
Regulation of Cathepsin G Reduces the Activation of
Proinsulin-Reactive T Cells from Type 1 Diabetes Patients
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Abstract

Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1
diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to
major histocompatibility complex (MHC) class II molecules for CD4+ T cell inspection. However, the processing and presentation
of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing
of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived
intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in
vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients
indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D
patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the
notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells.
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Introduction

Type 1 diabetes mellitus (T1D) is an organ/antigen-specific

autoimmune disease manifested by infiltration of lymphocytes into

pancreatic islets, resulting in insulitis and the destruction of b cells.

Proinsulin is one of the major target autoantigens in T1D [1].

Consequently, processing and presentation of proinsulin exhibit a

critical event in the disease pathology both in murine models such

as non-obese diabetic mice and humans. The processing of

proinsulin and identification of proinsulin-derived T cell epitopes

can provide key elements of the disease process [2] and the

alteration of the antigen processing machinery by the use of

specific cathepsin inhibitors may represent a plausible strategy to

interfere with ongoing autoimmune reaction [3].

Human antigen-presenting cells (APC) play an essential role in

antigen-specific immunity and autoimmunity. Antigen processing

within freshly isolated APC from human peripheral blood

(primary APC) differs from that of B cell lines or in vitro generated

monocyte-derived DC. The expression of the serine protease

cathepsin G (CatG) has previously been demonstrated to be

restricted mainly to primary APC compared to cell lines [4].

Therefore, the use of primary APC in assays addressing antigen

processing is highly warranted [5,6,7].

Endocytic cysteine (CatB, C, F, H, L, S, V, X, and AEP), serine

(CatG and CatA), and aspartic (CatD and CatE) cathepsins are

active in processing of both antigens and autoantigens. Within

the endocytic compartments, cathepsins truncate antigens into

antigenic peptides which can subsequently be loaded onto major

histocompatibility complex (MHC) class II molecules. The MHC/

peptide complex is then transported to the cell surface where it is

inspected by the T cell receptor of CD4+ T cells and initiates a

specific response [8,9,10,11,12]. It was demonstrated by using

CatS, B, and L deficient mice that these proteases are important in

the onset of autoimmune diabetes [13,14].

In this report, we show that CatG, D, S, and V is involved in

proinsulin processing. Importantly, CatG is crucial in this

process. The expression and activity of CatG are elevated in

PBMC from T1D and is functionally controlled by a CatG

inhibitor, suggesting relevance for potential immunotherapeutic

approaches in humans.

Results

Cathepsin activity in PBMC from T1D vs. control donors
Initially, we examined whether the protease activity might differ

in PBMC from T1D patients compared to healthy control donors.
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PBMC-derived crude cell lysate was incubated with the colori-

metric substrate Suc-VPF-pNA to quantify CatG activity between

T1D and control donors. We found that CatG-activity was

significantly elevated in T1D-derived PBMC (Fig. 1A). These

findings were confirmed with the activity-based probe DAP [15] to

visualize active CatG (Figure S1). Other classes of proteases

associated with the antigen processing machinery, such as cysteine

and aspartic cathepsins, were tested. Modestly reduced CatX

activity was observed in some T1D donors while CatA, B, C, D, E,

L, and AEP were found to be similar between T1D and controls

(data not shown). Furthermore, we examined whether higher

CatG activity in T1D was also due to higher CatG transcript

levels. Therefore, PBMC from either T1D or control donors were

tested for their relative cathepsin expression by performing

quantitative RT-PCR. We found that CatG transcripts were

elevated in samples from T1D patients, in contrast to other

cathepsins (Fig. 1B). This demonstrates that both CatG transcript

levels and activity are increased in T1D compared to healthy

control donors.

Regulation of cathepsins in PBMC after exposure to
serum proteins

After determining higher CatG activity in PBMC from T1D

patients, we further investigated CatG regulation in PBMC using

serum samples from T1D donors. PBMC from control donors

were isolated and incubated with serum proteins from T1D or

control donors. None of these serum samples altered CatG activity

or cysteine proteases in PBMC (data not shown), suggesting that

serum factors from T1D patients were not responsible for

increased CatG activity. Furthermore, we determined whether

exposure to cytokines or toll-like receptor (TLR) ligands might

provoke an increase of CatG activity in PBMC. TNF-a, IFN-c,

IL-1b, IL-17, TGF-b, and TLR1 to 9 ligands did not alter CatG

activity in PBMC (data not shown). Thus, neither cytokines, serum

samples from T1D patients, nor TLR ligands seem to be

responsible for higher CatG activity found in PBMC from T1D

patients.

Downregulation of proteases within APC leads to
reduced T cell activation

To determine which class of proteases is involved in proinsulin

processing and presentation, cell permeable cathepsin inhibitors

were co-incubated with proinsulin and PBMC from T1D or

control donors in a functional T cell assay. The inhibitors used

included a CatG inhibitor [16], pepstatin A-penetratin (PepA-P) to

inhibit aspartic proteases [17], or E64d for cysteine protease

inhibition [18]. PBMC pulsed with proinsulin induced T cell

activation in autologous T cells from T1D analyzed by the

detection of TNF-a (Fig. 2). In contrast, proinsulin did not activate

T cells from control donors, indicated by the high TNF-a secretion

in the no antigen (no Ag) sample. Co-treatment of PBMC with

CatG inhibitor resulted in reduced frequencies of T cell

stimulation in PBMC from T1D donors. In control donors levels

of TNF-a were reduced, but did not reach significance. E64d,

PepA-P, and DMSO did not significantly decrease TNF-a
concentrations. Additionally, we analyzed the secretion of further

proinflammatory cytokines, IFN-c, IL-17, and IL-22, and found

that CatG inhibitor downregulated these cytokines (Figure S2).

E64d reduced only IL-17, PepA-P and DMSO had no effect.

Thus, effective processing and presentation of proinsulin depend

on the activity of CatG in T1D.

Processing of proinsulin in vitro
Lang et al. described that porcine insulin-derived intermediates

did not activate T cells when using a fixed B cell line as a source of

APC. In contrast, a non-fixed B cell line was able to activate T

cells, demonstrating that intermediates required further processing

within the endocytic compartments in order to become function-

ally active [19]. Therefore, we mimicked the destination of non-

reduced proinsulin within the antigen-processing compartment in

an in vitro digestion experiment and incubated proinsulin with

purified cathepsins, CatD, G, S, and V, which have endoprotease

activity. The proteolytic degradation pattern was identified by

mass spectrometry and the resulting fragments were summarized

in a cathepsin cleavage site map (Fig. 3A). Intact proinsulin was

successively degraded by all cathepsins used in the assay. CatD

digested proinsulin between hydrophobic amino acid residues (F,

L, and Y), while CatS and CatV cleavage occurred preferentially

at branched hydrophobic amino acids in the P2 position (V and L).

The tryptic, chymotryptic, Leu-ase, and Met-ase activity is

restricted to human CatG compared to the chymotryptic activity

of murine CatG [20], therefore human CatG cleaved proinsulin

after positively charged and aromatic amino acids as well as after

leucine. Processing of proinsulin was increased at neutral pH

compared to acidic conditions. Having determined the digestion

pattern using selected cathepsins, we incubated proinsulin with

primary human B cell-or mDC1-derived lysosomal cathepsins and

identified several cleavage sites. The majority of cleavage sites

within proinsulin resembled those obtained with purified CatG

(one key cleavage between LA at position C24/C25) and, to a

lesser extent, by CatD, S, and V (Fig. 3B). Taken together, the

Figure 1. Expression of CatG in peripheral blood mononuclear
cells (PBMC) from T1D patients vs. controls. A) CatG activity in
PBMC was measured using the colorimetric substrate Suc-VPF-pNA.
T1D, n = 25; controls, n = 29. The measurements were performed in
duplicate. Statistical analysis was performed by using the unpaired,
two-tailed Student’s t-test. B) Gene expression was analyzed by
quantitative RT-PCR in T1D (n = 5) and controls (n = 6). The multiple of
a unit of gene expression over the control was set to 1.
doi:10.1371/journal.pone.0022815.g001

Cathepsin G and T1D
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processing of proinsulin by the combined action of proteases from

mDC1 is controlled by CatG in vitro.

T cells from T1D donors are activated by CatG-generated
proinsulin peptides

The peptides obtained after proteolytic degradation of

proinsulin are summarized in Figure 4A. Strikingly, the

generated fragment DCins10 was equal to a published peptide,

which was protective in T1D and bound to DQB1*0602 [21].

Therefore, DCins10 was used as a ‘‘non-responder’’ and was

compared to DCins peptides in a functional T cell assay. PBMC

from T1D or control donors were incubated with DCins peptide

1–16 or P17, which was referred as a known T cell epitope [22],

and the secretion of TNF-a was monitored by ELISA. We found

levels of TNF-a secretion were significantly increased in

response to DCins6 and DCins12 compared to DCins10 in

HLA-DRB1*0401/0701 expressing T1D donors and none of

these peptides tested elevated the secretion of TNF-a in control

donors (Fig. 4B). Additional cytokines (IL-17 and IFN-c) were

tested. However, in several donors the level of cytokines was

below the threshold of the assay and in the case of TGF-b1, no

significant differences were found (data not shown). In addition,

HLA-DRB1*0401/0301 T1D donors were tested. We did not

observe substantial differences in the levels of TNF-a, with the

exception of DCins14, incubated with the indicated DCins

peptides (Figure S3). DCins6 as well as the C-terminal end of

DCins12 and DCins13 were generated by CatG after the

proteolytic digest of proinsulin, but only DCins6 and 12

elevated distinct T cell activation from HLA-DRB1*0401/

0701 T1D donors.

Vitamin D reduces CatG activity only in mDC1 from
healthy donors

To test our hypothesis that vitamin D might affect the antigen

processing machinery in primary APC, PBMC from T1D or

control donors were pulsed with proinsulin with or without

vitamin D3 or 1a,25(OH)2D3. Proinsulin induced an adequate T

cell response in PBMC from T1D patients. In contrast, addition

of 1a,25(OH)2D3 reduced secretion of TNF-a (Fig. 5), IFN-c, IL-

17, and IL-22 (Figure S4). PBMC from control donors showed

levels of cytokine production even with no antigen. We did not

detect any differences of IL-6 or TGF-b1 (data not shown). These

data show that vitamin D mitigates proinsulin-reactive T cell

activation.

Next, we sought to determine whether the mitigation of T cell

activation might be due to the activity of proteases located in the

endocytic compartments of APC. B cells and mDC1 from T1D or

control donors were incubated with physiological serum concen-

trations of prohormone cholecalciferol (vitamin D3) or the active

form of vitamin D3, 1a,25-dihydroxyvitamin D3 (1a,25(OH)2D3).

Subsequently the cathepsin activity was determined. We observed

down-regulation of CatG activity in mDC1 from control donors

when these cells were treated with 1a,25(OH)2D3, but not in T1D-

derived mDC1 (Fig. 6A and B). Cysteine protease activity was not

altered under the conditions used, in contrast to levels of MHC class

II molecules were reduced after treatment with 1a,25(OH)2D3 only

Figure 2. Regulation of proinsulin presentation after treatment with selected inhibitors. PBMC were incubated with CatG inhibitor
(CatGinh.), E64d, or pepstatin A-penetratin (PepA-P) at 10 mM for five days. DMSO served as a vehicle control. TNF-a secretion was analyzed by ELISA
and were carried out in quadruplicate. n = 6 T1D vs. n = 3 control donors. Statistical analysis was performed by using the unpaired, two-tailed
Student’s t-test. n.s., not significant and *** significant at p,0.001.
doi:10.1371/journal.pone.0022815.g002
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Figure 3. Processing of proinsulin by lysosomal proteases. A) Proinsulin was incubated with selected cathepsins in vitro for 2 h. The resulting
fragments were analyzed by HPLC and mass spectrometry (LC-MS-MS and additionally MALDI-TOF). Bars indicate identified fragments and
arrowheads designate cathepsin cleavage sites. CatV is expressed in cortical human thymic epithelial cells [39]. B) Proinsulin was incubated with B

Cathepsin G and T1D

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e22815



in control donors (Figure S5). Thus, mDC1 from T1D patients are

resistant from CatG regulation by vitamin D.

Discussion

Proinsulin is one of the major autoantigens in T1D. We found

distinct fragmentation patterns when proinsulin was digested with

primary human B cell- or mDC1-derived lysosomal cathepsins.

DCins6 and DCins12 represented novel T cell epitopes in HLA-

DRB1*0401/0701 T1D patients. Strikingly, CatG was identified

to be the protease to control the processing of proinsulin due to the

similar cleavage sites obtained by purified cathepsins compared to

that acquired by mDC1-derived lysosomal cathepsins. Further-

more, CatG activity was higher in PBMC from T1D donors

compared to controls and a CatG inhibitor reduced proinsulin-

reactive T cell activation. Together, these results indicate a crucial

role of CatG in proinsulin processing.

Several T1D T cell epitopes were determined by overlapping

peptide libraries or studies with a proinsulin pulsed B cell line,

expressing HLA-DRB1*0401/0401, followed by MHC class II

peptide elution [23]. Based on the results obtained herein

unknown T cell epitopes were generated by endocytic proteases.

Proinsulin processed by mDC1-derived cathepsins resulted in

several fragments. DCins5, 11, and 12 were similar to B27-C15,

C3–C26, and C25-A12 (Fig. 7), which were determined by peptide

elution from proinsulin pulsed human BLC. Furthermore, the

sequence of DCins10 was equal to the epitope (B1–B15) known to

bind to the protective HLA allele HLA-DQB1*0602 [21]. In our

experiments, this peptide did not induce the secretion of TNF-a,

but did also bind to HLA-DRB1*0401 (Figure S6). Thus, we

speculate that DCins10 (B1–B15) might be directly beneficial

towards the suppression of autoaggressive T cells.

Two hypotheses exist for loading of antigens. First, antigens are

processed by cathepsins into small antigenic peptides and can be

loaded to MHC class II molecules. Second, a mechanism might

occur in which initial processed antigens, resulting in larger

intermediates, bind to MHC class II molecules to be further

trimmed by exoproteases [24]. Intact insulin or proinsulin can not

directly bind to MHC class II molecules. Therefore, insulin has to

be internalized and processed to form a MHC class II-peptide

cell- or mDC1-derived lysosomal cathepsins and the resulting fragments were analyzed as described previously. Bars indicate identified fragments
and arrowheads designate cathepsin cleavage sites.
doi:10.1371/journal.pone.0022815.g003

Figure 4. Functional T cell assay using human PBMC from T1D patients or control donors. A) Sequence of the resulting intermediates
after digestion of proinsulin (DCins peptides): CatG (red), CatD (green), CatS (blue), CatV (grey), and CatG and CatD-derived fragments (brown). B)
PBMC from T1D patients were incubated with DCins peptides or P17 (10 mg/ml) for five days. HLA-DRB1*0401/0701, n = 8 T1D donors, n = 2 control
donors. The TNF-a secretion was monitored using ELISA. ELISA assays were completed in quadruplicate. n.s., not significant, * significant at p,0.05,
and ** significant at p,0.01. Significance was determined by one-way ANOVA, post test Dunnett.
doi:10.1371/journal.pone.0022815.g004
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complex [25]. We hypothesize that CatG, with its broad pH

spectrum between pH 5–8, will degrade proinsulin after internal-

ization into endocytic compartments and the resulting intermediates

can subsequently bind to MHC class II molecules. Some of the

bound peptides might be trimmed by exoproteases (CatA, B, C, H,

and X) at either the N-or C-terminal end. This is supported by our

Figure 5. Regulation of proinsulin presentation by vitamin D. Functional T cell assay, PBMC from T1D (n = 6) or control donors (n = 3) were
incubated with vitamin D3 (100 ng/ml) or 1a,25(OH)2D3 (100 ng/ml). TNF-a production was analyzed by ELISA in quadruplicate. Statistical analysis
was performed by using the unpaired, two-tailed Student’s t-test. n.s., not significant and ** significant at p,0.01.
doi:10.1371/journal.pone.0022815.g005

Figure 6. Regulation of CatG activity by vitamin D. B cells or mDC from (A) T1D or (B) healthy donors were co-cultured with vitamin D for 24 h.
Equal amounts of cell lysate were incubated with the active site probe to visualize active CatG. Lower panel indicates quantification of band intensity.
One representative active site label out of n = 4 T1D and n = 5 control donors is shown.
doi:10.1371/journal.pone.0022815.g006

Cathepsin G and T1D
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findings where the in vitro generated peptides, DCins 6 and

DCins12, activated proinsulin-reactive T cells, directly.

Inhibition of cysteine proteases, specifically CatS, reduces the

processing of invariant chain and therefore the maturation of

MHC class II molecules [26]. CatG and the aspartic protease

CatD are not responsible for either invariant chain processing or

maturation of MHC class II [26,27,28]. Thus, the inhibition of

cysteine proteases can lead to both impaired MHC class II

maturation and antigen processing, compared to CatG, where we

provided direct evidence that CatG is a proper candidate in

processing and presentation of proinsulin.

Low levels of vitamin D have been associated with autoimmune

disorders including T1D [29]. It is known that vitamin D exhibits

immunomodulatory capacity by abrogating the expression of

MHC class II molecules in DC [30] and proinflammatory

cytokines, particularly IFN-c, IL-17, and IL-21, were reduced

when treated with vitamin D [31]. Therefore, the therapeutic use

of vitamin D might be a promising tool for the treatment of

autoimmune diseases [29,32]. Conversely, it has been shown that

vitamin D has no major effect on residual pancreatic beta cell

function [33]. CatG activity in mDC1 was decreased only in non-

diabetic donors. Lower levels of CatG, found in control donors,

might be explained by the presence of physiological levels of

vitamin D. Alternatively, mDC1 from T1D were resistant to CatG

regulation by vitamin D. This could explain higher levels of CatG

found in T1D. However, there is no relation between CatG levels

and reduced proinsulin presentation in a T cell assay when PBMC

from T1D donors were incubated with vitamin D.

CatG is expressed in APC, granulocytes [4], and also in the

lining layer cells of the synovial tissue. Consistently, CatG

secretion has been shown to be induced at the inflammatory site

of synovial fluid in rheumatoid arthritis (RA) patients [34].

Moreover, CatG deficient mice were less mortal than their wild

type counterparts in a noninfectious mouse model of renal

ischemia/reperfusion injury [35]. The combined inhibition of

several serine proteases by the acute-phase serine protease

inhibitor a1-antitrypsin (AAT) reduced the expression of proin-

flammatory cytokines and restored euglycemia in new onset

diabetic NOD mice [36]. Here we demonstrated that the

presentation of proinsulin-derived peptides to proinsulin-reactive

T cells was significantly reduced by a CatG inhibitor. We

described higher levels of CatG in PBMC from T1D patients

compared to control donors. This result was not unexpected, since

both T1D and RA are leukocyte-mediated diseases. In a clinical

trial, oral administration of frankincense extract inhibited CatG

activity in human blood indicating anti-inflammatory properties of

this extract [37]. We speculate that the reduction of CatG activity

by a natural substance without any side effects, for instance, oral

intake/inhaling frankincense, might be beneficial to prevent T1D.

In summary, our data demonstrate that high levels of CatG

activity found in T1D and the possibility to regulate CatG activity,

might provide a basis for the modulation of autoaggressive T cells.

Methods

Peptide synthesis
Peptides were synthesized by the solid phase Fmoc strategy on a

multiple peptide synthesizer Syro II (MultiSynTech, Witten,

Germany). Peptides were purified by reversed-phase HPLC using

a C18 column 12568 mm (Grom, Herrenberg, Germany) and

analyzed by mass spectrometry (Reflex IV, Bruker Daltonics,

Bremen, Germany).

PBMC from T1D and control donors
Peripheral blood mononuclear cells (PBMC) were Ficoll-isolated

from heparinized blood and cryo-preserved in liquid nitrogen until

Figure 7. Sequence overview of identified peptides eluted from HLA-DRB1*0401/0401 BLC vs. peptides from proinsulin digested
with mDC1-derived lysosomal proteases (DCins peptides).
doi:10.1371/journal.pone.0022815.g007
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used. T1D was diagnosed by the WHO guideline and informed

written consent was obtained from each participant. Use of PBMC

for in vitro studies was in accordance with IRB regulations. The

ethics committee at the Ulm University, application No. 224/09

and 220/06, approved this study.

T cell assay
1. T cell assay using inhibitors or vitamin D: proinsulin

(10 mg/ml), CatG inhibitor I (10 mM, Calbiochem, Schwalbach,

Germany), pepstatin A-penetratin (PepA-P, 10 mM, Kalbacher,

MNF, University of Tübingen, Germany), E64d (10 mM, Enzo

Life Sciences, Lörrach, Germany), vitamin D (100 ng/ml,

cholecalciferol or 1a,25-dihydroxy vitamin D3; Sigma-Aldrich,

Taufkirchen, Germany), or DMSO (0.1% final concentration,

Sigma-Aldrich) were added to PBMC (16106 cells per well) and

cultured for five days.

2. T cell assay using proinsulin-derived peptides (DCins

peptides): DCins peptides or P17 (10 mg/ml, 6 mM) were added

to PBMC (16106 cells per well). Cells were cultured for five days

and supernatants were collected to determine cytokine production

(TNF-a, IL-17, IL-6, IFN-c, and TGF-b1) by ELISA (R&D

Systems, Wiesbaden, Germany).

Lysosomal proteases and in vitro processing
Lysosomal proteases were isolated from primary B cells and

mDC1 by differential centrifugation. For in vitro processing,

substrate solution (0.2 mg/ml peptide, 0.1 M sodium citrate

pH 5.0, 2.5 mM DTT in a final volume of 50 ml) was incubated

with lysosomal proteases (2.6 mg of total protein) at 37uC for up to

4 h. Peptides were incubated with CatG (Sigma-Aldrich), CatS, -

L, -V, or -D (R&D Systems, Wiesbaden, Germany), in

concentrations of 1–2 ng/ml for 2 h at 37uC.

Identification of processing products
In vitro processed proinsulin samples were analyzed by on-line

capillary LC/ESI-MS/MS. For LC separation, a gradient Agilent

CapPump 1100 (Agilent, Waldbronn, Germany) connected to a

15060.5 mm Zorbax SB-C18 5 mm capillary column (Agilent,

Waldbronn, Germany) was used. The flow rate was 15 ml/min.

Separation was performed using the following gradient: 0–5 min

5% system B, 5–45 min 5–80% system B, 45–50 min 80–95%

system B, solvent A was 0.025% TFA in water (v/v) and solvent B

was 0.024% TFA, 80% ACN in water (v/v). Before analysis,

samples were reduced with dithiothreitol (DTT, 10 mM final

concentration, 30 min incubation at 56uC) and subsequently

applied (8 ml) to the column. UV chromatograms were acquired at

214 nm. Mass spectra were acquired in the positive ion mode

using a HCT+ ion trap mass spectrometer (Bruker-Daltonics,

Bremen, Germany) equipped with a standard ESI interface.

Electrospray voltage was set to 3850 V, dry gas (N2) to 6 l/min

(at 325uC), the nebulizer to 15 psi. MS (300–2000 m/z), and MS/

MS (200–3000 m/z, 1 V fragmentation amplitude) spectra were

acquired at a scan speed of 26,000 m/z/sec. The data-dependent

MS/MS analyses included the acquisition of a survey spectrum

(m/z 300–2000) followed by MS/MS spectra (m/z 200–3000) of

the two most abundant ions in the survey scan (1 min active

exclusion). Un-interpreted MS/MS data were automatically

analyzed using BioTools 2.2 and SequenceEditor 2.2 (Bruker-

Daltonics). Assignment of fragment-ions was confirmed by manual

comparison of acquired signals with predicted fragment-ions

generated by the MS-Product component of ProteinProspector

(http://prospector.ucsf.edu/). In addition, the fragments were

analyzed by MALDI-TOF (Reflex IV, Bruker Daltonics, Bremen,

Germany).

Active site label and Western blot
Human peripheral blood mononuclear cells (PBMC) were

freshly isolated from buffy coats of healthy blood donors or T1D

donors by density gradient centrifugation. Myeloid dendritic cells

(mDC1, CD1c+) and B cells (CD19+) were positively selected

using the appropriate magnetic cell separation kit (Miltenyi

Biotec, Bergisch Gladbach, Germany) following the manufactur-

er’s protocol. For the activity-based label and Western blot,

freshly isolated cells were treated with vitamin D (30 ng/ml or

100 ng/ml, vitamin D3 (cholecalciferol) or 1a,25-dihydroxy

vitamin D3; Sigma-Aldrich, Taufkirchen, Germany) for 24 h at

37uC.

Cells were lysed (10 mM Tris [pH 7.5], 150 mM NaCl, and

0.5% NP-40), adjusted for equal amounts of total protein

(quantified by the Bradford assay). Cell lysate was added to PBS

(pH 7.4) in the presence of active site label to visualize active serine

proteases and incubated for 1 h at room temperature. Samples

were resolved by 12% sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE), transferred to a polyvinylidenfluorid

(PVDF) membrane, and visualized using streptavidin-horseradish

peroxidase (HRP, Vectastain, Burlingame, CA, USA). For

Western blot analysis, 20 mg of protein from crude cell extracts

were subjected to SDS-PAGE, and the immunoblot was

performed using anti-HLA-DR antibody (CHAMP, L. Stern,

University of Massachusetts, MA, USA). Anti-b-actin antibody

and secondary HRP-conjugated antibodies were obtained from

Sigma-Aldrich (Taufkirchen, Germany). The use of human cells

for in vitro studies was in accordance with IRB regulations. The

ethics committee at the Ulm University, application No. 224/09

and 220/06, approved this study.

Determination of CatG activity
Kinetic measurement of CatG activity was accomplished by

adding 15 mg of PBMC-derived cell lysate from the indicated

samples to the colorimetric substrate Suc-Val-Pro-Phe-pNA

(200 mM) in buffer (0.5 M MgCl2 in PBS, pH 7.4) as previously

described in [38]. The enzyme assays were performed in duplicate

at 37uC, and absorption was determined at 405 nm (absorbance

microplate reader, EL808, BioTek, Winooski, VT, USA).

Quantitative PCR
Total RNA was extracted from freshly isolated PBMC (86106

cells) from T1D or control donors using the RNeasy Mini Kit

(Qiagen, Hilden, Germany). Genomic DNA was removed with

DNase (Qiagen). Reverse transcription of 740 ng of total RNA was

performed using the RT2 First Strand Kit (SABioscience, Frederick,

MD, USA) according to the manufacturer’s instructions.

Gene specific primer pairs were selected with the Husar Genius

software (DKFZ, Heidelberg, Germany) to span exon-intron

junctions and generate an amplicon of 150 bp in length.

Quantitative reverse transcriptase polymerase chain reaction

(qRT-PCR) was accomplished using RT2 SYBR Green qPCR

Master Mix (SABioscience). The qRT-PCR gene expression was

detected with the ABI 7500 Fast Real Time PCR System and the

appropriate System Sequence Detection Software (Applied

Biosystems, Carlsbad, CA, USA). 18S rRNA was used as an

endogenous control to normalize levels of cDNA between

preparations.

Data were collected and analyzed as follows: In total 11 donors,

T1D (n = 5) and control donors (n = 6) were analyzed for their

relative cathepsin expression. The data were analyzed with the

DDCt method as recommended by the supplier (SABiosciences).

Delta cycles (DDCt) were determined by subtracting the value of

threshold Ct housekeeping gene from the Ct value of the gene of

Cathepsin G and T1D

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e22815



interest. The mean values of T1D or control were determined and

included in the formula, DDCt =DCt T1D-DCt control. The x-

fold change of cathepsin expression of T1D over control was

analyzed by adding DDCt values to 2(2DDCt).

The following oligonucleotide primers (Thermo Fisher Scien-

tific, Ulm, Germany) were used:

18S rRNA forward primer, 59- CGGCTACCACATCCAAG-

GAA-39 and reverse primer, 59-GCTGGAATTACCGCGGCT-39;

human AEP GAAGC CTGTGAGTCTGGGTC, CAGTCCCC-

CAGGTACGTG; CatB CTGTG TAT TCGGACTTCCTGC,

CCAGGAGTTGGCAACCAG; CatD AACT GCTGGACAT-

CGCTTG, AGGTACCCGGAGAGGCTG; CatF ATAT GAGT-

CAAAGGAAGAAGCCC, GATCAC TGAACTTGGTGACT-

CC; CatG CCCCTACATGGCGTATCTTCA, TTGCTTCCC

CAGCAATGAG; CatH ACTGGCTGTTGGGTATGGAG, AG-

GCCACACATGTTCTTTCC; CatL ACCAAGTGGAAGGC-

GATG, TTCCCTTCCCTGTATTCCTG; CatS ACTCA GAA-

TGTGAATCATGGTG, TTCTTGCCATC CGAATA TATCC;

CatX GGGAGGGAGA AGATGATGG, ATGTGGTGTC C-

TGGTATTCG.

Statistical analysis
Data depict means 6 standard error of the mean (S.E.M.).

Statistical analysis was performed using one-way ANOVA (post test,

Dunnett) or the unpaired, two-tailed Student’s t-test (GraphPad

Prism 3 software). A value of p,0.05 was considered significant.

Supporting Information

Figure S1 Crude PBMC lysate from T1D or control
donors were incubated with the serine activity-based
probe DAP22c. This inhibitor detects active CatG by forming a

covalent bond to the active center of the protease. Since DAP

contains biotin, protease activity can be revealed via streptavidin-

HRP detection. CatG-activity was significantly elevated in T1D-

derived PBMC. Representative sample from n = 32 T1D and

n = 36 control donors analyzed with DAP22c is shown (n = 9 T1D,

n = 7 control were titrated).

(TIF)

Figure S2 Regulation of proinsulin presentation. PBMC

were incubated with CatG inhibitor (CatGinh.), E64d, or pepstatin

A-penetratin (PepA-P) at 10 mM for five days. DMSO served as a

vehicle control. Cytokine secretion was analyzed by ELISA in

quadruplicate. n = 6 T1D vs. n = 3 control donors. Statistical

analysis was performed by using the unpaired, two-tailed Student’s

t-test. n.s., not significant and * significant at p,0.05.

(TIF)

Figure S3 T cell assay, PBMC from T1D donors, HLA-
DRB1*0401/0301, n = 5, n = 3 control donors, were
cultured with DCins peptides for five days at 376C.
Secretion of TNF-a was determined by ELISA. ELISA assays

were done in quadruplicate. n.s., not significant and * significant at

p,0.05.

(TIF)

Figure S4 Regulation of proinsulin presentation by
vitamin D. PBMC from T1D (n = 6) or control donors
(n = 3) were incubated with vitamin D3 (100 ng/ml) or
1a,25(OH)2D3 (100 ng/ml). Cytokine production was ana-

lyzed by ELISA in quadruplicate. Statistical analysis was

performed by using the unpaired, two-tailed Student’s t-test. n.s.,

not significant, * significant at p,0.05, and ** significant at

p,0.01.

(TIF)

Figure S5 5 mg of cell lysate were incubated with
reaction buffer (0.1 M citrate, pH 5.0 and 50 mM DTT)
in the presence of DCG-04 (10 mM; probe kindly donated
by M. Bogyo, Stanford University, Palo Alto, CA, USA) to
visualize active CatX, B, H, and S (left panel). Immunoblot

to visualize both a-and b-chain of MHC class II (CHAMP

antibody), control donors (right panel, n = 3 donors), and T1D

(left, lower panel, n = 3 donors). Quantification of band intensity,

right lower panel.

(TIF)

Figure S6 Peptide binding assay. Fluorescent labeled
hemagglutinin-peptide (HA-AMCA) was preloaded to
one of the high-risk T1D HLA-DR alleles, HLA-
DRB1*0401 followed by the addition of indicated
peptides. Binding or competition were analyzed by high

performance size exclusion chromatography (HPSEC). Peptide

DCins12 bound to HLA-DRB1*0401 with the same capacity as

P17. In contrast, DCins1, 3, 4, 5, 6, 7, 9, 10, 11, 13, and 16 bound

with modest affinity. No binding was observed with DCins8, 14, or

15. Notably, the sequence of DCins10 is equal to the peptide B1–

B15, which binds to HLA-DQB1*0602 and is protective to T1D.

(TIF)
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