs (Fig. 11).
The reason why the TBSIM results were biased is
that the cross-dependency among the variables was
not considered in this algorithm and one should not
expect to reproduce the desired cross-correlation
among the variables as provided in Table 5 for the
lag separation 0.

Univariate Statistical Parameters Reproduction

It is instructive to examine the reproduction of
the means and variances of the simulated realiza-
tions by TBCOSIM so as to compare with the
original de-clustered means and variances of the

bFigure 6. Experimental modograms and rodograms of the

Gaussian variables as a function of their experimental

variograms. In case of bi-normality, the data points should be

approximately distributed along the thick solid line.
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studied variables. While the mean is the accept-
able measure for comparison of realizations, and
even if the same central value is obtained as the de-
clustered mean, the simulation results may show
totally different distributions. Thus, the variance as
additional measure of variation is required for better
interpretation of the simulated data dispersion.
Consequently, the mean and variance were calcu-
lated per set of realizations. The means and vari-
ances of 100 conditional simulated realizations are
presented in Table 4. The reproduced means are
slightly lower, varying from 0.60 to 11.33%
depending on the variable, compared to the de-
clustered means, and thus are quite satisfactory for
all the six variables. Likewise, the reproduced vari-
ances are slightly lower, varying from 5.66 to 25.5%
depending on the variable, compared to the de-
clustered variances, and thus are quite satisfactory.
The slightly lower means and variances can be
interpreted as due to the influence of conditioning
data (sample values). The simulation results were
also checked thoroughly per variable, before back-
transformation, to examine whether the realizations
follow a normal standard distribution.

Validation Against Actual Data

The simulated results can also be examined
against the actual values of the studied variables. For
instance, more samples may be available from some
locations as actual data in further steps of mineral
exploration that those areas have already been sim-
ulated beforehand and some values are available as
prediction data. However, in this study, the true val-
ues are not available. Therefore, in order to test the
proficiency of the co-simulation results, a typical
validation technique, which is suitable for validation
of geostatistical algorithms, is taken into account for
the six studied variables. This test, the so-called cross-
validation technique, involves removing one sample
at a time and is re-estimated from the remaining
neighborhood conditioning data. Each datum is then
replaced in the data set once it has been re-estimated
(Deutsch and Journel 1998). This type of analysis is
basically applicable for evaluation of (a) variogram

models, (b) type of kriging and (c) the search strategy
in geostatistical contexts. Nevertheless, the cross-
validation technique is also be applicable for evalua-
tion of (co)-simulation results. To do so, TBCOSIM
was applied following the procedures that were
thoroughly discussed in the previous sections. Be-
cause the ‘‘true’’ values of each variable were mea-
sured at sample locations, the averages of simulation
results at the same locations conditioned to the
remaining data provide the prediction values per
variable at the corresponding locations. Therefore, a
scatter plot can be drawn though the predicted and
measured values at sample points. The results are
depicted in Figure 12, and the bivariate distributions
of plots and their tendencies to the diagonal line
(black line) reveal that TBCOSIM provides satisfac-
tory outputs without loss of generality. This also cor-
roborates that this methodology (TBCOSIM) is
precise enough in the case of cross-correlated vari-
ables whenever the actual data are available.

Co-simulated Size Number (CoSS-N)

As already discussed, the results of Gaussian
co-simulation turn out more reliable outputs due to
taking into account the cross-correlation structure
among the variables of interest. This concept cannot
be corroborated, however, in the case of dealing
with independent simulation algorithm for modeling
those types of variables with substantial inter-de-
pendency relationship. In this section, it is of interest
to capture different thresholds through fractal
analysis of TBCOSIM simulated realizations (100
outputs) over the underlying N–S log–log plots. To
do so, separate curves were first obtained from each
individual realization, and then, the average of all
log–log curves was calculated for each variable.
Next, the segment lines have been fitted through this
average curve graph of realizations and the thresh-
olds were inferred as shown in Figure 11. The cor-
responding thresholds derived from fractal analysis
in Figure 13 are also presented in Table 6.

PROBABILISTIC DESCRIPTION
OF ANOMALOUS AREA

Once the thresholds are derived from fractal
analysis on the corresponding realizations obtained
from TBCOSIM, one application pertains to the
production of maps showing anomalous areas for

bFigure 7. Sample (crosses) and modeled (solid lines) direct

variograms of Gaussian variables. For brevity, only the direct

variograms are displayed, although the fitting has been carried

out with all the direct and cross-variograms.
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Figure 8. E-type maps obtained from 100 realizations of each variable. All values of variables are in ppm.

30 Madani and Carranza

Author's personal copy



31Co-simulated Size Number

Author's personal copy



further mineral exploration. This step is crucial,
because it makes the investigation more up-scaled
and narrower. Carranza (2010a, b) applied principal
component analysis (PCA) to explain as much
information contained in the data as possible in a
few components as possible for Aroroy dataset.
PCA searches for the direction in the multivariate
space that contains the maximum variability. The
two first perpendicular principle components
(PCA1) and (PCA2) convey the maximum amount
of the remaining data variability (Reimann et al.
2008). PCA can also be seen as a decomposition of
the covariance matrix or correlation matrix into its
‘‘eigenvectors’’ and ‘‘eigenvalues’’ that are the
loadings of the principle components spanning the
new PCA coordinate system. In his study, Carranza
(2010a, b) implemented the PCA analysis on the
same case study dataset, indicating that PCA1 ac-
counts for 34% of the total variance and represents a

Co–Zn–Mn association, for which it shows possible
metal scavenging by Mn oxides in the drainage
environments in most part of area, while the PCA2
accounting for 22% of total variance introduces a
Ni–Cu–As association with possibly enrichment of
epithermal Au deposit in the area due to the
weathering and erosion of anomalous sources con-
taining sulfide minerals such as chalcopyrite and
arsenopyrite. This association also reflects dacitic/
andesitic rocks that host the epithermal Au deposits
in the area. In this study, we integrated the two
mentioned associations (Co–Zn–Mn and Ni–Cu–As)
to produce the probability maps, offering an alter-
native tool to show the uncertainty of finding prob-
able anomalous areas in the region. In the previous
section, the individual maps for each variable ob-
tained through averaging the realizations were pre-
sented (Fig. 8). These maps can be integrated to
produce the probability maps in the region, based on
the corresponding thresholds. For instance, it is of
interest to define the probable areas in one unique
map instead of three different maps that jointly
illustrate the anomalous areas for association of Ni–
Cu–As taking into account the thresholds that
identify the anomalous area for each individual
variable. Based on Table 6, the initiation thresholds
for Ni, Cu and As are 19.95 ppm, 39.8 ppm and
2.51 ppm, respectively. Therefore, the idea is to find
the probability of common areas based on these
variables and, thus, to prepare one map summarizing
two or three variables. This is of paramount impor-
tance for delineation of areas with possible locations
of epithermal Au deposits described by these Ni–
Cu–As and Co–Zn–Mn associations. To do so, this
concept can be formulated based on probability
rules (e.g., Hogg et al. 2012; Olea et al. 2016):

� For two variables, A and B:

ProbðA \ BÞ ¼ ProbðAjBÞ � ProbðBÞ ð15Þ

For three variables, A, B and C:

Prob(A \ B \ CÞ ¼ Prob(AÞ � Prob(BjAÞ
� ProbðCjA \ BÞ ð16Þ

Therefore:
� For likely epithermal Au deposit locations

defined by Cu and As variables:

Prob Cu � 39:8 \As � 2:51ð Þ
¼ Prob Cu � 39:8 \As � 2:51ð Þ

� Prob As � 2:51ð Þ ð17Þ

bFigure 9. Correlation coefficients between transformed simulated

variables with turning bands co-simulation (left) and TBSIM

(right). For brevity, only the correlation between the pairs of Zn–

Ni, Co–Zn, Mn–Zn, Co–Ni and Mn–Co is illustrated. The average

correlation over the realizations is represented with a red line,

while the true de-clustered correlation is represented with a green

line.

Table 4. Correlation coefficients among the original variables,

reproduced by independent and Gaussian co-simulation

As Cu Zn Ni Co Mn

Original de-clustered data

As 1 0.082 0.19 0.384 0.28 0.312

Cu 0.082 1 0.298 0.423 0.288 0.285

Zn 0.19 0.298 1 0.519 0.656 0.718

Ni 0.384 0.423 0.519 1 0.712 0.401

Co 0.28 0.288 0.656 0.712 1 0.704

Mn 0.312 0.285 0.718 0.401 0.704 1

TBSIM

As 1 0.126 0.210 0.287 0.231 0.243

Cu 0.126 1 0.259 0.260 0.169 0.200

Zn 0.210 0.259 1 0.244 0.378 0.562

Ni 0.287 0.260 0.244 1 0.339 0.190

Co 0.231 0.169 0.378 0.339 1 0.365

Mn 0.243 0.200 0.562 0.192 0.365 1

TBCOSIM

As 1 0.197 0.249 0.335 0.256 0.295

Cu 0.197 1 0.359 0.387 0.265 0.338

Zn 0.249 0.359 1 0.488 0.570 0.722

Ni 0.335 0.387 0.488 1 0.735 0.400

Co 0.256 0.265 0.570 0.730 1 0.626

Mn 0.295 0.338 0.722 0.400 0.626 1

Bold values indicate that the correlation among variables are

strong
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Figure 10. Bivariate relation between variable pairs of Zn–Ni, Co–Zn, Mn–Zn, Co–Ni and Mn–Co. Left panel: original variables. Middle

panel: TBCOSIM. Right panel: TBSIM. For brevity, only a few pairs are illustrated for only realization number 1. TBCOSIM results

outperform the TBSIM results, because of the former following the original bivariate shape of correlation.
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� For likely dacitic/andesitic rocks that host the
epithermal Au deposits defined by the Ni–
Cu–As association:

Prob Ni � 19:95 \ Cu � 39:8 \As � 2:51ð Þ
¼ Prob Ni � 19:95ð Þ
� ProbðCu � 39:8jNi � 19:95Þ
� ProbðAs � 2:51jNi � 19:95 \ Cu � 39:8Þ

ð18Þ

Figure 11. Direct and cross-variograms of Gaussian random fields simulated with turning bands (left panel) and

turning bands co-simulation (right panel). For brevity, only the direct variogram for Mn and only cross-

variograms for Mn–Zn are displayed. Blue dashed lines: variograms of individual realizations; green dashed line:

average variogram of realizations; red solid line: theoretical variogram model obtained from linear model of co-

regionalization.

Table 5. Global means and variances of de-clustered data and 100 realizations by TBCOSIM

Parameters Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

As Cu Zn Ni Co Mn

De-clustered 5.56 149.06 64.90 1358.89 60.23 1200.43 13.36 53.80 17.97 55.14 799.70 118,464.71

Average TBCO-

SIM

4.93 118.30 66.28 1268.40 58.28 894.36 13.19 45.34 17.84 52.02 794.92 108,290.05
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Figure 12. Scatter plots between measured and predicted values at sample locations.
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� For likely metal scavenging by Mn oxides in
the drainage environments defined by the
Co–Zn–Mn association:

Prob Co � 30:19 \ Zn � 44:66 \Mn � 1318:3ð Þ
¼ Prob Co � 30:19ð Þ � ProbðZn � 44:66jCo � 30:19Þ
� ProbðMn � 1318:3jCo � 30:19 \ Zn � 44:66Þ

ð19Þ

Figure 13. Results of fractal method and the thresholds identified for the CoSS-N model.
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The probability maps are shown in Figure 14.
They are constructed based on Eqs. 15, 16, 17, 18
and 19 for each block through 100 conditional
TBCOSIM realizations and show the chance of
finding plausible mineralized zones based on the
identified thresholds. The sectors with little uncer-
tainty are those associated with a high probability
for a given anomaly (portrayed in red in Fig. 13),
indicating that there is little risk of not finding an
anomaly, or those associated with a very low prob-
ability (portrayed in dark blue in Fig. 13), indicating
that one is pretty sure of not finding an anomaly,
while the other sectors (portrayed in light blue,
green, or yellow in Fig. 13) are more uncertain. The
footprint of plausible anomalies for enrichment of
Cu and As elements (Fig. 14a) shows that the likely
locations where epithermal Au deposits can be
found trend NW–SE, which is in agreement with the
trend of their host rocks (Fig. 14b).

CONCLUSION

Identification of geochemical anomalies is
important for mineral exploration. However, deriv-
ing the corresponding elemental thresholds from
fractal/multi-fractal analysis is challenging whenever
the geochemical variables exhibit dependency
among each other and they have the inherent com-
positional characteristics. In this study, an innovative
workflow is proposed for tackling these issues based
on a combination of geostatistical Gaussian co-sim-
ulation and fractal analysis, namely co-simulated
size number (CoSS-N). In this context, the geo-
chemical components should be transformed from
original scale to new variables by one of the log-ratio
transformation techniques, such as additive log-ratio
transformation (alr), after inference of statistical
parameters in both original and log-ratio scales,
respectively. In order to quantify spatial continuity,
direct and cross-variogram can be calculated over
alr-transformed variables and linear model of co-
regionalization should be fitted respecting semi-
definite positive condition. Once the variogram
structure is derived, one of the Gaussian co-simula-
tion algorithms, such as turning bands co-simulation
(TBCOSIM), can be implemented. The log-ratio
simulated results should then be back-transformed
to original scale and fractal analysis can then be
applied for calculation of thresholds for differenti-
ating of background from anomaly. The proposed
approach was performed in a real case study from
the Philippines where seven cross-correlated vari-
ables were measured at 135 sample points from the
surficial environment. In order to validate the pro-
posed algorithm, CoSS-N results were compared
with the results of SS-N (Sadeghi et al. 2015),
whereby global and local statistical parameters were
examined on the simulation results obtained from
both approaches. The overall accuracy of the CoSS-
N corroborates that it outperforms the SS-N model
in the case of dealing with cross-correlated geo-
chemical components. The derived thresholds were
then applied to calculate the uncertainty and plau-
sible areas where to find epithermal Au deposits in
the region. The probabilistic produced maps showed
a NW–SE trend of locations where possible
epithermal Au deposit can be found in the region.
These results have not been recognized from the
geometric average of back-transformed simulation
results. In future, this study can be extended based
on identification of thresholds by fractal analysis of
cross-correlated variables, wherever the underlying

Table 6. Different geochemical populations obtained from the

proposed CoSS-N approach

Geochemical variable Population

As Background 0.25–2.51

Very low anomaly 2.51–6.30

Very low anomaly 6.30–17.78

Low anomaly 17.78–25.11

High anomaly 25.11–63.09

Very high anomaly > 63.09

Cu Low background 8–39.8

High background 39.8–89.12

Low anomaly 39.8–158.48

High anomaly 158.48–177.82

Vary high anomaly > 177.82

Zn Background 13–44.66

Very low anomaly 44.66–63.09

Low anomaly 63.09–79.43

High anomaly 79.43–125.89

Very high anomaly > 125.89

Ni Low background 3–12.58

High background 12.58–19.95

Low anomaly 19.95–26.91

High anomaly > 26.91

Co Very low background 3–14.12

Background 14.12–22.38

High background 22.38–30.19

Low anomaly 30.19–31.62

High anomaly > 31.62

Mn Very low background 260–489.77

Low background 489.77–794.32

High background 794.32–1318.3

Low anomaly 1318.3–1513.6

High anomaly 1513.6–1548.8
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geochemical components are ascertained by the
lithology type in the region.
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