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Abstract
Post-stroke paralysis, whereby subjects loose voluntary control over muscle actuation, is one of the main causes of dis-
ability. Repetitive physical therapy can reinstate lost motions and strengths through neuroplasticity. However, manually
delivered therapies are becoming ineffective due to scarcity of therapists, subjectivity in the treatment, and lack of
patient motivation. Robot-assisted physical therapy is being researched these days to impart an evidence-based systema-
tic treatment. Recently, intelligent controllers and brain–computer interface are proposed for rehabilitation robots to
encourage patient participation which is the key to quick recovery. In the present work, a brain–computer interface and
assist-as-needed training paradigm have been proposed for an upper limb rehabilitation robot. The brain–computer
interface system is implemented with the use of electroencephalography sensor; moreover, backdrivability in the actua-
tor has been achieved with the use of assist-as-needed control approach, which allows subjects to move the robot
actively using their limited motions and strengths. The robot only assists for the remaining course of trajectory which
subjects are unable to perform themselves. The robot intervention point is obtained from the patient’s intent which is
captured through brain–computer interface. Problems encountered during the practical implementation of brain–
computer interface and achievement of backdrivability in the actuator have been discussed and resolved.
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Introduction

The recovery of upper limb motions and strengths in
patients with damaged neuromuscular system via
robotic rehabilitation devices is a promising way of
enhancing existing treatments and their efficacies.
Various reasons may cause limb dysfunctions, includ-
ing stroke, spinal cord injuries, or even ligament rup-
ture. According to the World Health Organization,
about 15million people globally suffer from Cerebro-
Vascular Accidents (CVAs) each year and up to 65%
of these need limb recovery procedures.1 Only in the

last 15 years, the number of CVA or stroke patients is
increased by 40%, which is the result of a more intense
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pace of living, deterioration of ecology, and increased
aging population.2 Considering these statistics, devel-
opment of new and efficient ways of rehabilitation is
just as important as implementation of improved pre-
vention strategies.

For the last 20 years, robotics-based therapy was
steadily paving its way for becoming an essential prac-
tice in rehabilitation medicine.3,4 According to the sys-
tematic review of Kwakkel et al.5 on the upper limb
recovery using robot-aided therapy, repetitive, mean-
ingful, labor-intensive treatment programs implemen-
ted with robotic devices provide positive impact for the
restoration of functional abilities in human limbs. In
medical terminology, a device that provides support,
and aligns or improves the function of movable limbs
is known as orthosis, and robotic devices intended to
provide such treatment are called robotic orthoses.6

Particularly, two key directions gained major attention
in the medical engineering research: robot-assisted ther-
apy and functional electrical simulation (FES) therapy.
The FES therapy describes a technique that stimulates
weakened or paralyzed muscles on a human limb by
applying electric charges externally. The goal of FES
therapy is to reactivate the neural connections between
a muscle and human’s sensorimotor system to enable
patients’ ability to control their limbs without assis-
tance.7 In the study by Popovic and others, the func-
tional electrical therapy (FET) was applied with the use
of surface electrodes and it was used to stimulate arm
fingers of patients, this therapy has demonstrated posi-
tive therapeutic effects.8 It was revealed that daily 30-
min therapy for 1-month period allowed improvement
in movement range, speed, and increased strength in
muscles. There are also side effects of FES-based treat-
ment such as pain and irritation on the affected area,
autonomic dysreflexia, increased spasticity, broken
bones, and mild electric shocks from faulty equipment.
However, the robot-assisted rehabilitation is non-
invasive and free from above risks, and it is preferred
for the rehabilitation of stroke survivors.

The important advantage of robotic devices is that
they can reduce the burden on health care workers who
traditionally had to conduct labor-intensive training
sessions for patients. Equipped with sensors, intelligent
controllers, and haptic and visual interfaces, robotic
orthosis can have a potential to put the recovery pro-
cess to a new level by collecting relevant data about
various health parameters (pulse rate, body tempera-
ture, etc.) and adjusting the training modes accord-
ingly. Besides the positive impacts of robot-based
rehabilitation, the reliability of robot-based assistance
is still questionable and adversely it may worsen the
recovery progress made before, and that depends on
the type of assistance control robot employs.9 Assist-
as-needed (AAN) control type has become one of the

prominent strategies recently which has been recom-
mended positively from clinical trials.10 In order to sta-
bilize the system, AAN-based approach has become
subject to be researched by scientists. In the work done
by Wolbrecht, AAN control is obtained from the adap-
tive control by incorporating novel force to address
and decrease the system’s parametric errors.11 There
are also other works which propose AAN type of con-
trol for their systems;12–14 however, there are no works
which have incorporated both BCI (brain–computer
interface)- and AAN-based control approach into the
system.

Owing to the recent advances in biosensors, espe-
cially in their robustness and signal processing, robot
controllers equipped with bio-sensing are able to
achieve intelligence with less complex algorithms. One
of the most recent applications of BCI is in the domain
of orthoses.15–17 Newer instances of orthoses combine
latest advances in control theory and brain activity.
Berlin Technical University in cooperation with
Korean University created an exoskeleton to maneuver
lower limbs. A feature of this work is the use of non-
invasive electroencephalography (EEG). The study
involved 11 healthy men aged 25 to 32 years.18 First
upper limb exoskeleton controlled by BCI was pro-
posed by AA Frolov et al.19 Authors concluded that
BCI inclusion improves the movements of the paretic
hand in post-stroke patients irrespective of severity and
localization of the disease. In addition, it was shown
that duration of the training also increases effectiveness
of rehabilitation.

Based on the letters on the screen, it was possible to
determine native language of the patient in the work
done by Vasileva.20 In this work, non-invasive EEG
had been used. However, it was noted that non-invasive
devices have less accuracy than professional medical
EEG equipment. To improve signal detection, Agapov
et al.21 have developed advanced algorithm of process-
ing visually evoked potentials. To visualize stimuli,
‘‘eSpeller’’ software was developed.

Motivated by the above-mentioned successes and
advances, in the present work, possible use of BCI is
investigated in the rehabilitation robots for the treat-
ment of stroke survivors. The aim of this work is to
develop EEG-based mechatronic system that can
receive electrical brain signals, detect emotions and ges-
tures of the patient, and intelligently control robotic
arm. In addition, to ensure smooth and compliant
movement of the rehabilitation robot and improve
treatment efficacy, AAN control paradigm is also con-
sidered. This research used EEG package and a con-
troller to develop BCI system and realize AAN-based
control. Developed system can help patients to control
robot with their thoughts and enhance their participa-
tion in the rehabilitation process. Methodology of the
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current work is explained in the ‘‘Methodology’’ sec-
tion, and in the subsequent sections, results are dis-
cussed before drawing conclusions from this research
work.

Methodology

EEG sensor

In order to register the brain activity, 16 EEG electro-
des distributed around the patient’s head have been
used. To provide more information which is related to
motor imaginary signals, the frequency characteristics
were extracted from the data by converting them from
the time domain to the frequency domain.
Furthermore, to distinguish between movement inten-
tions and rest positions, bandpass filter in the range of
5 to 40Hz was used.22,23 Since EEG data set recording
can be very large, the powerful surface Laplacian tech-
nique was applied to lower the risk of influence from
the neighboring neurons on the crucial cerebral cortex
neurons.24 Finally, only dominant frequency of 13 to
30Hz, also known as beta wave frequency, was fea-
tured according to Gropper et al.25 This band distinc-
tion was benchmarker as a sensible area of resting
brain activity.

Abiding by the previous works associated with EEG
signal processing in Iáñez et al.26 and Hortal et al.,27

the feature selection was reduced to the group of 29 fea-
tures, which later were used for the further classifica-
tion and predictive model construction.

After receiving data using an EEG, algorithm needs
to determine the desired effect for the user. Input data
for this algorithm are EEG signals recorded during the
demonstration of stimuli. In most of the currently exist-
ing studies on this subject, the problem of classifying
signals is divided into three large subtasks:

� Preprocessing the signal (in order to remove
noise components);

� Formation of a feature space;
� Classification of objects in the constructed fea-

ture space.

It should be noted that the greatest influence on the
final quality of the classification is made by the extent
to which the task of forming the feature space was suc-
cessfully accomplished. The general scheme of opera-
tion of BCI is depicted in Figure 1.

Preprocessing

Preprocessing of the signal is performed to remove arti-
facts (spontaneous muscle contractions, blinking, etc.)
and to neutralize the existing noise components. In
addition, information of interest is contained in a

predefined frequency range, and the remaining compo-
nents are considered less informative. Several prepara-
tions are carried out to enhance signal quality:

� Removing a constant amplitude offset;
� Bandpass filtering;
� Robust transformation;
� Electrode selection.

In this work, digital Butterworth filter is used.
Digital Butterworth filter is a family of methods for
processing a discrete signal in order to isolate or sup-
press certain frequency components of a signal. High-
pass filters, low-pass filters, bandpass filters, and band-
stop filters are allocated. A common class of digital fil-
ters is a linear digital filter, which can be given by its
generalized difference equation

yk =
X

i2I
bixk�i +

X

j2I

ajyk�j ð1Þ

Here, i and j are used for integer-line intervals con-
taining zero value. If a0 = 0, then the filter is called
non-recursive, which is recursive otherwise. Moreover,
if i= f0, 1, . . . , ng and j= f0, 1, . . . ,mg, then the filter
is called single pass and it can be applied in one pass on
the initial data. In this case, the order of the filter is
called maxfn,mg. For i� 0, xi = 0 is assumed.

Butterworth filters are a family of non-recursive sin-
gle-pass filters, the distinguishing feature of which is the
smoothness of their amplitude–frequency response at
frequencies where the signal is skipped.28

Construction of a feature space

Since dimensionality of BCI system is usually large and
the training set (session of catching EEG signals) is
small, the direct application of classification will likely

Figure 1. Block diagram of BCI interface.
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give worse results. Therefore, character space construc-
tion stage is the most important process of resolving
this problem. The challenge here is that there is no sin-
gle method exists for finding a new feature space.
Researchers have to confront with the need to search
for a feature space for the effective solution of a partic-
ular task delivered using specific equipment.

There are several most commonly used methods:

� Blind source separation methods: These are based
on the assumption that recorded signals for the
multichannel devices are a mixture of signals
from different sources and attempts to identify
sources with some assumptions about their
nature.29

� Morphological signs methods: Such methods
describe changes in the amplitudes of neurophy-
siological signals occurring during a certain
period of time. Often used strategy for dividing
the background activity and waves of P300 con-
sists of a low-pass filter or a filter with a certain
bandwidth with the subsequent possible thinning
of the signal. The fact is that most of the compo-
nents of the P300 wave are concentrated in the
low-frequency range, and therefore, described
procedure allows neutralizing the influence of
redundant information.

� The Fourier Transform methods: Following this,
analysis of signals is carried out by decomposi-
tion into ‘‘basic’’ functions, each of which corre-
sponds to a certain frequency. In this way, one
can analyze the degree of expression of oscilla-
tions of a certain frequency. While Fourier trans-
form uses sinusoids as the basis functions, for
discrete signals that occur in the task of con-
structing a BCI, discrete Fourier transform
(DFT) is applied.

� Wavelet transform methods: Integral transforma-
tion is a convolution of a wavelet function that
has many characteristic properties with a signal.
By analogy with the Fourier transform, a certain
decomposition of the original signal occurs. For
discrete signals, a discrete wavelet transform is
used.

� Common spatial pattern filter method of decom-
position of a multichannel EEG signal: Here, the
problem of classification of multidimensional
signals into two classes is considered. The pur-
pose of the method is to decompose the original
signal into additive components in such a way as
to maximize the dispersion of the first compo-
nents and minimize the variance of the latter for
the objects of the first class and achieve a reverse
situation for the objects of the second class.

The construction of feature space of BCI was imple-
mented based on morphological sign method, where
waves of P300 are considered in more detail.

Classification

An important stage in the operation of the interface is
the training of the classifier, which distinguishes signifi-
cant stimuli at the final stage of the experiment. The
classifier applied in the present work is a module that
performs multiple training on the allocation of a single
feature vector from a set of vectors and further verifica-
tion of this vector on a learning classifier. This work
has applied linear discriminant analysis (LDA), which
is a classification algorithm that divides the input set
into two classes. Such model has been presented in the
work.30 Implementation starts with dividing initial sam-
ple S by two subsamples S1 and S2, where each contains
n1 and n2 vectors respectively. Expected value E S1ð Þ is
the center of the first class, E S2ð Þ is the center of the
second class. The unbiased ith coordinate of the vectors
of the first and second classes are _S1

i and _S2
j respec-

tively. In order to determine the degree of correlation
between different coordinates correlation matrix C
has been created, which is divided by 2 subsamples C1

and C2.
Expected values are given below:

E S1
� �

=

Pn1

i= 1 S1
i

n1

ð2Þ

E(S2)=

Pn2

j= 1 S2
i

n2

ð3Þ

_S1
i = S1

i � E(S1), i= 1 . . . n1, ð4Þ
_S2

j = S2
j � E(S2), j= 1 . . . n2, ð5Þ

Correlation matrix ‘C’ can be given by

C1
i, j =

_S1
i

_S1
j

n1 � 1
ð6Þ

C2
i, j =

_S2
i S2

j

n2 � 1
ð7Þ

C =C1 +C2 ð8Þ

Classification result ‘y’ based on some input x

y=C E S1
� �

+E S2
� �� �

x� C

2
½E S1
� �2 � E S2

� �2� ð9Þ

Experiment

The mechatronic system together with BCI and the
AAN-based controller was tested on 10 healthy
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subjects and implemented with the usage of EEG sen-
sor, controller board on the upper limb robotic exoske-
leton which allows elbow flexion and extension
activities. The ethical approval has been received from
local Institutional Research Ethics committee. Methods
discussed in the previous section are used in conjunc-
tion with EEG software, which are exploited as main
preprocessing tool. This software is used to control the
servo motor, which is being used to actuate the upper
limb rehabilitation robot.

The principle of Mental Commands detection suite
operates in a following way. The brain sensor recog-
nizes user’s intention to perform certain physical action
by analyzing the brainwave activity. There are 12 vari-
ous actions that can be detected with the device, 6 of
which are directions (left, right, up, down, push, and
pull) and other 6 are rotations (forward, backward,
right, left, clockwise, and counterclockwise). In order
to assist subject’s thinking intention and motivate him,
animated virtual 3D (three-dimensional) cube is estab-
lished as shown in Figure 2, which moves away and
comes back.

The Mental Commands detection is activated by
training the assigned action and additional neutral
action. The proposed BCI in this experiment operates
in a following way.

At first, the connection between reading device and
a client server in the development environment is being
set. The initial data are necessary for the subsequent
development of the filter and classifier training. It is
necessary to approach responsibly and minimize the

factors distracting and dispelling the user’s attention,
since the training sample from the point of view of the
classifier is always reliable. User training is necessary to
improve the ability to concentrate on the current task.
As an initial reference, the proposed model uses ‘‘neu-
tral’’ state. It is one of the most important trainings,
because other trained Mental Commands are based on
the distinction from ‘‘neutral’’ state. It is recommended
to imagine mediation or reading process. During the
filter generation stage, direct user participation is not
required. A spatial filter allows to increase the quality
of the received signal by using other electrodes except
the directly located ones above the working area of the
brain. Classifier based on the method of LDA is used,
which divides the sample into two classes. The interface
makes analysis of input signals and creates personalized
patterns for each person. As neutral state is trained
first, newly measured Mental Commands can be
detected more precise.

For the training purpose, initially, appropriate
action is selected. Subsequently, it is required to start
visualizing correspondent action. In this work, ‘‘lift’’
action is required to be trained; therefore, the cube in
the display is lifted using thoughts. Application gives
training period (8 s), during which maximum focus on
action is performed by subjects. Experience shows that
additional gestures increase the accuracy of actions.
Finally, training recordings must be saved or rejected.
It is recommended to make several training trials for
each action to ensure successful data training.

The link of trained features with special keystrokes is
done in order to allow acquisition of outputs from soft-
ware and further translation to the controller by creat-
ing logical mapping according to Table 1.

Robotic orthosis design

The entire BCI system is used with an upper limb reha-
bilitation robot, which is actuated with the use of elec-
tric linear actuator (ELA) and controlled using brain
sensing and force sensing systems. The ELA is used as
a basic mechanism for controlling elbow movements.
To fix and guide the arm on a reference trajectory, sup-
porting aluminum mechanism was constructed in the
way as shown in Figure 3. Moreover, a movable closed

Table 1. Logical mapping.

Detected mental
command

Key assignment Action

‘‘Lift’’ Keystroke ‘‘a’’ Send ASCII decimal value of 97 to the terminal in order to force the motor rotation
‘‘Drop’’ Keystroke ‘‘b’’ Send ASCII decimal value of 98 to the terminal in order to force the motor rotation reversely

During the experiment, the ‘‘lift’’ and ‘‘drop’’ Mental Commands are used to control motor, which correspond to the flexion and extension of the

device, respectively.

Figure 2. Animated virtual 3D cube for training purposes.
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chain linkage was formed between robot and the actua-
tor, which positively affects the system. The closed
chain linkage allows the human joint to remain aligned
with the robot joint during various arm motions.
Thereby, it is ensured that there is no relative motion
between human joint and the robotic joint.

The experimental procedures relied on carrying out
elbow flexion/extension in the sagittal plane driven by
the upper limb robot (Figure 4(a)–(c)).

AAN paradigm

Traditional robotic arms are usually very bulky and
may exert very high torques, which can cause damage
to the users’ limbs. The present research aims to
develop a simple rehabilitation device, which can be
used to perform daily tasks and increase voluntary par-
ticipation of patients during rehabilitation therapy.
Hence, the resulting concept has to consider safety
measures and ease in delivering the treatment.

During the rehabilitation treatments, subject’s par-
ticipation is crucial, and therefore, the robotic assis-
tance should only be provided when a subject fails to
follow commanded trajectory with his or her capabil-
ities. This kind of approach is termed as assist-as-
needed control approach.31 In the present research, this
control goal is achieved through a simple scheme of
interaction force control.

The interaction force between the human limbs and
the robot is controlled using zero vector as the com-
manded force. A simple proportional controller used
for force control can also help in achieving backdriva-
bility in the actuation system. This further means that
the actuator can be driven backward with ease to pro-
vide safe human interaction.

The only source of compliance in the motor is from
the inherent belt drive, and thereby the actuator and
sensor can be modeled as two-mass system shown in
Figure 5. Here, xM and xs are the actual displacements
of the motor shaft and force sensor, the transmission

ratio of the ball screw inside motor is Gs = 2p=pitch,
mM is the mass of motor, the viscous friction acting on
the motor shaft is bM , and the interaction force between
the force sensor and the human subject’s limb is
denoted by Fint. Furthermore, the force sensor para-
meters are defined mass (ms), damping (bs), and stiff-
ness (ks). The dynamics of this system can be modeled
using equations (10) and (11)

mM s2 + bM + bsð Þs+ ks

� �
XM sð Þ

=Gstl sð Þ+ bss+ ksð ÞXs sð Þ
ð10Þ

Figure 3. Conceptual design of the upper limb rehabilitation
robot using ELA.

Figure 4. (a) ELA actuated upper limb rehabilitation robot, (b)
upper limb rehabilitation robot in use, and (c) robotic orthosis
in use with EEG sensor.

Figure 5. Illustration of interaction force with sensor and
motor parameters.
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mss
2 + bss+ ks

� �
Xs sð Þ= � Fint sð Þ+ bss+ ksð ÞXM sð Þ

ð11Þ

The overall force controller was implemented in joint
space for the elbow motions (Figure 6). The combined
dynamics of the robotic orthosis and human subject is
provided by

M uð Þ€u+C u, _u
� �

_u+G uð Þ= Trob � Tfr ð12Þ

Here, u, _u, and €u are vectors of generalized position,
velocity, and acceleration, respectively. M(u) is the system
mass matrix. C is a vector of centrifugal and Coriolis tor-
ques, and G is the vector of gravitational torques. Trob is
the vector of torques resulting from the forces (F) applied
by the robot actuator. The torque (Trob) from the robot
guides subject’s limb on reference trajectories. Tfr is the
frictional torque of the motor, which is compensated by
the method listed above along with Figure 5. The position
controller in Figure 6 works on the basis of a
proportional-derivative (PD) control law to generate the
Trob based on the trajectory tracking error. Reference tra-
jectories were defined based on the physiological elbow
trajectories reported by Oliveira et al.32

Owing to the application of this force controller with
zero vector as the commanded force, the robot is actu-
ated to maintain zero interaction force between robot
and the subject. This further means that if the subject
can apply force in either direction, the actuators will
move the robot in the same direction so as to achieve
zero commanded force. Nevertheless, the robot will not
be actuated if the subject cannot move his or her limbs.
In such a condition, when the subject cannot move
limbs and the robot is not moving, the BCI comes into
picture. The subject is asked to think of ‘‘lift’’ or
‘‘drop,’’ and this brain signal controls the motor as
explained in Step 6 of the ‘‘Experiment’’ section.

This proposed AAN approach allows performing
the elbow flexion and extension motions by the subjects
more voluntarily, allowing subject’s involvement in the
treatment for a quick recovery.

Results

As a result of the AAN approach implementation,
motor actuation was achieved in a desired manner. In

other words, whenever input ‘‘a’’ was entering monitor
board, the robot’s flexion motion was obtained, and for
a keystroke ‘‘b’’ on the monitor, extension motion was
obtained. The force controller to realize AAN approach
was also successfully implemented. Results from the
AAN approach are shown in Figure 7. The interaction
force variation with time during extension and flexion
trajectories (averaged for 10 healthy subjects) is shown
here. Since zero commanded force has been achieved
with less than 3% error, which is insignificant value to
be experienced by the user and therefore it means that
the user will not feel it. So, the controller is able to
achieve zero commanded force with some variation.

The average value of the interaction forces observed
over the time interval as shown in Figure 7 was found
to be Fint = 0:1515N for the nominal model
parameters.

Experiments of elbow flexion and extension using
BCI were conducted in two different ways. First, the
‘‘lift’’ and ‘‘drop’’ trainings were performed with the
cube on monitor using brain signals. Out of 50
attempts, only 39 attempts were executed correctly
(with 78% of accuracy). Correctness of experiments
was observed by counting printed keystrokes on the
monitor board. For ‘‘lift’’ action, left eye blink, and for
‘‘drop’’ action, right eye blink gestures were used. With
gesture included, the accuracy of brain signal reading
was increased to 88%.

Discussion and conclusion

An upper limb robot is proposed here which is con-
trolled using AAN-based approach and BCI augmen-
ted supervisory control action. The contribution of this
work is that it implemented and incorporated both BCI
and AAN controller into the robotic rehabilitation
device and see how they perform on human arm for the
training purposes. The implemented AAN scheme sup-
ports the elbow movements of subjects whenever there
is an intention/effort from a user to move the arm. The

Figure 6. Overall force controller implemented in joint space.

Figure 7. Resulting interaction force from the proposed force
controller implemented to achieve AAN control approach.
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user’s effort is captured through a force and pressure
sensitive sensors, and is termed as interaction force sig-
nal which is further used in a force controller. The force
controller works with commanded interaction force as
a zero vector, and thereby moves the robot in a direc-
tion to minimize the interaction force. Obviously, the
robot will be moved in the same direction as the subject
is trying to move in order to minimize the interaction
force. In this control mode, subjects can move the
robot actively while the robot behaves completely pas-
sive. Such approach is aimed at motivating the subject
to complete commanded trajectory with own efforts.
However, in case if the subject is not capable of moving
limbs at all, he or she is asked to think in terms of ‘‘lift’’
or ‘‘drop’’ signals which will activate the BCI system to
intervene. The robot, in BCI mode, actively completes
the trajectory in an assistive manner where the subject
is completely passive. This proposed approach has only
been tested on 10 healthy subjects, and satisfactory
results have been obtained. In general, AAN approach
is activated when the subject can move the limbs only
partially, in the case when limbs cannot be moved at all
due to different reasons, BCI approach comes into
handy, since it allows to direct subject’s limbs using
only brain signals as the input. During this work,
authors have reviewed existing approaches for solving
the problems of constructing BCIs. Introduction of
BCI and outline on types of sensing EEG signals have
been included. Details on EEG data processing are also
provided, including main steps as preprocessing, con-
struction of feature space, and classification.

Lately, authors have started working on advanced
learning algorithms such as deep learning to enhance
the accuracy of brain signal interpretation. The force
controller to achieve AAN paradigm needs further
work regarding its stability evaluation and robustness.
Therefore, the future work shall be carried out in these
two important directions besides design improvements
of the rehabilitation robot for increased flexibility and
increasing number of degrees of freedom; moreover
after the safety of the proposed system is ensured, it is
planned to test the system on subjects with impairments
in their limbs due to neurological or other disorders in
order to analyze the effects of current type of rehabili-
tation system with BCI and AAN control approach.
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