CEMAHTHUYECKUE TEXHOJIOI'MA 99

VJIK 81°32

CHARACTER-BASED DEEP LEARNING MODELS FOR TOKEN
AND SENTENCE SEGMENTATION

Alymzhan Toleu'?, Gulmira Tolegen'?, Aibek Makazhanov',
National Laboratory Astana, 53 Kabanbay Batyr ave.,
Astana, 010000, Kazakhstan
’Tsinghua University, Department of Computer Science and
Technology, Beijing, 100084, China
aibek.makazhanov@nu.edu.kz

In this work we address the problems of sentence segmentation and
tokenization. Informally the task of sentence segmentation involves splitting a
given text into units that satisfy a certain definition (or a number of definitions)
of a sentence. Similarly, tokenization has as its goal splitting a text into
chunks that for a certain task constitute basic units of operation, e.g. words,
digits, punctuation marks and other symbols for part of speech tagging. As
seen from the definition, tokenization is an absolute prerequisite for virtually
every natural language processing (NLP) task. Many of so called downstream
NLP applications with higher level of sophistication, e.g. machine translation,
additionally require sentence segmentation. Thus both of the problems that we
address are the very basic steps in NLP and, as such, are widely regarded as
solved problems. Indeed there is a large body of work devoted to these problems,
and there is a number of popular, highly accurate off the shelf solutions for them.
Nevertheless, the problems of sentence segmentation and tokenization persist,
and in practice one often faces certain difficulties whenever confronted with
raw text that needs to be tokenized and/or split into sentences. This happens
because existing approaches, if they are unsupervised, rely heavily on hand-
crafted rules and lexicons, or, if they are supervised, rely on extraction of hand-
engineered features. Such systems are not easy to maintain and adapt to new
domains and languages because for those one may need to revise the rules and
feature definitions.

In order to address the aforementioned challenges, we develop character-
based deep learning models which require neither rule nor feature engineering.
The only resource required is a training set, where each character is labeled with
an IOB (Inside Outside Beginning) tag. Such training sets are easily attainable
from existing tokenized and sentence-segmented corpora, or, in absence of
those, have to be created (but the same is true for rules, lexicons, and hand-
crafted features). The IOB-like annotation allows us to solve both tokenization
and sentence segmentation problems simultaneously casting them as a single
sequence-labeling task, where each character has to be tagged with one of four
tags: beginning of a sentence (S), beginning of a token (T), inside of a token (I)
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and outside of a token (O). To this end we design three models based on artificial
neural networks: (i) a fully connected feed forward network; (ii) long short term
memory (LSTM) network; (iii) bi-directional version of LSTM. The proposed
models utilize character embeddings, i.e. represent characters as vectors in a
multidimensional continuous space.

We evaluate our approach on three typologically distant languages, namely
English, Italian, and Kazakh. In terms of evaluation metrics we use standard
precision, recall, and F-measure scores, as well as combined error rate for
sentence and token boundary detection. We use two state of the art supervised
systems as baselines, and show that our models consistently outperform both of
them in terms of error rate.

Keywords: Token and Sentence Segmentation; Neural Networks; Deep
Learning.
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B Hacrosieii pabote Mbl paccMaTpuBaeM 3a/1a4y rpad)eMaTHYecKOro aHau-
3a, a UMEHHO MPOOJIEMbl CErMEHTALMH TEKCTa Ha MPEeJIOXKeHuUs U TokeHbl. Cer-
MEHTAIs TEKCTa 110 NPEUIOKEHNSM PacCMaTPUBACTCS KaK 3a7a4a HaX oK ICHUS
OTPBIBKOB TEKCTA, yIOBIETBOPSIOIINX OJHOMY MJIM HECKOJIKUM OIIPEAEICHHISIM
npemioxenns. CerMeHTanus Ha TOKCHBI (TOKSHH3AIHs) — 3a7ada pa3OnueHus
TEKCTa Ha ONEPAalMOHHbBIE €AUHHUIIBI, T.C. CIO0BA, IU(PbI, 3HAKK TIPETTUHAHUS U
np. TokeHu3amus sBisgeTcs 6a30Boi 3a1aueil 00pabOTKH €CTECTBEHHOTO S3bIKa
(OE1). boapmunacTBO npuiiiagubix 3agad OES, otnuyaromuxcs OTHOCUTENb-
HOM CJIO)KHOCTBIO, HAIPUMEP MAIIMHHBIA MepeBOJ, HYKIAIOTCS B CETMEHTALUH
BXOJIHOT'O TEKCTa MO IIpeuIoKeHns M. Takum oOpazoM, obe paccMaTpuBacMble
HaMU 33124 SIBISIFOTCSI ocHOBononaratomumu uist OES, u, kak cnencreue, cun-
TalOTCS B IOCTATOYHOM CTETIEHH PENICHHBIMU. J[eCTBUTENBHO, OITyOIMKOBAaHO
HEMaJIO UCCJICJOBAaHUH 1O JaHHOM TeMaTHKe, M CYIIECTBYIOT TOTOBBIC PEIICHHS
LIMPOKOTO MPUMEHEHUsI C XOpoIlei TouHOCThI0. TeM He MeHee, polIeMbl rpa-
(emMaTHyeCcKOro aHamM3a B OOJBIIMHCTBE CIy4aeB OCTAIOTCS OTKPBITHIMH, U Ha
MIPAaKTHKE ¢ HUMH NPUXOANUTCS CTAJIKMBATHCS KAXIBIH pa3, KOrJa MOSBISIETCS
HE00XOAMMOCTE B paboTe ¢ HeoOpaOOTaHHBIM TEKCTOM, T.€. He Pa30OUTHIM Ha
TIPEAJIOKEHHS M TOKEHBI. DTO MPOUCXOIUT MOTOMY, YTO CYIIECTBYIOLINE MO~
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XOZIBI OCHOBAHEKI JIM00 Ha CIIOBAapsX U paBmiiax (HeoOydaeMble), THO0 Ha U3BIIE-
YeHWU BPYYHYIO 3aJaHHBIX IPU3HAKOB (0O0yuaemble). Takue mOAXOIBI TSKENO
aIaliTUPOBATh K HOBBIM SI3bIKaM/’)kaHpaM, TaK Kak 3To TpeOyeT Iepeornpeese-
HUE CIIOBapeH, MPaBWI U IPU3HAKOB.

JIn1st CHATHS BBILICYTIOMSHYTBIX OTpaHUYIEHHI MBI pa3paboTalii CHMBOJIBHBIE
MOJIEJH IITyOMHHOTO 00yUYeHNS], KOTOPBIE HE HY KIAIOTCS B OIIPEICIICHUH PaBHIT
WM NPU3HAKOB. ENMHCTBEHHOE B Y€M €CTh HEOOXOANMOCTD — 3TO 00ydaromast
BBIOOpKA, B KOTOPOit Kaxplii cMBoa momedeH 10OB merkoii. [Tono6Hbie 00y-
qarmue Bbl60pKI/l JICTKO IOJYYHUTb U3 UMCIOIIUXCS CETMCHTUPOBAHHBIX U TOKE-
HU3UPOBAHHBIX KOPIYCOB. B ciryyae oTCyTCTBHS MOCiEqHNX 00Y4YaloIIyIo BbI-
OOpKy ITpUAETCS CO3/1aBaTh BPYUYHYIO, KaK B IIPOYEM, U CIIOBAPHU M MIPaBUIIa JUIs
npyrux metonoB. Mcmons3oBanue OB pa3meTku mo3BosseT pemaTs 00e 3a1a9u
OJJHOBPEMEHHO, KaK OJIHY 33Jady Pa3METKH II0CJIEI0BATEIbHOCTH, [IETh KOTOPOH
IIPUCBOUTDH KaXKIOMY CUMBOJY OJHY M3 YETBIPEX METOK: HA4aJIO MPEIIOKEHUS
(S), nauano Tokena (T), Teno Tokena (1), winu mpo6en (O). st pemenus: naHHOM
3aJia4¥ MBI pa3paboTalii TpU MOJIENTN, OCHOBaHHBIE HA NCKYCCTBEHHBIX HEHpOH-
HBIX cerax: (1) moctynarenspHas ceth; (2) LSTM cets; (3) AByHampaBieHHas
LSTM cetb. Pa3zpaboTaHHble MOIENH UCTIONB3YIOT CHMBOJIBHBIE BIIOJKEHIS, T.€.
MIPEACTABICHUS] CHMBOJIOB B BHJI€ BEKTOPOB B MHOTOMEPHOM IIPOCTPAHCTBE.

Mpz1 OIICHMBACM HaIll IMOAXO0/ Ha TPEX TUIIOJOTHYCCKN OTAAJICHHBIX SA3bIKAX:
aHFJ’IHﬂCKOM, HUTAJIbIHCKOM U Ka3axCKOM, HUCIOJIb3YySA CTaAaHAAPTHBIC METPUKU
TOYHOCTH, NOKPBITHS, F-Mepsl 1 mponenTta ommoOku. s cpaBHEHUS MBI HC-
TI0JIb3YEM JIBE MIMPOKO pacupocTpaHEHHBIE CUCTEMBI IpadeMaTHIecKOro aHau-
3a, U MOKa3bIBaeM, 4YTO 00€ yCTYyHaroT HAIlUM MOJEJISIM MO0 METPHKE MPOIEHTa
OITHOKH.

KiroueBbie cioBa: ['pademarnuecknii aHanmm3; HeHPOHHBIE CETH; TITyOWH-
HOE o0y4eHHE.

1. Introduction

Let us begin by a quick recap of definitions. Sentence segmenta-
tion, aka sentence boundary detection, is a problem of segmenting a
text into sentences for further processing; and tokenization is a prob-
lem of segmenting a text into chunks that for a certain task constitute
basic units of operation (e.g. words, digits, etc.). At a first glance the
problems seem trivial; after all, most written languages use special
symbols to terminate sentences and whitespaces to delimit words. This
is however not always the case.

First, although for many languages sentence final punctuation con-
sists of a period (dot), a question and an exclamation mark, some lan-
guages use different sets of symbols (Brown, 2017). Second, regard-
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less of symbols used as delimiters in any given language, chances are
that those symbols have other functions as well, e.g. periods (dots)
may be used in abbreviations, initials or in numbers as decimal points.
Third, sentence and token definitions depend on the task at hand. For
instance, while sentence segmentation may not be needed and a simple
whitespace tokenization may be enough for a bag of word-based docu-
ment classification, for parsing one may need to consider multiple sen-
tence utterances in direct speech as a part of a host sentence (sentences
in a sentence) and count clitics (syntactic words usually delimited with
hyphens and apostrophes, but not whitespaces) as separate tokens.
Thus, to solve sentence and token segmentation problems one cannot
blindly segment texts at the occurrences of certain symbols, and has to
resort to a more sophisticated approach.

tagas: ITTTIOTIIIIITSIOTIOTITIIOTITIY

Fig. 1. An Example of an IOB-labeled text in English, Italian, and Kazakh

In this work we cast the token and sentence segmentation (TSS)
problems as a single sequence labeling task and propose artificial neu-
ral network-based solutions, namely three character-based deep learn-
ing models. Unlike much of the previous work, our approach requires
neither rule nor feature engineering. The only resource required is a
training set, where each character is labeled with an IOB (Inside Out-
side Beginning) tag. Performing TSS jointly and using 10B-like for-
mat is not, in itself, a novelty, Evang et al. (2013) have implemented
this approach in their CRF-based system called Elephant. However,
unlike Elephant, our models make use of character embeddings, i.e.
map characters into continuous vector space, and make no use of pre-
defined features. Experiments show that our models achieve top per-
formance for Kazakh language, for which TSS evaluation has never
been carried out before. In order to show that the proposed models can
achieve competitive results we compare them to a popular TSS system
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Punkt (Kiss and Strunk, 2006) and the aforementioned Elephant sys-
tem, which is considered the state-of-the-art. For this experiment we
use publically available data sets for English and Italian languages.

2. Related Work

Existing systems for token and sentence boundary detection are
based on hand written rules, unsupervised and supervised learning ap-
proaches. Rule-based systems (Grefenstette, 1999; Jurafsky and Mar-
tin, 2008; Dridan and Oepen, 2012) utilize hand-written rules, fixed
lists of abbreviations and other lexical items to detect sentence bound-
aries. As a result such approaches are hard to maintain and not easy to
adapt to new languages (Silla Jr. and Kaestner, 2004) or domains.

Unsupervised learning systems do not require specific hand-cod-
ed regular expressions and annotated training data. Mikheev (2002)
presented an unsupervised approach for sentence boundary detection,
proper name identification and abbreviation detection. The proposed
system achieved respective error rates of 1.41% and 0.65% on WSJ
and Brown corpora. The author concluded that the most crucial factor
for sentence segmentation was detection of abbreviations and prop-
er names. A similar system called Punkt was proposed by Kiss and
Strunk (2006). The approach here has two detection stages: abbrevia-
tion detection and token-based classification. This system reached high
accuracy, rivaling handcrafted rule-based and unsupervised systems.
Compared with Mikheev’s system, Punkt’s error rates on WSJ and
Brown corpora were 1.65% and 1.02%, respectively.

Supervised learning approaches utilize hand-engineered features,
such as POS tags, tokens neighboring potential sentence boundaries,
abbreviation lists, letter case (lowercase, uppercase), etc. These systems
utilized maximum entropy models (Reynar and Ratnaparkhi, 1997)
and conditional random fields (Fares et al., 2013). Many works have
shown that conditional random field (CRF) is the most popular model
for sequence labeling tasks (Lafferty et al., 2003; Tolegen et al., 2016).

Evang et al. (2013) presented a CRF-based TSS system — Elephant
that uses a single character as a basic unit of operation. The system
uses several features, such as Unicode categories, Unicode charac-
ter codes, and combination of the two, as well as the 10 most active
outputs of learned hidden states of a deep learning model as one fea-
ture category. Unlike our approach, Elephant uses the discrete features
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rather than distributed embedding features. Numerous works on deep
learning for NLP have shown the advantage of embeddings that tend
to capture meaningful information and reduce task-specific features
engineering.

3. Method
3.1 I0B labeling

In order to jointly learning one model for two tasks, we adopted
IOB tagging scheme to identify the boundaries of the tokens and sen-
tences. An example is given in Fig. 1. The tags S and T denote the
beginnings of sentence and token boundaries respectively. Inside of a
token is labeled I, and outside as O. Passages included in “<” and »>”
denote segmented sentences. In the given example whenever tokens
and sentence boundaries are not preceded by an outside character (O)
they are underlined.

3.2 A general neural network

We introduce a general neural network model (Collobert et al.,
2011) for token and sentence boundaries detection. The model is usu-
ally characterized by three specialized layers: (i) a character look-up
table layer that extracts a window of character’s embeddings from a
character parameter matrix; (i) a general hidden layer; (iii) one output
layer that is used to compute normalize scores for labels. The model
architecture is shown on Fig. 2 and in what follows we refer to this
model as NN.

Character look-up table. Let C be the list of characters derived
from training data, d be the dimension of character embeddings,
Q € R¥C| be the matrix of character’s embeddings. Suppose that a
string s is made up of a sequence of characters [c,,...,c,], where 1 is the
length of string. Then the character-level representation of s of is given
by the matrix Q, where the j-th column of matrix Q corresponds to the
character embedding for C;. We use a sliding window approach to get
a fixed sized w (a hyper-parameter) window of character embeddings
around current character. Each character in the window is first passed
through the look-up operation which produces a matrix of character
embeddings that can be viewed as a wxd-dimensional vector x by con-
catenating each column vector, which can be fed into the next layers.
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Hidden layer. The embedding of characters xERY* is extracted
from the look-up table and is fed into a hidden layer which performs
non-linear transformation followed by an element-wise activation
function ¢ such as tanh, and the computation of this layer is:

h=o(Wx+b,) (M
where W,€ R is the parameter, b,E R"1*! is a bias term, A€ R"I is
hidden units, H, is dimension of hidden layer.

The output layer is finally added on the top of the hidden layer for
scoring boundary labels:

Score (x,T,0) = softmax(W, h + b,) 2)
where Score(x,y,0)ER™! is a score of labels that computed by neural
network with parameters 6 = {Q,W,,b,,W,,b,}, |T| is the number of

tags. The parameters of models are initialized to small random num-
bers and automatically trained the by back-propagation algorithm.

3.3 Bi-directional LSTMs

Recently, LSTM neural networks have shown great promise in
many NLP tasks (Greff et al., 2015; Ling et al., 2015; Toleu et al.,

Input Window
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Fig. 2. Model architecture




106 CEKLHUA 1

2017) including language modelling, part-of-speech tagging etc. The
architecture of LSTM consists of a set of recurrently connected states
that can be viewed as memory blocks. Each block contains certain
self-connected memory cells and three gates: input, output and forget
gate. The gates provide continuous analogues of write, read and reset
operation for the cells.

In order to examine the effectiveness of LSTM network for TSS,
we use a model to predict each boundary label using LSTM. The ar-
chitecture of our LSTM-based network is a variant that was described
by Graves and Schmidhuber (2005), and is frequently cited in the lit-
erature.

Given a string made up of a sequence of characters , we encode
each character into a vector representation then feed into our LSTM-
based models, computing the forward hidden state and the backward
hidden state. Both hidden states are concatenated into a single vector
and fed into the output layer. In what follows we refer to this model
as bi-LSTM, the model only uses the forward hidden states as LSTM.
The architecture of the model is shown on Fig. 3.

4. Experiments

4.1. Data sets

The experiments were conducted on three datasets: (i) Kazakh
texts from Kazakh corpus (Makhambetov et al., 2013) and UD tree-
bank (Makazhanov et al., 2015); (ii) English newswire texts taken
from the Groningen Meaning Bank, GMB (Basile et al., 2012); (iii)
Italian texts from the PAIS'A corpus (Borghetti et al., 2011). Each
dataset was split into three parts: a training set, a validation set,
which is used for early stopping to select the best model and for
optimizing the hyper-parameters, and a test set used for the final
evaluation. Kazakh data needed additional processing as it was not
IOB-labeled. We have performed an automatic IOB labeling based
on existing token and sentence segmentations. Table 1 provides sta-
tistics on the domains of the texts and data quantities in terms of
numbers of sentences and tokens.
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Fig. 3. Architecture of bi-LSTM-based model

Table 1. Characteristics of the data sets

Language Domain # sentences # tokens
Kazakh web/various 4360 96,760
English newswire 2 886 64,443
Italian web/various 42 674 869,095

4.2. Model setup

We implement all neural network models using Java programming
language and use the same hyper-parameters in all of three models:
35 for character level embeddings with random initialization, 9 for
window size, 100 hidden states. We run 300 epochs on training and
development sets, and select one model that is optimized on evalua-
tion over the development set. The selected model is applied to the test
set for the final evaluation. We used the CoNLL evaluation script to
report, accuracy, precision, recall and F-measure over the token and
sentence boundary labels.

4.3. Results

As it can be seen from Table 2, a general neural network model
(NN) achieves a perfect 100 on all metrics, and clearly outperforms
LSTM-based models in the task of sentence boundary detection for
English language. One possible explanation is that the model NN has
a window (the size is 9) to capture some corresponding characters and
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predict a label to the centered one character, in this case, the prediction
is made by conditioning on the left and right 4 characters. As our pre-
liminary experiments showed that taking a smaller or larger window
size, it harms the model performance on the sentence boundary label,
but for token boundary, it does not have a significant effect.

Table 2. Evaluation results for English

Sentence segmentation Tokenization
Models | Precision | Recall | F-measure || Precision | Recall |F-measure
NN 100 100 100 99.92 99.82 99.87
LSTM 99.34 99.34 99.34 99.94 99.86 99.90
bi-LSTM | 99.67 99.34 99.50 99.95 99.86 99.90

On the other hand, the LSTM-based models achieve marginal im-
provement of the NN model in tokenization. In general all of the three
models achieve near perfect results on the English data set.

Table 3. Evaluation results for Italian

Sentence segmentation Tokenization
Models | Precision | Recall |F-measure || Precision | Recall | F-measure
NN 99.28 96.32 97.78 99.63 99.78 99.70
LSTM 99.00 96.27 97.62 99.52 99.71 99.61
bi-LSTM | 99.25 96.76 97.99 99.74 99.86 99.80

As shown in Table 1, the size of the Italian data set is more than
ten times larger than that of English and eight times larger than that
of Kazakh. It is interesting to see the performance of neural network
models for token and sentence boundary detections given larger train-
ing data. As evident from Table 3, the bi-LSTM model benefited the
most from the abundance of data and was second to the NN model
only in terms of precision of sentence segmentation. In general for the
Italian language sentence segmentation turned out to be less accurate
compared to English, but tokenization is still at the acceptable 99.8%
in terms of F-measure.



CEMAHTHUYECKUE TEXHOJIOI'MA 109

From Table 4 one can observe that for Kazakh language the NN
model detects sentence boundaries more accurately even though the
other models use the same context window size (from the preliminary
experiments, we observed that all of the LSTM-based models gave
lower results without using a context window). This model has the
highest recall in the tokenization task. As we have learned from the
experiment on Italian, LSTM-based models are more sensitive to the
size of training data, and thus maybe performing lower on a relatively
small data set. In general all of the models exhibit a significantly lower
performance on Kazakh data set. This can be explained by the fact that
a large portion of this data set came from the Web (cf. Table 1), a noto-
riously noisy source. While the Italian data set contains certain amount
of Web texts as well, this data set as a whole is much larger than the
Kazakh one. Thus, we speculate that the fact that the data set was noisy
and small may have hindered the performance of the models.

Table 4. Evaluation results for Kazakh

Sentence segmentation Tokenization

Models | Precision | Recall | F-measure || Precision| Recall | F-measure

NN 92.70 99.44 95.95 99.74 99.44 99.59
LSTM 92.43 97.95 95.11 99.58 99.43 99.50
bi-LSTM | 92.20 99.25 95.60 99.82 99.40 99.61

Table 5. Comparison with other systems

English Italian
Models Sentence Sent. + Tok. Sentence Sent. + Tok.
(F-measure) | (error rate) (F-measure) | (error rate)
Punkt 98.51 - 98.34 -
Elephant 100 0.27 99.51 0.76
NN 100 0.05 97.78 0.12
LSTM 100 0.03 97.62 0.13
bi-LSTM 100 0.03 97.99 0.07
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In order to assess the performance of our models relative to exist-
ing systems we compare the performance of our models to the results
reported by Evang et al. (2013) for their system Elephant and for an-
other popular TSS system, Punkt (Kiss and Strunk, 2006). That is to
say, we do not actually run and evaluate those systems. Instead we
run our systems on the data that were used in the original experiment
(Evang et al., 2013) and compare the results to the ones reported in
that original experiment. The comparison is carried out in terms of F-
measure of sentence boundary detection and combined (sentence and
token segmentation) error rate. The results of the comparison are given
Table 5.

As it can be seen, for English all of the models achieve a perfect F-
measure of 100% on the sentence segmentation task, except Punkt that
performs at 98.51%. When it comes to the combined TSS error rate
our LSTM-based models achieve the lowest score of 0.03, improving
9 times over the state-of-the-art system, Elephant. When it comes to
sentence boundary detection for Italian, however, our models are out-
performed by both of the baseline systems. Here Elephant achieves a
very strong F-measure of 99.51%, Punkt yields 98.34%, and the best of
our models, bi-LSTM, performs at a decent 97.99%. Nevertheless, as
it was the case with English, in terms of error rates for both token and
sentence segmentation, our models perform much better, yielding the
scores of 0.12, 0.13, 0.07 for NN, LSTM and bi-LSTM (without using
any external features) respectively. Here the best performing model,
bi-LSTM, improves almost 11 times over Elephant, whose error rate
was (0.76. These results indicate that character-based deep learning
models are better at modeling token boundary detection and also give
very competitive results for sentence segmentation.

5. Conclusion

We have presented character-based deep learning models for joint
token and sentence boundary detection. The main advantage of our
approach is that it does not require any manual rule and feature engi-
neering, and as such, is easy to maintain and adapt to new languages/
domains. We have carried out both an absolute and comparative evalu-
ation of our models on three languages (Kazakh, English and Italian).
Our experiments showed that the proposed models achieve competi-
tive results when compared to the state-of-the-art systems.
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