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Abstract
We consider fuzzy shunting inhibitory cellular neural networks (FSICNNs) with
time-varying coefficients and constant delays. By virtue of continuation theorem of
coincidence degree theory and Cauchy–Schwartz inequality, we prove the existence
of periodic solutions for FSICNNs. Furthermore, by employing a suitable Lyapunov
functional we establish sufficient criteria which ensure global exponential stability of
the periodic solutions. Numerical simulations that support the theoretical discussions
are depicted.
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1 Introduction and preliminaries
In the past three decades, the cellular neural networks (CNNs) have gained a lot of popu-
larity due to their local inter-connectivity and practical hardware implementation [1–8].
In terms of application viewpoint, the occurrence of time delays in CNNs is inevitable,
which may lead to oscillations of CNNs as well as instability of the networks. For instance,
when neural networks are implemented to the hardware there is time delay caused by the
finite switching speed of the amplifier circuits [9]. Thus, it is of utmost importance to deal
with delayed CNNs. On the other hand, one encounters to vagueness and lack of certainty
in many real world application problems and the CNNs are not exception in this regard.
The right instrument to deal with such problems is the so-called fuzzy logic theory which
gives mathematical strength to handle uncertainties. Since the 1980s, this approach has
been extensively applied to various engineering problems. However, it was only in 1996
Yang et al. introduced fuzzy cellular neural networks (FCNNs) in the series of papers [10,
11]. Along with pattern recognition and image processing, FCNNs play an essential role in
cognitive science since human cognition involve many uncertainties. For this reason, the
dynamics of FCNNs have been widely studied by many researchers. By means of direct
Lyapunov method, exponential stability of FCNNs with different types of delays, diffusion
and impulsive perturbations were established in many papers including [12–23]. Further-
more, the synchronization of FCNNs was considered in the studies [24–30]. On the other
hand, from an application point of view, one is interested in a periodic or an almost pe-
riodic solution of FCNNs. Thus, the problems concerning the existence and stability of
these solutions attracted many researchers and were investigated in the papers [31–34].
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A model of CNNs introduced by Bouzerdoum and Pinter [35] called shunting inhibitory
cellular neural networks (SICNNs) have been applied in different disciplines including
adaptive pattern recognition, psychophysics, image and signal processing, and cognitive
science amongst others. For instance, the authors in the study [36] show that in addition
to improving the color constancy of images, SICNNs fulfill contrast enhancement. Fur-
thermore, in the study carried out by Arulampalam and Bouzerdoum [37], SICNNs were
applied to medical diagnosis problems. In particular, these networks were used in medical
classification problems such as Wisconsin breast cancer and the Pima Indians diabetes. In
addition to these studies, there is a vast literature devoted to the asymptotic behavior of
SICNNs [38–44]. However, there is no study that deals with the fuzziness of the SICNNs.
Therefore, in the present article we propose to consider fuzzy shunting inhibitory cellular
neural networks (FSICNNs). This is the main motivation of this paper. We make use of
the continuation theorem of coincidence degree theory and Cauchy–Schwartz inequality
to prove the existence of a periodic solution. Further, we prove that the periodic solution
is globally exponentially stable. We verify our results by means of MATLAB software. It
worth nothing to mention that the results can be validated by software like Maple, Python
or Mathematica. The results of the present paper are highlighted below.

• Time-dependent coefficients and constant delays are taken into account in the
stability analysis of FSICNNs.

• Sufficient conditions for the existence of periodic solutions to FSICNNs are derived by
means of coincidence degree theory and inequality techniques like Cauchy–Schwartz
inequality.

• Sufficient conditions for the for the global exponential stability of the periodic
solutions to FSICNNs are derived.

• Numerical simulations which support the theoretical results are given.
In the present paper, we consider the description of the FSICNN in the following form:

ẋij(t) = –aij(t)xij(t) –
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl(t)

)
xij(t) + Lij(t)

+
∑

Ckl∈Nr(i,j)

Bkl
ij (t)Uij(t) –

∧

Ckl∈Nr(i,j)

Dkl
ij (t)f

(
xkl(t – τkl)

)
xij(t)

–
∨

Ckl∈Nr(i,j)

Ekl
ij (t)f

(
xkl(t – τkl)

)
xij(t) +

∧

Ckl∈Nr(i,j)

Tkl
ij (t)Uij(t)

+
∨

Ckl∈Nr(i,j)

Hkl
ij (t)Uij(t), (1)

where Cij, i = 1, 2, . . . , m, j = 1, 2, . . . , n, denote the cell at the (i, j) position of the lattice,
the r-neighborhood of Cij is Nr(i, j) = {Ckl : max{|k – i|, |l – j|} ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n},
xij represent the activity of the cell Cij at time t; the positive functions aij(t) are the pas-
sive decay rate of the cell activity; Uij(t) are the external input whereas Lij(t) are the ex-
ternal bias on the (i, j)th cell; the nonnegative functions Ckl

ij (t), Dkl
ij (t), Ekl

ij (t), Tkl
ij (t), and

Hkl
ij (t) are the connection or coupling strength of the postsynaptic activity, the fuzzy feed-

back MIN template, fuzzy feedback MAX template, fuzzy feed forward MIN template,
and fuzzy feed forward MAX template of the cell Ckl transmitted to the cell Cij at time
t, respectively;

∧
is the fuzzy AND operation whereas

∨
is the fuzzy OR operation; the

functions f (xkl) represent the measures of activation to the output or firing rate of the
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cell Ckl ; and τkl correspond to the transmission delay along the axon of the (k, l)th cell
from the (i, j)th cell, f (x) = (f11(x), . . . , f1n(x), . . . , fm1(x), . . . , fmn(x))T , Γ1 = {1, 2, . . . , m} and
Γ2 = {1, 2, . . . , n}.

We consider the network (1) subject to initial data

xij(s) = ρij(s), s ∈ [–τ , 0], (2)

where ρij(s) is the real-valued continuous function and τ = max1≤k≤m
1≤l≤n

{τkl}.

The following notations will be used in the paper: ‖x‖ = sup–τ≤s≤0 |x(s)| is the norm in
C([–τ , 0],R), where C(A, B) is a set of continuous mappings from the space A to the space
B, g = maxt∈[0,ω]{g(t)}, g = mint∈[0,ω]{g(t)}, and g̃ = 1

ω

∫ ω

0 g(t) dt. Further, let C be a normed
vector space then DomC, ImC and KerC stand for the domain, image and kernel of the
normed vector space C, respectively.

Throughout the paper we will need the following assumptions.
(A1) The functions aij(t), Bkl

ij (t), Ckl
ij (t), Dkl

ij (t), Ekl
ij (t), Hkl

ij (t), Tkl
ij (t), Lij(t) and Uij(t) are

continuous ω-periodic functions for i, k ∈ Γ1, j, l ∈ Γ2.
(A2) The function f (·) is Lipschitz continuous on R with Lipschitz constants Lf and

satisfy f (0) = 0, i.e., |f (x) – f (y)| ≤ Lf |x – y|.
(A3) There exist constants M and m such that m ≤ |f (x)| ≤ M.
In order to show that there exists at least one periodic solution for the network (1),

we utilize the continuation theorem of coincidence degree theory. Now, let us briefly
summarize the technique introduced by Gaines and Mawhin in [45]. Consider normed
vector spaces X and Z. Suppose that U is a linear mapping such that DomU ⊂ X → Z

and V : X → Z is a continuous mapping. If dim KerU = Co dim ImU < ∞ and ImU is
closed in Z then U is called a Fredholm mapping with index zero. For this case, there
exist continuous projectors A : X → X and B : Z → Z which satisfy ImA = KerU , and
KerB = ImU = Im(I – B). Then one can show that U |DomU∩KerA : (I – A)X → ImU is in-
vertible. For the convenience of the reader, denote the inverse mapping by NA. If O is any
open bounded subset of X, then the mapping V is called L-compact on O if BV(O) is
bounded and NA(I – B)V : O →X is compact. Further, one can show that there exists an
isomorphism F : ImB → KerU since ImB is isomorphic to KerU .

Now, we are in the position to state the following lemma which will be useful in what
follows.

Lemma 1.1 ([45]) Consider two normed spaces X and Z and let U : DomU ⊂X → Z be a
Fredholm operator with index zero. O is an open bounded subset of X and V : X → Z is a
continuous L-compact operator on O. Suppose that the following conditions hold true.

(i) Ux 	= μVx for each μ ∈ (0, 1), and x ∈ DomU ∩ ∂O;
(ii) BVx 	= 0 for each x ∈ KerU ∩ ∂O;

(iii) deg{FBV , KerU ∩O, 0} 	= 0;
then the operator equation Ux = Vx has at least one solution in DomU ∩O.

In the sequel, we will need the following auxiliary lemma. The proof of the lemma is
omitted since it can be easily shown by means of the result obtained by Yang et al. [46].
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Lemma 1.2 Assume that x, y ∈ R are solutions of the network (1). Then the following in-
equalities hold true:

∣∣∣∣
∧

Ckl∈Nr(i,j)

Dkl
ij (t)fij(x) –

∧

Ckl∈Nr(i,j)

Dkl
ij (t)fij(y)

∣∣∣∣

≤
∑

Ckl∈Nr(i,j)

∣∣Dkl
ij (t)

∣∣∣∣fij(x) – fij(y)
∣∣

and
∣∣∣∣

∨

Ckl∈Nr(i,j)

Ekl
ij (t)fij(x) –

∨

Ckl∈Nr(i,j)

Ekl
ij (t)fij(y)

∣∣∣∣

≤
∑

Ckl∈Nr(i,j)

∣∣Ekl
ij (t)

∣∣∣∣fij(x) – fij(y)
∣∣.

2 Existence and uniqueness of solutions
In the present section, we prove the local existence and uniqueness of solutions to
(1)–(2) by means of Banach fixed point theorem. To this end, set a = maxi,j aij,
δ = maxi,j(

∑
Ckl∈Nr(i,j) Ckl

ij +
∑

Ckl∈Nr(i,j) Dkl
ij +

∑
Ckl∈Nr(i,j) Ekl

ij ) and γ = maxi,j(Lij +
∑

Ckl∈Nr(i,j) Bkl
ij Uij +

∑
Ckl∈Nr(i,j) Tkl

ij Uij +
∑

Ckl∈Nr(i,j) HijUij).
One can show that a function x(t) = {xij(t)} is a solution of the system (1)–(2) if and only

if the following integral equation is satisfied:

xij(t) = ρij(0) +
∫ t

0

(
–aij(s)xij(s) –

∑

Ckl∈Nr(i,j)

Ckl
ij (s)f

(
xkl(s)

)
xij(s) + Lij(s)

+
∑

Ckl∈Nr(i,j)

Bkl
ij (s)Uij(s) –

∧

Ckl∈Nr(i,j)

Dkl
ij (s)f

(
xkl(s – τkl)

)
xij(s)

–
∨

Ckl∈Nr(i,j)

Ekl
ij (s)f

(
xkl(s – τkl)

)
xij(s)

+
∧

Ckl∈Nr(i,j)

Tkl
ij (s)Uij(s) +

∨

Ckl∈Nr(i,j)

Hkl
ij (s)Uij(s)

)
ds, t ≥ 0.

Theorem 2.1 Assume that conditions (A1)–(A3) hold, then the system (1)–(2) has a
unique solution.

Proof In order to prove the local existence and uniqueness we consider all functions xij(t)
on [–τ ,σ ] that satisfy xij(t) = ρij(t) on [–τ , 0] and ‖xij(t) – ρij(t)‖ ≤ K on (0,σ ]. Let us
introduce a Banach space C0 to be all functions in C([–τ ,σ ];R) such that ‖xij – ρij‖ ≤ K .
Define an operator Π on C0 as follows:

(Πx)ij(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρij(t), t < 0,

ρij(0) +
∫ t

0 (–aij(s)xij(s) –
∑

Ckl∈Nr(i,j) Ckl
ij (s)f (xkl(s))xij(s)

+ Lij(s) +
∑

Ckl∈Nr(i,j) Bkl
ij (s)Uij(s) –

∧
Ckl∈Nr(i,j) Dkl

ij (s)f (xkl(s – τkl))xij(s)

–
∨

Ckl∈Nr(i,j) Ekl
ij (s)f (xkl(s – τkl))xij(s)

+
∧

Ckl∈Nr(i,j) Tkl
ij (s)Uij(s) +

∨
Ckl∈Nr(i,j) Hkl

ij (s)Uij(s)) ds, t ≥ 0.
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We begin by showing that Π maps C0 into itself. Indeed,

∣∣(Πx)ij(t) – ρij(0)
∣∣

≤
∫ t

0

(∣∣aij(s)
∣∣∣∣xij(s)

∣∣ +
∑

Ckl∈Nr(i,j)

∣∣Ckl
ij (s)

∣∣∣∣f
(
xkl(s)

)∣∣∣∣xij(s)
∣∣

+
∣∣Lij(s)

∣∣ +
∑

Ckl∈Nr(i,j)

∣∣Bkl
ij (s)

∣∣∣∣Uij(s)
∣∣ +

∧

Ckl∈Nr(i,j)

∣∣Dkl
ij (s)

∣∣∣∣f
(
xkl(s – τkl)

)∣∣∣∣xij(s)
∣∣

+
∨

Ckl∈Nr(i,j)

∣∣Ekl
ij (s)

∣∣∣∣f
(
xkl(s – τkl)

)∣∣∣∣xij(s)
∣∣

+
∧

Ckl∈Nr(i,j)

∣∣Tkl
ij (s)

∣∣∣∣Uij(s)
∣∣ +

∨

Ckl∈Nr(i,j)

∣∣Hkl
ij (s)

∣∣∣∣Uij(s)
∣∣
)

ds

≤
∫ t

0

(
aijK +

∑

Ckl∈Nr(i,j)

Ckl
ij MK + Lij +

∑

Ckl∈Nr(i,j)

Bkl
ij Uij +

∑

Ckl∈Nr(i,j)

Dkl
ij MK

+
∑

Ckl∈Nr(i,j)

Ekl
ij MK +

∑

Ckl∈Nr(i,j)

Tkl
ij Uij +

∑

Ckl∈Nr(i,j)

HijUij

)
ds

≤ σ (aK + MKδ + γ ).

We can choose σ such that σ (aK + MKδ +γ ) ≤ K . Thus, the last inequality yields Π (C0) ⊆
C0.

On the other hand, for any x(t), y(t) ∈ C0 one can show that the following inequality
hold’s:

∣∣(Πx)ij(t) – (Πy)ij(t)
∣∣

≤
∫ t

0

(∣∣aij(s)
∣∣∣∣xij(s) – yij(s)

∣∣

+
∑

Ckl∈Nr(i,j)

∣∣Ckl
ij (s)

∣∣∣∣f
(
xkl(s)

)
xij(s) – f

(
ykl(s)

)
yij(s)

∣∣

+
∧

Ckl∈Nr(i,j)

∣∣Dkl
ij (s)

∣∣∣∣f
(
xkl(s – τkl)

)
xij(s) – f

(
ykl(s – τkl)

)
yij(s)

∣∣

+
∨

Ckl∈Nr(i,j)

∣∣Ekl
ij (s)

∣∣∣∣f
(
xkl(s – τkl)

)
xij(s) – f

(
ykl(s – τkl)

)
yij(s)

∣∣
)

ds

≤
∫ t

0

(∣∣aij(s)
∣∣∣∣xij(s) – yij(s)

∣∣ +
∑

Ckl∈Nr(i,j)

Ckl
ij
∣∣f

(
xkl(s)

)
xij(s) – f

(
ykl(s)

)
xij(s)

∣∣

+
∑

Ckl∈Nr(i,j)

Ckl
ij
∣∣f

(
ykl(s)

)
xij(s) – f

(
ykl(s)

)
yij(s)

∣∣

+
∑

Ckl∈Nr(i,j)

Dkl
ij
∣∣f

(
xkl(s – τkl)

)
xij(s) – f

(
ykl(s – τkl)

)
xij(s)

∣∣

+
∑

Ckl∈Nr(i,j)

Dkl
ij
∣∣f

(
ykl(s – τkl)

)
xij(s) – f

(
ykl(s – τkl)

)
yij(s)

∣∣
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+
∑

Ckl∈Nr(i,j)

Ekl
ij
∣∣f

(
xkl(s – τkl)

)
xij(s) – f

(
ykl(s – τkl)

)
xij(s)

∣∣

+
∑

Ckl∈Nr(i,j)

Ekl
ij
∣∣f

(
ykl(s – τkl)

)
xij(s) – f

(
ykl(s – τkl)

)
yij(s)

∣∣
)

ds

≤
∫ t

0

(∣∣aij(s)
∣∣∣∣xij(s) – yij(s)

∣∣ +
∑

Ckl∈Nr(i,j)

Ckl
ij M

∣∣xij(s) – yij(s)
∣∣

+
∑

Ckl∈Nr(i,j)

Ckl
ij KLf ∣∣xij(s) – yij(s)

∣∣ +
∑

Ckl∈Nr(i,j)

Dkl
ij M

∣∣xij(s) – yij(s)
∣∣

+
∑

Ckl∈Nr(i,j)

Dkl
ij KLf ∣∣xij(s – τkl) – yij(s – τkl)

∣∣ +
∑

Ckl∈Nr(i,j)

Ekl
ij M

∣∣xij(s) – yij(s)
∣∣

+
∑

Ckl∈Nr(i,j)

Ekl
ij KLf ∣∣xij(s – τkl) – yij(s – τkl)

∣∣
)

ds

≤ σ
(
a + δ

(
M + KLf )) sup

t≥–τ

∣∣xij(s) – yij(s)
∣∣ = sup

t≥–τ

∣∣xij(s) – yij(s)
∣∣.

We can further choose σ such that σ (a + δ(M + KLf )) < 1. Thus, we have ‖Πx – Πy‖ ≤
σ (a + δ(M + KLf ))‖x – y‖ < ‖x – y‖ yielding the operator Π is contractive. Consequently,
the Banach fixed point theorem implies that the system (1)–(2) has a unique solution. �

3 Existence of periodic solutions
In the present section, we prove the existence of periodic solutions of the network (1)
by using the continuation theorem described in the previous section. That is, we utilize
Lemma 1.1 to prove the existence of an ω-periodic solution.

Theorem 3.1 Suppose that conditions (A1)–(A3) hold true, then the network (1)–(2) has
at least one ω-periodic solution.

Proof Set X = Z = {s(t) ∈ C(R,Rmn), s(t + ω) = s(t)} equipped with the norm ‖s‖ω =
max[0,ω]

∑
i,j |sij(t)|. It can be easily seen that X and Z are Banach spaces with the norm

‖s‖ω . Now, let us define Us = ds(t)
dt = ṡ, where DomU = C1(X,X) and further define pro-

jectors A as Ax = 1
ω

∫ ω

0 x(t) dt, x ∈ X, and B as Bs = 1
ω

∫ ω

0 s(t) dt, s ∈ Z, and the mapping
V : X →X as

Vxij(t) = –aij(t)xij(t) –
∑

Ckl∈Nr(i,j)

Ckl
ij (t)fij

(
xkl(t)

)
xij(t)

+ Lij(t) +
∑

Ckl∈Nr(i,j)

Bkl
ij (t)Uij(t)

–
∧

Ckl∈Nr(i,j)

Dkl
ij (t)fij

(
xkl(t – τkl)

)
xij(t)

–
∨

Ckl∈Nr(i,j)

Ekl
ij (t)fij

(
xkl(t – τkl)

)
xij(t)

+
∧

Ckl∈Nr(i,j)

Tkl
ij (t)Uij(t) +

∨

Ckl∈Nr(i,j)

Hkl
ij (t)Uij(t). (3)
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One can verify that ImU = {s|s ∈ Z :
∫ ω

0 s(t) dt = 0} and KerU = R
mn. Thus, it follows that

Co dim ImU = dim KerU = mn and ImU is closed in Z. Therefore, all these imply that U
is a Fredholm mapping with index zero. By the choice of projectors A and B we have
ImA = KerU and KerB = Im(I –B) = ImU . Moreover, one can see that the inverse to U is
defined as NA : ImU → DomU ∩ KerA with NA(s) =

∫ ω

0 s(l) dl – 1
ω

∫ ω

0
∫ t

0 s(l) dl dt. Clearly,
both BV and NA(I – B)V are continuous mappings. Finally, by virtue of Ascoli–Arzela
lemma one can easily show that BV(O) and NA(I – B)V(O) are relatively compact for
an open and bounded O subset of X. Thus, it follows that for any open and bounded set
O ⊂X the mapping V is L-compact on O.

Now, it remains to find an open and bounded set O subset of X to apply Lemma 1.1.
Thus, for each μ ∈ (0, 1) the operator equation Ux = μVx yields

ẋij(t) = μ

[
–aij(t)xij(t) –

∑

Ckl∈Nr(i,j)

Ckl
ij (t)fij

(
xkl(t)

)
xij(t)

+ Lij(t) +
∑

Ckl∈Nr(i,j)

Bkl
ij (t)Uij(t)

–
∧

Ckl∈Nr(i,j)

Dkl
ij (t)fij

(
xkl(t – τkl)

)
xij(t)

–
∨

Ckl∈Nr(i,j)

Ekl
ij (t)fij

(
xkl(t – τkl)

)
xij(t)

+
∧

Ckl∈Nr(i,j)

Tkl
ij (t)Uij(t) +

∨

Ckl∈Nr(i,j)

Hkl
ij (t)Uij(t)

]
. (4)

Next, after multiplying the system (4) with xij(t) and integrating over the period, we de-
rive

0 =
1
2
(
x2

ij(ω) – x2
ij(0)

)
=

∫ ω

0
xij(t)ẋij(t) dt

= μ

{
–

∫ ω

0
aij(t)x2

ij(t) dt

–
∫ ω

0

∑

Ckl∈Nr(i,j)

Ckl
ij (t)fij

(
xkl(t)

)
x2

ij(t) dt

–
∫ ω

0

∧

Ckl∈Nr(i,j)

Dkl
ij (t)fij

(
xkl(t – τkl)

)
x2

ij(t) dt

–
∫ ω

0

∨

Ckl∈Nr(i,j)

Ekl
ij (t)fij

(
xkl(t – τkl)

)
x2

ij(t) dt

+
∫ ω

0

∑

Ckl∈Nr(i,j)

Bkl
ij (t)Uij(t)xij(t) dt

+
∫ ω

0

∧

Ckl∈Nr(i,j)

Tkl
ij (t)Uij(t)xij(t) dt
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+
∫ ω

0

∨

Ckl∈Nr(i,j)

Hkl
ij (t)Uij(t)xij(t) dt

+
∫ ω

0
Lij(t)xij(t) dt

}
. (5)

By means of the condition (A3), and Lemma 1.2 we get the following inequality:

(
aij +

∑

Ckl∈Nr(i,j)

Ckl
ij m + Dkl

ij m + Ekl
ij m

)∫ ω

0

∣∣x2
ij(t)

∣∣dt

≤
∫ ω

0

∣∣Lij(t)
∣∣∣∣xij(t)

∣∣dt

+
∫ ω

0

∑

Ckl∈Nr(i,j)

∣∣Bkl
ij (t)

∣∣∣∣Uij(t)
∣∣∣∣xij(t)

∣∣dt

+
∫ ω

0

∧

Ckl∈Nr(i,j)

∣∣Tkl
ij (t)

∣∣∣∣Uij(t)
∣∣∣∣xij(t)

∣∣dt

+
∫ ω

0

∨

Ckl∈Nr(i,j)

∣∣Hkl
ij (t)

∣∣∣∣Uij(t)
∣∣∣∣xij(t)

∣∣dt

≤
[

Lij +
∑

Ckl∈Nr(i,j)

Bkl
ij Uij +

(
Tkl

ij + Hkl
ij
)
Uij

]∫ ω

0

∣∣xij(t)
∣∣dt. (6)

The Cauchy–Schwarz inequality yields
∫ ω

0 |xij(t)|dt ≤ √
ω(

∫ ω

0 |xij(t)|2 dt) 1
2 .

Then we get

(∫ ω

0

∣∣xij(t)
∣∣2 dt

) 1
2 ≤ 1

Gij

(
Lij +

∑

Ckl∈Nr(i,j)

Bkl
ij Uij +

(
Tkl

ij + Hkl
ij
)
Uij

)√
ω = Qij, (7)

where Gij = aij +
∑

Ckl∈Nr(i,j) Ckl
ij (t)m + Dkl

ij (t)m + Ekl
ij (t)m. Now, let β ∈ [0,ω] such that

|xij(β)| = mint∈[0,ω] |xij(t)|. Then, using (7) and the Cauchy–Schwarz inequality once again,
we get the inequality

∣∣xij(β)
∣∣ω =

∣∣xij(β)
∣∣
∫ ω

0
dt ≤

∫ ω

0

∣∣xij(t)
∣∣dt

≤
(∫ ω

0
12 dt

) 1
2
(∫ ω

0

∣∣xij(t)
∣∣2 dt

) 1
2 ≤ √

ωQij.

Hence,

∣∣xij(β)
∣∣ ≤ Qij√

ω
. (8)

Using (8) and xij(t) = xij(β) +
∫ t
β

ẋij(t) dt, we have

∣∣xij(t)
∣∣ ≤ Qij√

ω
+

∫ ω

β

∣∣ẋij(t)
∣∣dt. (9)
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On the other hand, we have
∫ ω

β

∣∣ẋ(t)
∣∣dt ≤

∫ ω

0

∣∣aij(t)
∣∣∣∣xij(t)

∣∣dt +
∫ ω

0

∣∣Lij(t)
∣∣dt

+
∫ ω

0

∑

Ckl∈Nr(i,j)

∣∣Ckl
ij (t)

∣∣∣∣fij
(
xkl(t)

)∣∣∣∣xij(t)
∣∣dt

+
∫ ω

0

∑

Ckl∈Nr(i,j)

∣∣Bkl
ij (t)

∣∣∣∣Uij(t)
∣∣dt

+
∫ ω

0

∧

Ckl∈Nr(i,j)

∣∣Dkl
ij (t)

∣∣∣∣fij
(
xkl(t – τkl)

)∣∣∣∣xij(t)
∣∣dt

+
∫ ω

0

∨

Ckl∈Nr(i,j)

∣∣Ekl
ij (t)

∣∣∣∣fij
(
xkl(t – τkl)

)∣∣∣∣xij(t)
∣∣dt

+
∫ ω

0

∧

Ckl∈Nr(i,j)

∣∣Tkl
ij (t)

∣∣∣∣Uij(t)
∣∣dt

+
∫ ω

0

∨

Ckl∈Nr(i,j)

∣∣Hkl
ij (t)

∣∣∣∣Uij(t)
∣∣dt

≤
(∫ ω

0

∣∣aij(t)
∣∣2 dt

) 1
2
(∫ ω

0

∣∣xij(t)
∣∣2 dt

) 1
2

+ ωLij

+
∑

Ckl∈Nr(i,j)

Ckl
ij

(∫ ω

0

∣∣fij
(
xkl(t)

)∣∣2 dt
) 1

2
(∫ ω

0

∣∣xij(t)
∣∣2 dt

) 1
2

+
∑

Ckl∈Nr(i,j)

Bkl
ij
√

ω

(∫ ω

0

∣∣Uij(t)
∣∣2 dt

) 1
2

+
∑

Ckl∈Nr(i,j)

Dkl
ij

(∫ ω

0

∣∣fij
(
xkl(t – τkl)

)∣∣2 dt
) 1

2
(∫ ω

0

∣∣xij(t)
∣∣2 dt

) 1
2

+
∑

Ckl∈Nr(i,j)

Ekl
ij

(∫ ω

0

∣∣fij
(
xkl(t – τkl)

)∣∣2 dt
) 1

2
(∫ ω

0

∣∣xij(t)
∣∣2 dt

) 1
2

+ ω
∑

Ckl∈Nr(i,j)

(
Tkl

ij + Hkl
ij
)
Uij

≤ √
ω · aijQij

+ ωLij +
√

ω
∑

Ckl∈Nr(i,j)

Ckl
ij MQij +

√
ω

∑

Ckl∈Nr(i,j)

Bkl
ij Uij

+
√

ω
(
Dkl

ij + Ekl
ij
)
MQij + ω

∑

Ckl∈Nr(i,j)

(
Tkl

ij + Hkl
ij
)
Uij

= Vij.

Thus, it follows from (9) that

∣∣xij(t)
∣∣ ≤ Qij√

ω
+ Vij = Sij. (10)
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Denote P =
∑

(i,j) Sij + Q, where Q > 0 is chosen so that the following inequality is sat-
isfied: min1≤i≤m

1≤j≤n
(̃aij + C̃kl

ij m + D̃kl
ij m + Ẽkl

ij m)P > mn max1≤i≤m
1≤j≤n

(|̃Lij| +
∑

Ckl∈Nr(i,j) |Bkl
ij ||Uij| +

∑
Ckl∈Nr(i,j) |Tkl

ij ||Uij| +
∑

Ckl∈Nr(i,j) |Hkl
ij ||Uij|).

If we choose O = {x ∈ R
mn|‖x‖ω < P}, then O ⊂ X is an open and bounded set. Further,

one can show that O fulfills the condition (i) of Lemma 1.1.
Next, let us verify the condition (ii) of Lemma 1.1. That is, we need to show that BVx 	= 0.

If x ∈ KerU ∩ ∂O then x ∈R
mn is a constant vector and satisfies ‖x‖ω = |x11| + · · · + |x1n| +

· · · + |xm1| + · · · + |xmn| = P. Therefore, we have

BVx = –̃aijxij –
∑

Ckl∈Nr(i,j)

C̃kl
ij fij(xkl)xij + L̃ij

+
∑

Ckl∈Nr(i,j)

˜Bkl
ij Uij –

∧

Ckl∈Nr(i,j)

D̃kl
ij fij(xkl)xij

–
∨

Ckl∈Nr(i,j)

Ẽkl
ij fij(xkl)xij +

∧

Ckl∈Nr(i,j)

˜Tkl
ij Uij

+
∨

Ckl∈Nr(i,j)

˜Hkl
ij Uij.

The last expression yields

‖BVx‖ω =
∑

(i,j)

∣∣∣∣̃aijxij +
∑

Ckl∈Nr(i,j)

C̃kl
ij fij(xkl)xij – L̃ij

–
∑

Ckl∈Nr(i,j)

˜Bkl
ij Uij +

∧

Ckl∈Nr(i,j)

D̃kl
ij fij(xkl)xij

+
∨

Ckl∈Nr(i,j)

Ẽkl
ij fij(xkl)xij –

∧

Ckl∈Nr(i,j)

˜Tkl
ij Uij

–
∨

Ckl∈Nr(i,j)

˜Hkl
ij Uij

∣∣∣∣

≥
∑

(i,j)

∣∣∣∣aijxij +
∑

Ckl∈Nr(i,j)

C̃kl
ij fij(xkl)xij

+
∧

Ckl∈Nr(i,j)

D̃kl
ij fij(xkl)xij +

∨

Ckl∈Nr(i,j)

Ẽkl
ij fij(xkl)xij

∣∣∣∣

–
∑

(i,j)

∣∣∣∣̃Lij +
∑

Ckl∈Nr(i,j)

˜Bkl
ij Uij +

∧

Ckl∈Nr(i,j)

˜Tkl
ij Uij

+
∨

Ckl∈Nr(i,j)

˜Hkl
ij Uij

∣∣∣∣

≥ min
1≤i≤m
1≤j≤n

(
ãij + C̃kl

ij m + D̃kl
ij m + Ẽkl

ij m
)∑

(i,j)

|xij|

– max
1≤i≤m
1≤j≤n

mn
(

|̃Lij| +
∑

Ckl∈Nr(i,j)

∣∣Bkl
ij
∣∣|Uij|
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+
∑

Ckl∈Nr(i,j)

∣∣Tkl
ij
∣∣|Uij| +

∑

Ckl∈Nr(i,j)

∣∣Hkl
ij
∣∣|Uij|

)

> 0,

by the choice of P. Thus, for any x ∈ KerU ∩ ∂O, we have BVx 	= 0 which validates the
requirement (ii) of Lemma 1.1.

Finally, consider homotopic Φ(x11, . . . , x1n, . . . , xm1 . . . , xmn,λ) = λBVx + (1 – λ)Gx, where
λ ∈ [0, 1] and Gx = (–̃a11x11, . . . , –̃a1nx1n, . . . , –̃am1xm1 . . . , –̃amnxmn)T . SettingF = I one can
easily show that

deg
{
FBV(x11, . . . , x1n, . . . , xm1 . . . , xmn)T , KerU ∩O, 0

}

= sgn
{

(–1)mnã11 . . . ã1n . . . ãm1 . . . ãmn
} 	= 0.

Thus, the final requirement (iii) of Lemma 1.1 is also verified. As a result,O fulfills all of the
necessities of Lemma 1.1. Consequently, the operator equation Ux = Vx has at least one
solution in DomU ∩O which in turn implies that the network (1) has ω-periodic solution.
This is the end of the proof. �

4 Stability
This part of the paper is devoted to the uniqueness and stability analysis of the periodic
solutions. That is, we prove that there is a unique ω-periodic solution of the network (1)
and further prove that it is globally exponentially stable under a suitable condition. We
assume the following condition holds.

(A4) aij – M(
∑

Ckl∈Nr(i,j) Ckl
ij +

∑
Ckl∈Nr(i,j) Dkl

ij +
∑

Ckl∈Nr(i,j) Ekl
ij ) – SijLij(

∑
Ckl∈Nr(i,j) Ckl

ij +
∑

Ckl∈Nr(i,j) Dkl
ij +

∑
Ckl∈Nr(i,j) Ekl

ij ) > 0.

Theorem 4.1 If the conditions (A1)–(A4) are fulfilled, then the network (1) has a unique
globally exponentially stable ω-periodic solution.

Proof In the previous section, we have shown that the network (1) has an ω-periodic solu-
tion. Let us consider arbitrary two solutions of the network (1) x(t) = (x11(t), . . . , x1n(t), . . . ,
xm1(t) . . . , xmn(t)) and y(t) = (y11(t), . . . , y1n(t), . . . , ym1(t) . . . , ymn(t)) with the initial condi-
tions x(s) = ρ(s), s ∈ [–τ , 0], and y(s) = ξ (s), s ∈ [–τ , 0], respectively. It is straightfor-
ward that the uniqueness of the solution for the network (1) is followed by global ex-
ponential stability. Hence, we only need to show that x(t) is globally exponentially sta-
ble. By the condition (A4), one can find α > 0 so that the following inequality holds
true: α – aij + M(

∑
Ckl∈Nr(i,j) Ckl

ij +
∑

Ckl∈Nr(i,j) Dkl
ij +

∑
Ckl∈Nr(i,j) Ekl

ij ) + SijLf (
∑

Ckl∈Nr(i,j) Ckl
ij +

eατ
∑

Ckl∈Nr(i,j) Dkl
ij + eατ

∑
Ckl∈Nr(i,j) Ekl

ij ) < 0.
We design a Lyapunov functional W (t) = W1(t) + W2(t), given by
W1(t) =

∑
(i,j) |xij(t) – yij(t)|eαt , and

W2(t) =
∑

(i,j)

Sij

( ∑

Ckl∈Nr(i,j)

Dkl
ij +

∑

Ckl∈Nr(i,j)

Ekl
ij

)

×
∫ t

t–τkl

∣∣fij
(
xkl(s)

)
– fij

(
ykl(s)

)∣∣eα(s+τkl) ds.
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Let us calculate upper right Dini derivatives of W1(t) and W2(t) along the trajectories of
the network (1), respectively:

d+W1(t)
dt

≤
∑

(i,j)

[(
–aij(t)

∣∣xij(t) – yij(t)
∣∣

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

∣∣fij
(
xkl(t)

)
xij(t) – fij

(
ykl(t)

)
yij(t)

∣∣

+
∧

Ckl∈Nr(i,j)

Dkl
ij (t)

∣∣fij
(
xkl(t – τkl)

)
xij(t)

– fij
(
ykl(t – τkl)

)
yij(t)

∣∣

+
∨

Ckl∈Nr(i,j)

Ekl
ij (t)

∣∣fij
(
xkl(t – τkl)

)
xij(t)

– fij
(
ykl(t – τkl)

)
yij(t)

∣∣
)

eαt + α
∣∣xij(t) – yij(t)

∣∣eαt
]

≤ eαt
∑

(i,j)

[
(α – aij)

∣∣xij(t) – yij(t)
∣∣

+
∑

Ckl∈Nr(i,j)

Ckl
ij
(∣∣fij

(
xkl(t)

)∣∣∣∣xij(t) – yij(t)
∣∣

+
∣∣fij

(
xkl(t)

)
– fij

(
ykl(t)

)∣∣∣∣ykl(t)
∣∣)

+
( ∑

Ckl∈Nr(i,j)

Dkl
ij +

∑

Ckl∈Nr(i,j)

Ekl
ij

)

× (∣∣fij
(
xkl(t – τkl)

)∣∣∣∣xij(t) – yij(t)
∣∣

+
∣∣fij

(
xkl(t – τkl)

)
– fij

(
ykl(t – τkl)

)∣∣∣∣ykl(t)
∣∣)

]

≤ eαt
∑

(i,j)

[
(α – aij)

∣∣xij(t) – yij(t)
∣∣

+
∑

Ckl∈Nr(i,j)

Ckl
ij
(
M

∣∣xij(t) – yij(t)
∣∣

+
∣∣fij

(
xkl(t)

)
– fij

(
ykl(t)

)∣∣Sij
)

+
( ∑

Ckl∈Nr(i,j)

Dkl
ij +

∑

Ckl∈Nr(i,j)

Ekl
ij

)

× (
M

∣∣xij(t) – yij(t)
∣∣

+
∣∣fij

(
xkl(t – τkl)

)
– fij

(
ykl(t – τkl)

)∣∣Sij
)]

≤ eαt
∑

(i,j)

[(
α – aij + M

( ∑

Ckl∈Nr(i,j)

Ckl
ij

+
∑

Ckl∈Nr(i,j)

Dkl
ij +

∑

Ckl∈Nr(i,j)

Ekl
ij

))∣∣xij(t) – yij(t)
∣∣
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+ Sij

(
Lf

∑

Ckl∈Nr(i,j)

Ckl
ij
∣∣xkl(t) – ykl(t)

∣∣ +
( ∑

Ckl∈Nr(i,j)

Dkl
ij

+
∑

Ckl∈Nr(i,j)

Ekl
ij

)∣∣fij
(
xkl(t – τkl)

)
– fij

(
ykl(t – τkl)

)∣∣
)]

,

d+W2(t)
dt

= eαt
∑

(i,j)

Sij

( ∑

Ckl∈Nr(i,j)

Dkl
ij +

∑

Ckl∈Nr(i,j)

Ekl
ij

)

× [∣∣fij
(
xkl(t)

)
– fij

(
ykl(t)

)∣∣eατkl

–
∣∣fij

(
xkl(t – τkl)

)
– fij

(
ykl(t – τkl)

)∣∣].

Thus, by means of the above inequalities one can easily obtain

d+W (t)
dt

=
d+W1(t)

dt
+

d+W2(t)
dt

≤ eαt
∑

(i,j)

[(
α – aij

+ M
( ∑

Ckl∈Nr(i,j)

Ckl
ij +

∑

Ckl∈Nr(i,j)

Dkl
ij +

∑

Ckl∈Nr(i,j)

Ekl
ij

))

× ∣∣xij(t) – yij(t)
∣∣ + Sij

(
Lf

∑

Ckl∈Nr(i,j)

Ckl
ij
∣∣xij(t) – yij(t)

∣∣

+
( ∑

Ckl∈Nr(i,j)

Dkl
ij +

∑

Ckl∈Nr(i,j)

Ekl
ij

)

× ∣∣fij
(
xkl(t)

)
– fij

(
ykl(t)

)∣∣eατkl

)]

≤ eαt
∑

(i,j)

[
α – aij + M

( ∑

Ckl∈Nr(i,j)

Ckl
ij +

∑

Ckl∈Nr(i,j)

Dkl
ij

+
∑

Ckl∈Nr(i,j)

Ekl
ij

)
+ SijLij

(f ∑

Ckl∈Nr(i,j)

Ckl
ij

+ eατ
∑

Ckl∈Nr(i,j)

Dkl
ij + eατ

∑

Ckl∈Nr(i,j)

Ekl
ij

)]∣∣xij(t) – yij(t)
∣∣

< 0.

The above inequality yields W (t) ≤ W (0) for t ≥ 0, which in turn implies that

∑

(i,j)

∣∣xij(t) – yij(t)
∣∣eαt ≤ W (t) ≤ W (0)

=
∑

(i,j)

[∣∣xij(0) – yij(0)
∣∣ + Sij

( ∑

Ckl∈Nr(i,j)

Dkl
ij

+
∑

Ckl∈Nr(i,j)

Ekl
ij

)∫ 0

–τkl

∣∣fij
(
xkl(s)

)
– fij

(
ykl(s)

)∣∣eα(s+τkl) ds
]
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≤
∑

(i,j)

[∣∣xij(0) – yij(0)
∣∣ + SijLf

( ∑

Ckl∈Nr(i,j)

Dkl
ij

+
∑

Ckl∈Nr(i,j)

Ekl
ij

)∫ 0

–τ

∣∣xkl(s) – ykl(s)
∣∣eα(s+τ ) ds

]

≤ (
1 + τη(E + D)eατ

)∥∥ρ(s) – ξ (s)
∥∥,

where E = max(i,j){max(k,l) Ekl
ij }, D = max(i,j){max(k,l) Dkl

ij }, and η = max(i,j){SijLf } are con-
stants. Further, set Ω = 1 + τη(E + D)eατ . Then the last inequality implies that

∥∥x(t) – y(t)
∥∥ ≤ (

1 + τη(E + D)eατ
)∥∥ρ(s) – ξ (s)

∥∥e–αt = Ω
∥∥ρ(s) – ξ (s)

∥∥e–αt , for t ≥ 0.

Therefore, the network (1) has a unique ω-periodic solution which is globally exponen-
tially stable. �

Remark 4.1 Due to its practical applications in learning theory periodic solutions of
FCNNs have been widely investigated by many researchers. By constructing suitable
Lyapunov–Krasovskii functionals and employing the linear matrix inequality the authors
in [31] considered existence and exponential stability of FCNNs. By means of M-matrix
theory and differential inequality techniques Bao studied the existence and stability of a
periodic solutions to BAM fuzzy Cohen–Grossberg neural networks with mixed delays.
Xu and Li investigated global exponential stability of periodic solution for fuzzy cellular
neural networks with distributed delays and variable coefficients [32]. It worth mentioning
that it is the first time the existence of a periodic solutions has been considered for FSIC-
NNs. The model of FSICNN was investigated in its general from, i.e., with time-varying
coefficients and constant delays.

5 An example
Finally, we take into account an example with simulations of a neural system consisting of
two FSICNNs. To this end, we consider the following network:

ẋij(t) = –aij(t)xij(t) –
∑

Ckl∈Nr(i,j)

Ckl
ij (t)fij

(
xkl(t)

)
xij(t) + Lij(t)

+
∑

Ckl∈Nr(i,j)

Bkl
ij (t)Uij(t) –

∧

Ckl∈Nr(i,j)

Dkl
ij (t)fij

(
xkl(t – τkl)

)
xij(t)

–
∨

Ckl∈Nr(i,j)

Ekl
ij (t)fij

(
xkl(t – τkl)

)
xij(t)

+
∧

Ckl∈Nr(i,j)

Tkl
ij (t)Uij(t) +

∨

Ckl∈Nr(i,j)

Hkl
ij (t)Uij(t), (11)

where r = 1, i, j = 1, 2, and the functions aij(t), Cij(t), Lij(t), Bij(t), Uij(t), Dij(t), Eij(t), Tij(t),
and Hij(t) are given by

(
a11(t) a12(t)
a21(t) a22(t)

)
=

(
4.36 1.38

6 9.37

)
,
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Figure 1 The state trajectory x11(t) of the network (11) with the initial conditions
x11(t) = 0.1, 0.15, 0.2, 0.25, and 0.3 for t ∈ [–1, 0]. It is seen that the FSICNN (11) has a globally exponentially
stable π -periodic solution

(
C11(t) C12(t)
C21(t) C22(t)

)
=

(
0.6 0.5 sin2(2t)

0.5 cos2(2t) 0.2 sin(2t)

)
,

(
L11(t) L12(t)
L21(t) L22(t)

)
=

(
sin(2t) cos(2t)

0.5 cos(2t) 2

)
,

(
B11(t) B12(t)
B21(t) B22(t)

)
=

(
0.8 + cos(2t) 0.5 – sin(2t)
0.3 + sin(2t) 0.1 – cos(2t)

)
,

(
U11(t) U12(t)
U21(t) U22(t)

)
=

(
0.3 sin2(2t) 0.5 cos(2t)
0.6 sin(2t) 0.3 cos2(2t)

)
,

(
D11(t) D12(t)
D21(t) D22(t)

)
=

(
0.8 + sin2(2t) 0.1

0.1 + 0.05 cos2(2t) 0.3 + cos2(2t)

)
,

(
E11(t) E12(t)
E21(t) E22(t)

)
=

(
0.3 – sin2(2t) 0.5 + 0.04 cos2(2t)

0.7 0.5 cos2(2t)

)
,

(
T11(t) T12(t)
T21(t) T22(t)

)
=

(
0.09 5 + cos(2t)

6 – sin(2t) 0.1 + sin2(2t)

)
,

(
H11(t) H12(t)
H21(t) H22(t)

)
=

(
0.2 cos2(2t) 0.5 + 0.4 sin(2t)

0.006 – cos(2t) 1.01

)
.

It is easy to see that the above functions are π-periodic and satisfy the condition (A1). On
the other hand, one can verify that

∑
Chl∈N1(i,j) Chl

ij (t) = 1.1 + 0.2 sin(2t),
∑

Chl∈N1(i,j) Bhl
ij (t) =

1.7,
∧

Ckl∈Nr(i,j) Dkl
ij (t) = 0.1,

∨
Ckl∈Nr(i,j) Ekl

ij (t) = 0.7,
∧

Ckl∈Nr(i,j) Tkl
ij (t) = 0.09, and

∨
Ckl∈Nr(i,j) Hkl

ij (t) = 1.01.
We consider the FSICNN (11) with fij(x) = tanh x and τ11 = 0.5, τ12 = π/5, τ21 = 2, and

τ22 = π . One can verify that the function τ (·) satisfy the condition (A1) and the nonlinear
function f (·) satisfy the conditions (A2)–(A3). Therefore, the dynamics of the network (11)
has a unique globally exponentially stable π-periodic solution according to Theorem 3.1.
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Figure 2 The state trajectory x12(t) of the network (11) with the initial conditions
x12(t) = –0.8, –0.5, –0.1, 0.3, and 0.4for t ∈ [–1, 0]. It is seen that the FSICNN (11) has a globally exponentially
stable π -periodic solution

Figure 3 The state trajectory x21(t) of the network (11) with the initial conditions
x21(t) = –0.4, –0.2, 0.1, 0.2, and 0.3for t ∈ [–1, 0]. It is seen that the FSICNN (11) has a globally exponentially
stable π -periodic solution

Finally, the numerical simulations in Figure 1, Figure 2, Figure 3 and Figure 4 validate our
theoretical results.

6 Conclusion
In this paper, we established sufficient conditions for the existence of periodic solutions
of FSICNNs by means of Gaines and Mawhin’s coincidence degree of index zero. We con-
sidered FSICNNs with time-varying coefficients and delays. Further, by constructing Lya-
punov functional we obtained sufficient condition for the exponential stability of the peri-
odic solutions. This study can be extended further by considering FSICNNs with different
type of delays such as continuously distributed delays or involving leakage term.
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Figure 4 The state trajectory x22(t) of the network (11) with the initial conditions
x22(t) = 0.15, 0.2, 0.25, 0.3, and 0.35for t ∈ [–1, 0]. It is seen that the FSICNN (11) has a globally exponentially
stable π -periodic solution
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