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Abstract 

For the last decade, deep eutectic solvent (DES), a novel solvent, has gathered lots 

of attention due to their favorable properties such as a low melting point, non-

toxicity and low-cost. In this work, a combination of tetrabutylammonium chloride 

(TBAC), polyethylene glycol (PEG-200), and ferric chloride (FeCl3) at a molar ratio 

of 4:1:0.05, a metallic based deep eutectic solvent is analyzed using molecular 

dynamics simulation. The analysis reveals the interactions between the components 

of DES, which might lead to the formation of the DES, i.e., strong depression in the 

melting point as compared to the individual component. Further, the solvent was 

also tested for fuel desulfurization using molecular simulations. For the analysis n-

octane was chosen as fuel with ~2000 ppm dibenzothiophene and the results suggest 

strong absorption of sulfur compounds by the DES. Molecular dynamics simulations 

were performed using GROMACS to explore different interactions occurring 

between the components of the DESs and model oil at a molecular level. Interaction 

energies between compounds and radial distribution functions indicate a strong 

interaction between the tetrabutylammonium ion with the dibenzothiophene 

molecule. The given work also shows that the DES can be applied for diesel even 

with high initial concentration of sulfur content and can be applicable for extraction 

of different sulfur compounds such as benzothiophene (BT) and thiophene (TS). 

Additionally, among all tested temperature ranges it was found that use of the room 
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temperature is beneficial for the desulfurization process. Moreover, composition of 

DES was varied by selectively removing either PEG or FeCl3 from the DES to 

evaluate the influence of each compound on the efficiency of desulfurization 

process. 
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Chapter 1 - Introduction 

Petroleum products play a significant role in daily life; however, it is not a secret 

that those products carry a lot of polluting compounds which must be removed in an 

environmentally friendly way. Production of diesel with low content of sulfur 

became one of the significant challenges for the petroleum industry. Legislation of 

majority countries in the world requires decreasing the allowable limit of sulfur 

concentration in fuels and middle distillates to as low as 10 ppm and beyond [1]. The 

conventional method of sulfur content reduction is hydrodesulfurization (HDS) 

process. However, the process has its own drawbacks, such as use of elevated 

temperatures 300-400 oC, high pressure varying from 30 atm to 130 atm, 

consumption of huge amount of hydrogen, and, complicated aromatic-sulfur 

compounds such as DBT and TP cannot be totally extracted [2]. These disadvantages 

of HDS method have pushed towards development of alternative desulfurization 

techniques, amongst which the most promising development is towards the use of 

extractive process by suitable solvents.  

Recently, several ionic liquids have been suggested to work efficiently to extract 

sulfur-based compounds from diesel. However, ionic liquids, because of their 

difficult synthesis, high cost, and questionable toxicity have not been 

commercialized [3]. On the other hand, more recent focus has been on development 
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of Deep Eutectic Solvents (DESs) for extractive desulfurization. DESs are 

considered as greener replacement to ionic liquids. A typical DES consists of at least 

one hydrogen bond accepter and one hydrogen bond donor, which results in a 

mixture with lower melting temperatures than their individual components [4]. Deep 

Eutectic solvents have a number of beneficial properties such as low vapor pressure, 

good solubility and also, they can be easily recovered by anti-solvents like water, 

methanol, or ethanol. Moreover, DESs are considered to be non-flammable, non-

toxic, biodegradable and cheap in terms of synthesis [5]. Considering these favorable 

properties, several applications of DESs have emerged recently, such as metal 

processing, CO2 adsorption, organic synthesis and finally, in oil and gas industries, 

including the use of DESs to extract thiophenic compounds from diesel.  

DESs consist of non-symmetric ions which are large because of the complicated 

structure and they have low lattice energy, thus low melting points. The reason of 

melting point decrease is that the charge is delocalized via hydrogen bonding 

between the hydrogen donor and negative ions. Considering a binary mixture of 

components A and B it can be said that the melting point is decreasing in the direct 

proportion with increase of interaction between those components [6]. 
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Figure 1.1. Formation of eutectic point in a phase diagram [6]. 

1.1 Objective  

In this work, molecular dynamics simulation was used to focus on the formation 

mechanisms of a DES, which has been proposed as an efficient solvent to extract the 

refractory compounds from model oils. Moreover, the intermolecular interaction 

between the DESs, diesel, and thiophenic compounds was explored to understand 

the extraction process, as existing research works cover only experiments on 

desulfurization process. Combination of tetrabutylammonium chloride (TBAC), 

polyethylene glycol (PEG-200), and FeCl3 at a ratio of 4:1:0.05 was applied as DES, 

while octane was used to model diesel. The following mixture had been reported to 

extract thiophenic compounds with an efficiency ranging from 81% to ~100%, even 

at very low concentrations and room temperatures, as we discuss later [7]. 
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Dibenzothiophene (DBT), benzothiophene (BT) and thiophene (TS) were used in 

molecular dynamics simulation representing the sulfur compounds.  

In the following thesis, the properties of DESs, its application in industry, and the 

simulation methodology of the desulfurization process with use of GROMACS tool 

are reported in chapter 1 and 2. Then the focus will be put on the formation dynamics 

of DES, its interactions with the octane and DBT molecules in chapter 3. Also, this 

work will be investigating how different parameters affect the extraction process, 

such as operating temperature of the system, initial concentration of the DBT, the 

choice of sulfuric compound and finally, the composition of DES. The concluding 

remarks and possibilities for the future work will be analyzed in the end of the thesis.   
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Chapter 2 – DESs and their applications 

in desulfurization 

2.1 Deep eutectic solvents 

For the last decade, a significant research was done to investigate the novel solvents 

called deep eutectic solvents (DESs) which consist of two or more components, that 

interacting with each other through hydrogen bonds, result in a lower melting point 

than its individual components [8]. The first work on DES came in 2004, wherein 

Abbott et al.  report a mixture of choline chloride and urea at 1:2 molar ratio, and 

the resultant mixture showed depression in melting point of more than 200 oC [9]. 

Depending on the type of components used to form the solvents, DES can be 

categorized into four groups: 

Table 2.1. Classification of Deep eutectic solvents [8]. 

type general formula terms 

I Cat+X-zMClx M = Zn, Sn, Fe, Al, Ga, In 

II Cat+X-zMClx·yH2O M= Cr, Co, Cu, Ni, Fe 

III Cat+X-zRZ Z= CONH2, COOH, OH 

IV MClx + RZ = MClx-1
+ ·RZ + MClx+1

- M = Al, Zn and Z = CONH2, OH 

The general formula for DES is Cat+X-zY, where Cat+ is basically ammonium, 

phosphonium or sulfonium cation, while X- is a Lewis base and it is bonded with z 

molecules of Y which is a Lewis or Bronsted acid. The type I of DES is a mixture 
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between quaternary ammonium salt and metal chloride. The type II consists of 

quaternary ammonium salt and metal chloride hydrate which have relatively low 

cost. Type III is made of quaternary ammonium salt and hydrogen bond donor and 

it attracts a lot of attention due to the solvation abilities of metal chlorides and oxides. 

Finally, the last IV type of DES is consisting of metal chloride hydrate and hydrogen 

bond donor [10]. 

A list of different hydrogen bond donors and salts created by García et al. (2015) is 

presented in the table below: 

Table 2.2. List of possible HBDs and salts [11]. 

HBD Salts 

urea choline chloride 

ethylene glycol choline nitrate 

glycerol ethylammonium chloride 

PEGs tetrabutylammonium chloride 

glucose tetrabutylammonium bromide 

xylitol benzyltriphenylphosphonium chloride 

malonic acid methyltriphenylphosphonium bromide 

arginine 1-butyl-3-methylimidazolium chloride 

lactic acid   

phenol   

monoethanolamine   

FeCl3   

ZnCl2   
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2.2. Formation of DES 

Some deep eutectic solvents are limited in the process application as they have high 

viscosity and consequently, low conductivity in comparison with aqueous 

electrolytes [12]. In order understand the formation of DES and to develop new 

DESs with low viscosities, Abbott et al. proposed a Hole theory. The theory analyzes 

the movement of ions inside the DES and calculates different physical properties 

such as density, surface tension, viscosity and conductivity. Hole theory claims that 

during melting, vacant places are formed because of fluctuations, which are 

thermally generated in local density and have constant flux. So, for an ion which has 

a smaller size it is much easier to move into a hole and thus, in this case liquid will 

have low viscosity [9].  

To predict the viscosity of DES it is supposed that holes are still not formed, 

however, they exist and move in the opposite side to solvent ions. At any time, a 

DES will have a hole size distribution and if there is a hole with suitable dimension 

an ion will be moving to it. This means that only some part of ions will be able to 

move and consequently, the viscosity of DES can be decreased insignificantly. 

However, it was found that with higher temperature the hole sizes are bigger and it 

leads to lower viscosities. Basically, knowing the probability of hole formation in 

the liquid it is easy to generate DES with low viscosities [10].  
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Beyond the hole theory and its application to design novel DESs, it is also worth to 

mention about the existence of hydrogen bonds interactions between hydrogen bond 

donor and hydrogen bond acceptor in DES [13]. Molar ratio between HBD and HBA 

plays significant role in determination of eutectic point. From the table below, it can 

be clearly seen that the difference in melting points depends on the molar ratio: 

Table 2.3. Freezing points for DES at 101.3 kPa [13]. 

  mol % BTEAC freezing point (K) 

DES 

A 

20 292 

30 275 

40 279 

50 289 

60 293 

70 314 

DES 

B 

30 308 

40 301 

50 299 

60 300 

70 330 

DES 

C 

30 301 

40 284 

50 278 

60 306 

70 335 

Where, DES A is a mixture of benzyl triethylammonium chloride (BTEAC) and p-

toluene sulfonic acid (PTSA), DES B is TEAC with citric acid (CA), DES C is 

BTEAC and oxalic acid (OX). As visible, the ratio of BTEAC (hydrogen bond 

donor) affects the melting point of the formed DESs. 
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However, not all deep eutectic solvents have hydrogen bonds and a freezing point is 

determined by exchange of ions between compounds and complex structure 

generation. For instance, Abbot et al. in their research work studied the formation of 

choline chloride: zinc chloride DES (ChCl:ZnCl2), where ions pass the equilibrium 

reaction [14]: 

𝑍𝑛𝐶𝑙2  +  𝐶ℎ𝐶𝑙 ↔  𝐶ℎ+  +  𝑍𝑛𝐶𝑙3
− 

Chloride anion is a strong base and it shifts the reaction to the right resulting in 

formation of 𝑍𝑛𝐶𝑙3
−. Furthermore, Mjalli and Shah, continued their research by 

suggesting that formation of this new ion complex causes the decrease of melting 

point and formation of DES by affecting the intermolecular interactions [15]. 

2.3 Application 

Due to their unique properties, DESs have found wide range of application in several 

industries, such as metal processing, gas adsorption, organic synthesis, and in the oil 

& gas industry. One of the significant advantages of deep eutectic solvents is that 

they are liquid at the ambient temperature, have low volatility, non-toxic, 

biodegradable, high conductivity, and have good solubility of metal salts, and are 

thus reasonable choice for solvents in several processes [16]. Some of these 

applications are briefly described below. 
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2.3.1 Metal processing 

One of the current application of DES in metal processing is electroplating, a process 

during which one of the electrode is covered by metal coating formed by dissolved 

metal cations reduced due to electric current. Nowadays, different metals such as 

Zn, Ni, Cr, Co, Cu, Ag, and Au are used in electroplating processes. There are 

several vital criteria for electroplating process such as low cost, high solubility of 

metal compounds, conductivity, non-flammability and electrochemical stability. As 

it was mentioned before, DESs have high solubility for metal salts, oxides and 

hydroxides, which means that application of DESs can avoid the passivation issues 

which occur because of formation of non-soluble compounds at the electrodes 

surface [6]. 

Moreover, the use of DES does not require the consumption of hazardous 

complexing agents, for example, cyanide which is toxic and has high disposal cost. 

Additionally to that, water, which is currently used, is not totally a green solvent, in 

spite the fact that it is non-toxic, as it requires treatment measures before being 

disposed to the water courses [10]. 

Another application is metal electropolishing, an electrochemical process which 

controls dissolution of a metal workpiece resulting in decrease of surface roughness 

and increase of optical reflectivity. The current methods to polish the metallic 

surfaces are using phosphoric and sulfuric acids with different additives such as 
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CrO3. Despite that the majority of those methods are successful there are some 

limitations such as high toxicity of solutions used and high level of gas evolution 

which leads to poor current effectiveness [6].  

There are several advantages of using deep eutectic solvents over conventional 

aqueous acid based solutions in the electropolishing process. One of them is minor 

gas evolution at the interface between anode and solution leading the current 

efficiency being high. Moreover, deep eutectic solvents are considered to be soft and 

non-corrosive in comparison with the common solutions.  

Use of DES allows applying the polish not only for stainless steel but also for 

aluminum, titanium, nickel/cobalt and super alloys. One of examples of DESs that 

has been commercially applied for electroplating is choline chloride with ethylene 

glycol, which has a freezing point of 10 0C [10]. 

2.3.2 Organic synthesis application 

In organic synthesis, completing a process in environmentally friendly way is 

crucial; therefore the choice of solvents plays a vital role. Deep eutectic solvents can 

find huge application in synthesis process because they are “green”. Shankarling et 

al., for example, applied chlorine chloride/urea mixture as DESs for bromination, 

Perkin reaction, and reduction of epoxides [17]. The mechanism of those reactions 

can be seen in Figure 2.1. Commonly, the synthesis of those products requires use 
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of strong acids, toxic solvents, and elevated temperatures and authors showed that 

DESs can be a good alternative to avoid those issues. Moreover, Shankarling with 

his research group has also used DESs for N-alkylation of aromatic amines for 

selectivity purposes (Figure 2.2.) 

 

Figure 2.1. Use of ChCl/urea in organic reaction [10]. 

 

Figure 2.2. Selective N-alkylation of aromatic amines [18]. 

Another example of applying DESs is choline chloride/zinc chloride in 1:2 molar 

ratio for Fischer indole annulation performed by Morales et al. in 2004. The 
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conventional method is carried in hot polyphosphoric acid which is followed by 

addition of water in order to complete filtration of the product. The disposal of acid 

residues may bring a negative impact to the environment. However, use of DES can 

help to avoid this issue and moreover, can give high yield of desirable products [19].  

2.3.3 Gas adsorption 

The consumption of fossil fuels grows every year with increase of energy demand 

and with this accumulation of carbon dioxide increases as well. One of the current 

methods which is used for carbon capture and store (CCS) is adsorption by solvents 

like ethanolamine, or by activated carbon, zeolite, or the novel polymeric adsorbents 

[20].  

Considering that some adsorbents cannot be easily synthesized due their toxicity and 

expensive cost of the process, DESs were suggested as an alternative. Zulkurnai et 

al. in their work used activated carbon prepared from a sea mango mixed with 

choline chloride/glycerol in 1:2 molar ratio. The adsorbent showed a  high CO2 

adsorption capacity [21]. 

Another work was accomplished by Zhu et al., wherein the synthesis of cyclic 

carbonates from carbon dioxide was carried using ChCl/urea (a DES) as a catalyst 

supported on molecular sieves. This DES could also convert epoxides into cyclic 
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carbonates (Figure 2.3). After the process was completed the catalyst could be easily 

extracted and reused as it was insoluble in the products [22].  

 

Figure 2.3. Reaction between epoxide with CO2 in the DES [22]. 

Zubeir et al. used tetramethylammonium chloride with lactic acid in molar ratio 1:2 

as environmentally friendly and biodegradable solvent for CO2 capture. DES 

showed excellent performance based on the thermophysical properties and 

moreover, had a high adsorption capacity [23]. 

2.3.4 Oil and gas industry  

Level of aromatic content in fuels is always under constant control because it may 

harm the environment or cause plugging of equipment. In addition, aromatics form 

azeotropes with aliphatic hydrocarbons and thus make extraction process very 

challenging. Nowadays, different extractants such as sulfone and ethylene glycol are 

used in this process, however, those components are toxic, volatile and flammable. 

Therefore, use of “green” solvents may be a good alternative to avoid those issues 

[24]. For example, Rodriguez et al. observed phosphonium-based DES, while 

another research group lead by Gonzales used choline chloride based DESs as a 
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solvent in the extraction process and the extraction efficiency in both cases was high 

[25], [26].  

Additionally, DES can be used to extract glycerol from biodiesel which is clean 

burning fuel made from vegetable oils or animal fats. Biofuel consists of long chain 

alkyl esters and it is produced through catalyzed transesterification. The by-product 

of this process is glycerol and it increases the viscosity which may cause damages 

in the injection parts of diesel engines. Currently, water is used to wash glycerol 

away from the fuel, however, there is a product loss and moreover, very often this 

water is disposed without treatment procedures. Abbott et al. tried to implement 

ammonium salt as a hydrogen bond acceptor and glycerol as a hydrogen bond donor 

in 1:2 molar ratio and glycerol extraction from the fuel achieved 99 % [27]. 

Finally, DESs have been also used in sulfuric component extraction such as 

benzothiophene, dibenzothiophene and thiophene from the conventional fuel. The 

Chapter I covered the existing desulfurization methods and this chapter, now 

onwards, will focus more on the sulfur extraction processes using deep eutectic 

solvents. 

Several articles came since 2013 on the applications of deep eutectic solvents in 

desulfurisation of oil. Most of these articles focus on the use extractive process for 
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deep desulfurization of fuels and the efficiency of the processes could reach 99% 

depending on the chosen solvents. 

Li et al., for example, were suggesting to apply different combinations of 

tetrabutylammonium chloride (TBAC) or choline chloride (ChCl) as HBA with 

malonic acid (MA), tetraethylene glycerol (TEG), ethylene glycol (EG), 

polyethylene glycol (PEG), glycerol (Gl) or propionate (Pr) as HBD in different 

molar ratio (1:1 or 1:2). In this process n-octane was chosen as model oil and 

benzothiophene (BT) with 1600 ppm concentration as a sulfur compound. 

Desulfurization reaction was lead at 25 0C for 30 minutes with 1:1 mass ratio of DES 

to model oil. As a result the most effective DES was a combination of TBAC and 

PEG which could reach 82.83% sulfur removal for one cycle and 99.48% after fifth 

cycle [28].  

The research group lead by Tang, synthesized DES with addition of aluminum 

chloride (AlCl3), chlorinated paraffins-52 (C12H19Cl7) and aromatic compounds such 

as benzene (C6H6), toluene (C7H8), p-xylene (C8H10), o-xylene (C8H10), 

ethylbenzene (C8H10) and chlorobenzene (C6H5Cl). DES consisting of paraffins-52, 

aluminum chloride, and toluene (DES-T) in 1:6:18 molar ratio was chosen for the 

further analysis. N-heptane was taken as a model oil compound with 3-

methylthiophene (3-MT), benzothiophene (BT) and dibenzothiophene (DBT) sulfur 

content with 500 ppm concentration. The reason DES-T was chosen as a working 
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material is that it showed the best performance in sulfur extraction: 99.81% for 3-

MT, 99.65% for BT and 89.64% for DBT, while the other DESs could reach only 

71.64%, 26.63% and 11.93%, respectively [29].  

Furthermore, Gano et al. used ferric chloride and tetra-n-butylphosphonium bromide 

(TBPB) to synthesize DES. The DES was prepared with two different molar ratio, 

the first DES used FeCl3:TBPB in molar ratio 1:2  (DES 1) and for the second DES 

1:1.5 (DES 2). The authors used numerical method to define the most efficient 

combination of temperature, time and mass fraction and optimized results can be 

seen in the table below: 

Table 1.4. Optimum extract conditions for DESs [30]. 

Extraction time (mins) 163 180 

Extraction temperature (0C) 30.0 50.0 

Solvent mass fraction 0.540 0.530 

Desirability 0.538 0.553 

DBT extraction (predicted, %) 70.4 64.1 

DBT verification (measured, %) 71.7 65.0 

Relative difference (%) 1.30 0.900 

Thiophene extraction (measured, %) 49.8 55.0 

Thiophene verification (measured, %) 48.5 53.2 

Relative difference (%) 1.30 1.80 

 

In their work, to prepare DESs chemicals were mixed in corresponding molar ratios 

and were places in an incubator shaker at 80 0C under 1 bar pressure and 270 rpm 

mixing speed. To form model fuel, n-decane, cyclohexane, iso-octane and toluene 

were 29.79%, 29.79%, 29.79%, 10.63%, mole percent respectively, and a sulfur 
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molecule thiophene and DBT with 500 ppm concentration of each was mixed. By 

applying DES 1 and DES 2, the sulfur extraction after the first cycle was observed 

to be 64% and 44% respectively, while for the real fuel 32% of the sulfur was 

extracted.  

The same DESs were further applied by Shah and Mjalli, where they used 

GROMACS simulation tool to view the interaction forces between DESs and sulfur 

compounds in fuel. The simulation was completed using the same molar ratios, 

atmospheric pressure, and temperature was chosen to be 343 K, and their results 

showed that TBP ion had a very strong interaction with the sulfur compounds [15]. 

The research group headed by Jiang et al. also synthesized different DESs to extract 

sulfur compounds from fuel. In particular, a mixture of 1-methylimidazole (MIM) 

or diethanolamine (DEA) (as HBAs) with propanoic acid (PA) or (NA) (as HBDs) 

was synthesized and as a result MIM/PA performed the best results in sulfur removal 

efficiency. The authors used equimolar quantity of HBD and HBA, in an inert 

atmosphere (Ar), at 50 °C to preparing the DESs. To prepare the model oil, n-octane 

was chosen as a fuel and the following sulfur compounds were mixed: DBT (500 

ppm), BT (250 ppm), 4,6-DMDBT (250 ppm) and 1-dodecanethiol (RSH) with 250 

ppm concentration. In the extraction process 1.75 g of DESs and 5 ml of model oil 

was taken. A temperature of 30 °C was chosen for mixing, except for MIM/NA, 

where in the temperature was 60 oC because of the melting point of the DES. 
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Extraction time was 10 minutes for MIM/NA and MIM/PA, while for DEA/PA 

system was 20 minutes due to its high viscosity. Taking a sulfur partition coefficient 

(KN) as a reference point for sulfur removal efficiency MIM/PA showed the best 

performance (2.31 mgsgIL
-1/mgsgoil

-1), while DEA/PA had 0.43 mgsgIL
-1/mgsgoil

-1 and 

MIM/NA achieved only 0.21 mgsgIL
-1/mgsgoil

-1 [30]: 

 

                                   −𝐾𝑁  =  mg(sulfur)g
𝑚𝑔(𝑠𝑢𝑙𝑓𝑢𝑟)𝑔−1(𝐼𝐿)

𝑚𝑔(𝑠𝑢𝑙𝑓𝑢𝑟)𝑔−1(𝑜𝑖𝑙)
                                    (2.1) 

Li et al., more recently, in their report used metallic based deep eutectic solvents to 

extract sulfur compounds. The research group tried different HBA and showed that 

tetrabutylammonium chloride (TBAC) is the most efficient (the other compounds 

were, TBAC > TEAC > ChCl) while for HBD polyethylene glycol was chosen as 

the best among propionic acid (Pr), glycol (GL), malonic acid (MA), benzoic acid 

(BA) and formic acid (FA) in respective order of decreasing efficiency. In addition, 

the authors also used metallic salt as a third component in the DESs.  Regarding the 

metallic ions ferric chloride showed the highest performance in comparison with 

zinc, copper, cobalt and nickel chlorides resulting 89.53% removal efficiency per 

one cycle. So, the combination of TBAC:PEG:FeCl3 was taken for the further 

analysis with 4:1:0.05 molar ratio respectively. N-octane with ~2000 ppm of 

dibenzothiophene was used as the model oil. Figure 2.4 shows that 

TBAC:PEG:FeCl3 has the highest extraction efficiency, while from Figure 2.5 it can 
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be seen that the efficient molar ratio between the compounds was found to be 

4:1:0.05 respectively [31]. 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Effect of temperature on the 

efficiency. 
Figure 2.7. Effect of mass ratio on the 

efficiency. 

Figure 2.8. Effect of mixing speed on the 

efficiency 
Figure 2.9. Effect of sulfur concentration on 

the efficiency. 

Figure 2.5. Molar ratio for DES. Figure 2.4. MDESs and their efficiencies. 
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Different parameters such as temperature, mass ratio between oil and DESs, mixing 

velocity and initial concentration of DBT were investigated. So, as it can be seen 

from the figures above increase of temperature and initial sulfur concentration leads 

to desulfurization efficiency decrease. However, with increase of mass ratio between 

model oil and DES the removal sulfur activity also rises. Finally, variation of mixing 

speed showed that there is a sharp rise of efficiency at 400 rpm, while after increase 

of speed does not lead to any changes.    

Further, Li et al. synthesized carboxylic acid-based DESs, for example, 

TBAB/HCOOH to extract sulfur compounds such as thiophene (TS), 

dibenzothiophene (DBT), and benzothiophene (BT) from model oil. To prepare 

DESs the raw materials were mixed and heated at 80−90 °C temperature for 2-3 

hours. Those solvents were added to model oil (n-octane) which contained dissolved 

sulfur molecules with 500 ppm concentration. The extraction process was lead under 

30 °C temperature for 40 minutes. So, from different carboxylic acids which served 

as HBDs, formic acid based DES showed good sulfur removal results with extraction 

efficiency reaching 81.75%, 80.47%, and 72% in single stage for BT, DBT and TS, 

respectively and after third cycle increased to 98.32%, 98.24% and 97.6% [32]. 

Shu et al. in their work used tetrabutylammonium chloride as HBA and different 

HBA such as ethylene glycol, glycerol and malonic acid to synthesize DESs. N-

octane with 1000 ppmw of 2-methylthiophene and benzothiophene was chosen as 
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model gasoline. Additionally, the group also used real gasoline with 406 ppmw of 

sulfur content taken from by Sinopec Shanghai Petrochemical Company. To 

synthesize DES different molar ratio between HBA and HBD were varied between 

1:1, 1:2 and 1:3, however, the experiment showed that 1:2 is the best option for the 

extraction process. By further analysis it was found that TBAC/ethylene glycol is 

more efficient than TBAC/glycerol and TBAC/malonic acid and it leads to 

conclusion that alcohol based hydrogen bond donor is more favor than acid-based 

HBD. The research group investigated the extraction efficiency of those DESs for 

desulfurization process of real gasoline and the results showed 38.7%, 31.5% and 

26.3% for TBAC/ethylene glycol, TBAC/glycerol and TBAC/malonic acid, 

respectively. After 5 cycles the results were 85.7%, 76.9% and 71.4%, while 

extraction performance for model fuel is 99.5%, 99.3% and 99.2%, respectively 

[33]. 

Jiang et al. suggested to use extractive method to remove sulfur compound by 

applying choline chloride-based DESs. BT, 3-MBT, DBT, 4-MDBT, and 4,6-

DMDBT were chosen as sulfur compounds with 500 ppm concentration in n-octane 

which was served as a model oil. DESs were represented as the following chemical 

compounds: [C4DMEA]Cl/FeCl3, [C8DMEA]Cl/FeCl3, [C12DMEA]Cl/FeCl3, 

[BzDMEA]Cl/FeCl3 and [BzMDEA]Cl/FeCl3. The DESs were mixed with oil and 

were magnetically stirred for 10 minutes in water bath. As the results showed the 
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most efficient DES was [C12DMEA] Cl/FeCl3 with 52.9% extraction in one step and 

up to 99.3% after five steps (see figure 2.10 below). 

 

Figure 2.10. DBT removal by different DESs (1g) for 10 minutes from model oil (5 mL) [34]. 

Using different sulfur components in model oil showed different extraction abilities 

(as shown in Figure 2.11). As observed from the figure, 4,6-DMDBT can be 

extracted till 35.7% at the first step, whereas for DBT the extraction was about 53%.  

 

Figure 2.11. Different sulfur compounds removal by [C12DMEA]Cl/FeCl3  at 30 °C for 10 min 

[34]. 
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Further, Ani et al. suggested use of tetra-butylammonium bromide (TBAB) and 

polyethylene glycol 200 as a deep eutectic solvent in 1:2 molar ratio, respectively 

and conducted the experiment in continuous liquid–liquid microchannels having 

1.22 mm ID of the glass channel at room conditions. The fuel was prepared with the 

following composition: 29% of iso-octane (CH3)3, 29% of n-decane 

(CCH2CH(CH3)2), 29% of cyclohexane (C6H12) and 13% of toluene (C7H8) and DBT 

with 200 ppm concentration was chosen as a sulfur compound. The extraction 

efficiency was achieved to be almost 80% after one cycle [35]. 

Recently, tetrabutylammonium bromide (TBAB) as a hydrogen bond acceptor and 

polyethylene glycol with different molecular weight, namely, PEG-600 and PEG-

200 as a hydrogen bond donor was also applied in the desulfurization process [36]. 

The model oil consisted of cyclohexane (29 wt%), iso-octane (29 wt%), n-decane 

(29 wt%) and toluene (13 wt%). As sulfur compound dibenzothiophene (DBT) and 

thiophene (TP) were chosen in total concentration 500 ppm (w/w). The extraction 

results showed that by using volume ratio of 1:1 between DES and fuel the sulfur 

compounds can be extracted by 82.40% and 62.16% for DBT and TP respectively 

after the first stage.  

In summary, we observe from all of the above-mentioned studies that DESs have 

great potential in desulfurization and that different parameters such as operating 

temperature, speed of mixing, extraction time, initial concentration of sulfur in fuel 
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had an effect on sulfur extraction. Among the different operation parameters, we 

observe that high temperature is not beneficial for the processes. The mixing time 

was, although different for different system was, in general, low. While high mixing 

velocity could assist and make the process faster, it was avoided so as to control the 

bubble formation during the extraction process. About initial sulfur concentration, 

there are conflicting opinions. Certain reports indicate that with an increase of initial 

sulfur content the extraction efficiency decreases, however, others observe no 

change in the extraction efficiency with variation in the sulfur concentration. Lastly, 

there were discussions on regeneration of DES by applying different anti-solvents, 

which has not been discussed herein, to maintain brevity.  
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Chapter 3 - Simulation methodology 

3.1 Molecular dynamics simulation 

Molecular dynamics simulation is a computational method which allows observing 

the molecules’ behavior inside the system by simulating their movements. Basically, 

the molecular dynamics follows the Newtonian laws of motion subjected to potential 

energy (U(r)), originating because of the intermolecular interaction [37]. 

                                              fi = −∇riU(r) = mid
2(ri)/dt2                                       (3.1) 

where, mi the particle mass and ai is its acceleration. The total energy of the system 

containing N molecules is comprised of kinetic (K) and potential energies (U(r)): 

                                                        H = K + U(r)                                                (3.2) 

Where K is:  

                                                   𝐾 =  ∑ 𝑚𝑖  𝑣𝑖
2/2𝑁

𝑖=1                                               (3.3) 

And U(r) is summation of different energies: 

                         U(r) = Ubond + Uangle + UUB + Udihedral + Uimproper + ULJ + UC             (3.4) 

Where Ubond is the energy which stored in covalent bonds in the system. Each bond 

is characterized by a harmonic spring with specific force constant (Kb), actual length 

bond b and the equilibrium length bond b0: 
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                                             𝑈𝑏𝑜𝑛𝑑𝑠 = ∑ 𝐾𝑏(𝑏 − 𝑏0)2
𝑏𝑜𝑛𝑑𝑠                                 (3.5) 

Another term which contributes to the total potential energy is Uangle which is the 

valence angle energy generated when the angle between two covalent bonds (θ) 

moves from its initial position θ0 with Kθ angle force constant: 

                                            𝑈𝑎𝑛𝑔𝑙𝑒 = ∑ 𝐾θ(θ − θ0)2
𝑎𝑛𝑔𝑙𝑒𝑠                                 (3.6) 

The following parameter UUB corresponds to Urey-Bradley component which is a 

cross-term accounting for atoms experiencing nonbonded interactions, where s is the 

distance between separated atoms, s0 is the equilibrium distance and KS is the 

respective force constant:  

                                              𝑈𝑈𝐵 = ∑ 𝐾S(s − s0)2
𝑈𝐵𝑠                                        (3.7) 

The next term Udihedral which is the dihedral interaction energy accounts for the 

torsional energy surface, where Kφ is the dihedral force constant, n is the multiplicity 

factor of the function, φ is the dihedral angle and δ is the phase: 

                                       𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 = 𝐾φ(1 + cos (𝑛φ − δ)                             (3.8) 

The fifth term Uimproper is the energy of the improper, out of plane torsions, where Kω 

stands for the force constant and the difference ω-ω0 is the out of plane angle: 

                                        𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 = ∑ 𝐾ω(ω − ω0)2
𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠                          (3.9) 
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The last two terms belong to non-bonded interactions which are Lennard-Jones and 

Coulomb potentials: 

                             𝑈𝐿𝐽 = ∑ 𝜖𝑖𝑗 ((
𝑟𝑖𝑗

𝑚𝑖𝑛

𝑟𝑖𝑗
)

12

− 2 (
𝑟𝑖𝑗

𝑚𝑖𝑛

𝑟𝑖𝑗
)

6

 )𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠               (3.10)  

And, 

                                             𝑈𝐶 = ∑
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝜖𝑟𝑟𝑖𝑗
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠                               (3.11) 

Van der Waals interactions are modeled between atoms i and j at distance rij through 

Lennard-Jones (LJ) potential. The minimum LJ energy between atoms with 𝜖𝑖𝑗 value 

takes place at distance 𝑟𝑖𝑗
𝑚𝑖𝑛. 

While the Coulomb potential is responsible for the electrostatic interaction between 

charges qi and qj. 𝜖0 is permeability of vacuum, 𝜖𝑟 is the relative dielectric constant 

and usually it is taken as 1 [38]. 

3.2 GROMACS TOOL 

Gromacs 5.0 package was used to perform all-atom molecular dynamics simulation 

for the DES. As it was mentioned before octane and DBT are the main compounds 

for the model oil while DES is consisted of TBAC, FeCl3 and PEG, where the last 

one is chain molecule with chemical formula C2nH4n+2On+1. To match the mass and 

molar ratio n was chosen to be 4 resulting in the molar mass being ~ 200 g/mol. 
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Optimized coordinates and forcefield parameters for tetrabutylammonium (TBA) 

ion and PEG-200 were taken from Automated Topology Builder (ATB) database 

[39]. The interaction parameters for Fe+3 ion was taken from Lin et al. [40]. All other 

parameters were taken according to the gromos54a7 forcefield [41]. Simulations 

were started using a low-density box with 15×15 ×15 nm3 was chosen for the study 

and the number of molecules were inserted according to specified molar ratio of 

4:1:0.05. Specifically, 400 molecules of tetrabutylammonium, 415 molecules of 

chloride, 100 molecules of polyethylene glycol and finally, 5 molecules of iron were 

added. In addition, octane (911 molecules) was used as to model diesel and DBT (2 

molecules) was used to mimic 2000 ppm of sulfur content in oil. Forcefield 

parameters from octane and DBT were also taken from the ATB server. Several 

systems were designed to systematically explore the mechanism(s) of DES 

formation and the sulfur extraction process. 

After creating the initial geometry with the molecules, energy minimization was 

performed and further NVT-equilibration and NPT-equilibration for 0.2 ns at 

298/333 K and 1 bar was completed. The simulations were put to run for 10 ns and 

only the last 2 ns were used for the equilibrium analysis. During this simulation 

LINCS constraint algorithm was applied for all the bonds. For Coulomb and 

Lennard-Jones (LJ) short-range interactions 1.5 nm cut-off was applied. Particle 

Mesh Ewald summation method was used to calculate long-range interactions with 
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0.16 nm grid spacing and fourth-order interpolation. The modified Berendsen 

coupling method was used for maintaining constant temperature at 298/333 K, while 

pressure was running under Parrinello-Rahman coupling method at 1 bar. Periodic 

boundary conditions were on during all simulation steps (Figure 3.1). After the 

simulation was completed Visual Molecular Dynamics (VMD) tool was applied to 

extract the radial distribution functions and visual models of running systems. All 

other analysis was performed using Gromacs package.  

 
Figure 3.1. Simulation worksheet for the Thiophenic compounds. 
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3.3 Systems simulated 

In order to get the full picture of desulfurization process, different systems were 

simulated, wherein, several parameters were varied such as temperature of the 

system, the choice and the concentrations of the sulfur compounds, and finally, the 

composition of deep eutectic solvents.  

The first system which was simulated was pure TBAC and it was completed to 

analyze the base case, and identify the interaction energies between TBA and Cl. 

Simulation of the second system was directed to show the process of DES formation 

and how melting point was decreased. Later, system 3, which is the model oil 

consisting of n-octane with ~2000 ppm of DBT, was simulated to understand the 

strength of interactions between DBT and octane and to prove of necessity for 

desulfurization process.  

Starting from system 4 the desulfurization process was simulated to show that 

application of TBAC:PEG:FeCl3 in DBT removal. Moreover, this system was also 

simulated at 60 0C and 1000C in order to follow the effect of temperature on the 

process. Later, systems 5, 6, 7 and 8were simulated to evaluate how increase of 

sulfur concentration (5000 ppm and 9000 ppm respectively) may affect the 

interaction between octane and DBT, and the desulfurization process.  
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Systems 9 and 10 were created to study how extraction activity depends on the 

different sulfuric derivatives, such as thiophene (TS) and benzothiopene (BT).  

Starting from system 11 to 14 the fuel composition was kept the same, while DES 

content varied in the way that either polyethylene glycol or ferric chloride was 

removed from the system so that only two components left in the DES. The main 

aim for running those systems was to study how DES constituents may affect the 

desulfurization process. So, systems 11 and 12 solvents were represented by 

TBAC:PEG, while systems 13 and 14 used TBAC:FeCl3 solvents.  

Finally, the last system containing octane with DES was simulated as a negative 

control in order to determine mixability of fuel with DESs. The results are shown 

separately in Appendix A.  

Using molar ratio between TBAC, PEG and FeCl3 (4:1:0.05) number of molecules 

were calculated: 400 for TBAC, 100 for PEG and 5 for FeCl3, and knowing the mass 

ratio between model oil and DESs the number molecules for n-octane was calculated 

to be 911 with 2 DBT molecules corresponding to ~ 2000 ppm concentration.   

The table below provides details of the different systems which were simulated: 
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Table 3.1: Number of molecules used in simulation for different systems.  

System Number of molecules of    

 No. TBA+ Cl- Fe+3 PEG Octane DBT TS BT 

1 400 400 - - - - - - 

2 400 415 5 100 - - - - 

3 - - - - 911 2 - - 

4 400 415 5 100 911 2 - - 

5 - - - - 911 5 - - 

6 - - - - 911 9 - - 

7 400 415 5 100 911 5 - - 

8 400 415 5 100 911 9 - - 

9 400 415 5 100 911 - 2 - 

10 400 415 5 100 911 - - 2 

11 197 197 - 394 911 2 - - 

12 400 400 - 100 911 2 - - 

13 366 915 183 - 911 2 - - 

14 400 415 5 - 911 2 - - 

The pressure and temperature of all systems were kept constant at 298 K and 1 bar. 

Also, system 4 was run at 333 K and 373 K, thus, in total 16 systems were simulated. 
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3.4 Force-field validation 

In molecular dynamics simulations the choice of force-field parameters may affect 

the final results. In order to get an idea how simulated results may be different from 

the experimental ones, the thiophene compound was selected as a reference for the 

analysis.  

Following the pathway described in section 3.2 a box with 500 molecules of 

thiophene was simulated: 

 

Figure 3.2. Simulated box of 500 thiophene molecules through VMD tool. 

By simulating TS molecules at 288 K, 298 K, 307 K and 317 K the temperature 

dependence density was obtained. From the Figure 3.3 it can be seen that both 

densities from literature and from the gromacs simulations follow the same trend 

and there is insignificant difference in their values.  



35 

 

Temperature, K

285 290 295 300 305 310 315 320

D
e
n

s
it

y
 o

f 
T

S
, 

k
g

/m
3

800

900

1000

1100

1200

Simulation

Literature

 

Figure 3.3. Density of TS over temperature. 

Moreover, octane, dibenzothiophene, thiophene and polyethylene glycol were 

simulated separately in order to obtain density (ρ) and enthalpy of vaporization 

(ΔHvap) parameters and to compare them with literature values (Table 3.). 

To calculate the enthalpy of vaporization the following formula was used: 

                                              ∆𝐻𝑣𝑎𝑝 =  𝑈𝑣 −
𝑈𝐿

𝑁
+ 𝑅𝑇                                        (3.1) 

Where Uv is the total potential of the vapor phase, UL is the total potential of a liquid 

phase, R is a gas constant (8.31* 10-3 kJ/mol/K) and T is the temperature of the 

system (298 K). 
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Table 3.2. Comparison of density and enthalpy of vaporization for the selected components. 

 

Component 

Enthalpy (kJ/mol) Density (g/cm3) 

simulation Literature [42] simulation literature 

Octane 35.9 34.4 0.744 0.700 

DBT 63.2 78.3 1.21 1.30 

TS 30.1 31.5 1.14 1.10 

PEG 94.8 66.1 1.18 1.10 

From the table it can be seen that the values (at 25 0C and 1 bar) taken from the 

literature and obtained through simulation are quite similar, supporting our choice 

of the forcefield parameters.  
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Chapter 4 - Results and discussion 

4.1 DES formation 

The molecular mechanism of the formation of DES is not clear. In general, the 

formation of DESs are described in terms of hole theory or in terms of hydrogen 

bonds. However, in our case, type I DESs, hydrogen bonding is not feasible, and the 

hole theory does not reveal the molecular picture, Hence, our first aim in this work 

is to explore the formation mechanism of the DES, i.e., to understand the strong 

depression in the freezing point observed from the molecular point of view. 

Therefore in the analysis we start with comparing simulation of pure TBAC (system 

1) with the system containing TBAC:PEG: FeCl3 (system 2).  

 

Figure 4.2. Radial distribution function 

between the TBA ion and PEG for system 2. 

Figure 4.1. Radial distribution functions 

between TBA ion and Cl ion for system 1 and 2. 
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The radial distribution functions (rdfs) between different components were 

determined. The rdfs show the measure of probability for an atom being at the 

distance r from the reference atom. Nitrogen atom of the TBA ion, and central 

oxygen atom of the PEG molecules were chosen as reference to determine the rdfs.  

Figure 4.1 shows the rdfs between the central nitrogen atom of the TBA ion with the 

chloride ion before and after mixing with FeCl3 and PEG, i.e., system 1 and system 

2. From this figure it can be seen that in system I the first Cl ion appears at distance 

of 4.35 Å from the central nitrogen atom of the TBA ion and the peak value of g(r) 

is 25, however, in system II, the interaction decreased significantly, which can be 

explained by the fact that TBA ion started to interact with PEG molecule as shown 

in Figure 4.2. It is also important to highlight that after mixing with PEG and FeCl3, 

the distance between nitrogen atom and chloride ion decreases with very low peak. 

The strong decrease in the strength of interactions between the TBA and Cl ions 

probably causes the strong depression the melting point of the DES.  

Moreover, the total interaction energies (sum of LJ and coloumbic energies) between 

TBA and Cl ions of system I were compared with total energy of DES. Figure 4.3 

clearly shows that interaction energy of pure TBAC system is much higher than the 

DES system, which also indicates towards the depression in the melting point 

observed. We also note that although the difference between the interaction energy 
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is small, it is significant, as the DES also contain PEG and FeCl3, for which pure 

energies are not shown.  
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Figure 4.3 Interaction energy profile for TBAC and DES (systems 1 and 2). 

4.2 Desulfurization process 

After understanding the formation of DES, we simulate the model fuel containing ~ 

2000 ppm DBT concentration (system 3) to show how strong interaction is between 

octane and DBT compounds. Running the system with 911 molecules of n-octane 

and 2 DBT molecules it was found that interaction between them is significantly 

high (-182 kJ/mol), which means that this interaction must be weaken somehow in 

order to remove sulfur from the fuel.  

A system with DES was mixed with this model oil to analyze the effectiveness of 

DES in the desulfurization process. Figure 4.4 compares the interaction energy 

between DBT and n-octane before mixing with DES and interaction energy between 



40 

 

DBT and DES after mixing fuel with deep eutectic solvents. The results show that 

DES captures the DBT molecules as the DBT-DES system has approximately twice 

the energy in comparison with the DBT-octane system. In particular, the energy 

between octane and the sulfur compound was ~80 kJ/mol, however, between the 

DES and sulfur compound was ~150 kJ/mol.  
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Figure 4.4. Interaction energy profile for DBT-octane and DBT- DES in system 4. 

Further analysis of the interaction energies between DBT and DES showed that 

tetrabutylammonium chloride and polyethylene glycol are the most contributing 
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agents for the desulfurization process, while ferric atom has almost zero (0.0015 

kJ/mol) interaction with the DBT molecule: 
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Figure 4.5. Interaction energies for DES compounds with DBT in system 4. 

In order to further understand the system, the radial distribution functions were 

plotted for the dibenzothiophene molecule with octane and deep eutectic solvents 

after mixing. The central sulfur atom from DBT molecule was taken as a reference, 

while for octane it was the central carbon atom (C4). The results, as shown in Figure 

4.6, indicate that DBT molecules, among all the components present in the system, 

weakly interacts with octane, but has strong interactions with TBA ion, followed 

with the PEG molecules. 
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Figure 4.6. Rdfs for DBT with octane, PEG and TBA inside the system 4. 

The following figures show the visual representation of desulfurization process, 

where before mixing DBT molecule was surrounded by octane molecules, while 

after the process was completed DBT was captured by DES.  
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4.3 Effect of process parameters on extraction process 

In this section concentration of dibenzothiophene, effect of temperature on the 

process was studied. Moreover, DBT will be substituted by thiophene (TS) and 

benzothiophene (BT) to follow the desulfurization process.  

 4.3.1 Concentration of the thiophenic compounds  

Next, in order to study how initial sulfur concentration affects the extraction process 

two more systems 5 and 6 were simulated, which contain octane with approximately 

5000 ppm and 9000 ppm concentration of DBT (5 and 9 molecules of DBT in 911 

molecules of octane).  As mentioned above, although the literature uses a 

concentration of thiophenes of less than 2000 ppm, in simulations we have worked 

with high values in order to (i) to be able to perform simulations within reasonable 

Figure 4.7. DBT molecule surrounded by octane 

(black). 

Figure 4.8 DBT molecule captured by DES (red). 
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timeframe (ii) to capture the effectiveness of these solvents at high sulfur 

concentrations.  The interaction of DBT with octane was evaluated and as it can be 

seen from Figure 4.9 rise of sulfur concentration leads to increase of the interacting 

strength between those molecules from -470.8 kJ/mol to -845.1 kJ/mol. Later, to 

evaluate if the desulfurization process can be achieved for fuel with higher 

concentration of DBT, systems 7 and 8 with addition of DES were simulated. The 

interaction energy between octane and DBT was -158.2 kJ/mol in the system 7 

containing 5000 ppm DBT and the energy between DES/DBT was -417.9 kJ/mol. 

System 8 showed that octane/DBT interaction was -303.9 kJ/mol, whereas 

DES/DBT was -685.2 kJ/mol, which means that after mixing model oil with DES, 

the oil/sulfur interaction sufficiently decreases leading to conclusion that DES is able 

to extract sulfur compounds from the system.  
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Figure 4.9. The summary of interaction energies for different systems (with increasing DBT 

concentrations). 
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Moreover, rdfs analysis for systems 7 and 8 also shows that DBT interacts more with 

DES rather than with octane. Referring to the interaction energies values for those 

systems, the most interacting component from DES were TBA ion and PEG, 

therefore they were chosen for radial distribution analysis which is presented in 

Figure 4.10 and Figure 4.11. As it can be seen from the pictures the most contributing 

component to interact with the DBT molecule herein was PEG which had peaks 

around 4 Å or even higher (for system 8) with highest value of 3.5. TBA could reach 

peaks value of 2 at 4 Å, while octane showed peak value of 1 at 3 Å for the both 

systems. Thus, the obtained results may claim that the desulfurization process using 

TBAC:PEG:FeCl3 at the molar ratio (4:1:0.05) can be efficiently completed even at 

high concentrations of sulfur compounds.  
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Figure 4.10. Rdfs for DBT with octane, TBA and PEG for the system 7. 
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Figure 4.11. Rdfs for DBT with octane, TBAC and PEG at the system 8. 

 4.3.2 Effect of temperature on the extraction process 

The following analysis was completed in order to observe how increase of 

temperature may affect the desulfurization process. Therefore, system 4 was chosen 

for the study and the simulation was performed at 60 0C and 100 0C. The results are 

summarized in the table below: 

Table 4.1. The energy profile for system 4 at 250C, 600C and 1000C. 

Interactions: 25 oC 60oC 100 oC 

Octane-DBT (kJ/mol) -75.7 -59.7 - 93.6 

DES – DBT (kJ/mol) -157 -192 -99.7 
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The obtained results interestingly show that the desulfurization was achieved, as the 

interaction energies between DBT and DES in all cases is higher than for DBT and 

octane. Even though system simulated at 60 0C has higher interaction value for DES 

– DBT rather than system performed at 25 0C it can be seen that this difference is 

insignificant, and it proves that deep eutectic solvents can be effective at the room 

temperature resulting in the less energy consuming process. Moreover, it can be 

noticed that at 100 0C the interaction between DBT and octane increases, while 

interaction between DES and DBT decreases, and according to Li et al. this happens 

because of an exothermic reaction which takes place between DES and DBT at a 

certain high temperature [31]. 

4.3.3 Varying the type of thiophenes 

As a literature review showed the nature of thiophenic compound may affect the 

extraction efficiency. For example, Jiang et al. in their research tried to vary different 

sulfur compound such as dibenzothiophene, benzothiophene (BT), 4,6- 

dimethyldibenzothiophene (4,6-DMDBT) and mercaptan (RSH) in model oil to find 

out how the extraction efficiency was changed. According to their study the 

efficiency was shown in the following path: DBT > BT > 4,6-DMDBT > RSH, 

where DBT was the easiest extracted compound. One of the reasons for such 

outcome is that RSH has the lowest electron density because of the lack of 

delocalized π electrons. While 4,6- DMDBT was removed with low efficiency 
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because of the steric hindrance occurred between two methyl groups. Also, DBT has 

higher extraction activity in comparison with BT due to the higher number of 

aromatic rings which increases the interaction energy and finally, the alkyl group of 

4,6-DMDBT leads to lower removal efficiency [30].   

In another work by Li et al. (2016), the authors selected thiophene (TS), BT and 

DBT as representative substrates for desulfurization process. The extractive activity 

for each compound presented in the Figure 4.12. From this figure it is not clear which 

thiophenic compound has lower removal efficiency because it also depends on the 

type of DES which was used in the process [28].  

 

Figure 4.12 The extraction efficiency for sulfur compounds completed by vavious DES [28]. 
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Therefore in this study TBAC:PEG:FeCl3 was applied for removal of different sulfur 

substrates such as DBT, BT, TS to analyze how efficiency will be varied.  

Figure 4. 13 DBT molecule [43]     Figure 4.14. BT molecule [44]    Figure 4.15. TS molecule [45] 

In order to compare the results, we introduce a new variable R, a ratio between 

interaction energy of DES-thiophenes and octane-thiophenes (See table 4.2). As it 

can be seen from the table interaction forces between DBT and octane are the 

strongest, however, at the same time it has the highest DES – thiophenes interaction 

resulting in overall extraction ratio 2.07. BT molecule showed low interaction with 

octane and high with DES which came to the highest extraction ratio (2.64). Finally, 

the thiophene compound had the lowest interaction with octane but also with the 

solvents and thus, the extraction ratio was calculated to be the lowest ~1.57.  

Table 2.2. The extraction efficiency for different thiophenes. 

Pair                 

                         thiophenes 
DBT BT TS 

Octane-thiophenes (kJ/mol) -75.8 -47.1 -44.8 

DES-thiophenes (kJ/mol) -157 -125 -70.3 

Ratio (R) 2.07 2.64 1.57 

Even though the results show that all sulfur compounds can be removed from the 

fuel, still there is a huge difference in ratios BT > DBT > TS. The possible reason 
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for such trend is that TS among all sulfur compounds has the lowest electron cloud 

density resulting in the lowest extraction efficiency. While DBT molecule in spite 

of the highest electron density has large steric hindrance, which leads to lower 

extraction activity than for BT [28]. 

4.4 Effect of DES constituent on the extraction process 

Different parameters such as molar ratio between DES compounds, type of hydrogen 

bond donor and acceptor may affect the extraction activity of thiophenic compounds. 

To investigate how each component contributes to desulfurization process, system 

consisting of TBAC:PEG (systems 11 & 12) and TBAC:FeCl3 (systems 13 & 14) 

were simulated and analyzed.  

4.4.1 TBAC:PEG 

Earlier in 2013, Li et al. observed that TBAC:PEG mixtures can also form DES, and 

be used for fuel desulfurization. Their work showed 82.83% of sulfur removal 

efficiency after the first cycle which is lower than if it is with addition of ferric 

chloride (89.53%) [28]. From the figure below it can be seen that authors varied the 

molar ratios and the compounds inside the DES resulting for TBAC:PEG (1:2) being 

the most efficient.  
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Figure 4.16. Different DES and their efficiencies as reported by Li et al. [28]. 

Therefore, TBAC:PEG with 1:2 molar ratio which was taken from the literature was 

simulated (system 11). Also, the molecular content was re-calculated keeping a mass 

fraction between DES and model oil 1:1. The operation conditions were the same as 

for the system 4 (250C and 1 bar).  

The interaction energy between DES and DBT in the system 4 is -157 kJ/mol, while 

for the system 11 is –147 kJ/mol (Table.3) which gives 7% difference and it is a 

reasonable explanation for the efficiency variance for TBAC:PEG:FeCl3 and 

TBAC:PEG.  

Also, as an experiment it was decided to run additional system 12, where FeCl3 was 

simply removed from the mixture to keep the same numbers of molecules for TBAC 
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(400) and PEG (100). As a result the interaction energy between octane and DBT 

was higher than for DES-DBT which means that solvent was not able to extract the 

sulfur compounds (Table.3). 

Table 4.3. Comparison of systems 11 and 12. 

Interactions: System 11 System 12 

Octane-DBT (kJ/mol) -88.9 -128 

DES – DBT (kJ/mol) -147 -114 

Ratio 1.65 0.89 

Summing up the obtained results it can be said that even a low amount of FeCl3 can 

affect the process. Yin et al. in 2016 proposed in their article that acidity of the 

system plays a key role for desulfurization efficiency [46]. Thus, the possible 

explanation for this phenomenon is that addition of FeCl3 which is a Lewis acid can 

affect the acidity of the DES solution and consequently, the efficiency of the process.  

4.4.2 TBAC:FeCl3 

The next two systems, which was simulated, excluded PEG from the desulfurization 

process. Taking into account that no articles were found where TBAC:FeCl3 was 

used as a DES, the molar ratio between those components was chosen to be as a 

theoretical guess 2:1 based on the paper written by Gano et al. in 2014 where tetra-

n-butyl phosphonium bromide was used as a quaternary salt and with combination 

of FeCl3 [47]. As a result system 13 was created with 366 molecules of TBA, 915 
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molecules of Cl and 183 molecules of FeCl3, keeping the mass ratio between model 

oil and DES 1:1. 

In another case, to compare with our base system, numbers of atoms for TBA (400), 

Fe (5) and Cl (415) were used in the system 14. Both results of interaction energies 

are summarized in the table below: 

Table 4.4. Interaction energies for systems 13 and 14. 

Interactions: System 13 System 14 

Octane-DBT (kJ/mol) -98.4 -70.8 

DES – DBT (kJ/mol) -119 -178 

Ratio (R) 1.21 2.51 

Although the mass ratio mass changed and no specific calculations were done the 

extraction ratio for system 14 was doubled in comparison with system 13 meaning 

that the theoretical assumption which was done before is incorrect.  

Taking into account that obtained results for system 14 seem to be even better than 

for system 4 both systems were compared in Figure 4.17 where the interactions 

between DES-octane and DBT-octane are summarized.  
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Figure 4.17. Interaction energies for systems 4 and 14. 

It can be seen that DES without PEG can be not only be effective in the 

desulfurization process but it also has a comparative efficiency.  
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Chapter 5 - Conclusion and future work 

This research was aimed to understand the molecular interaction occurring in the 

metallic deep eutectic solvent and the desulfurization process. The results with 

TBAC:PEG:FeCl3 at 4:1:0.05 molar ratio at under 25 0C and 1 bar show that each 

individual chemical compound initially has a very strong interaction energy, 

however, after mixing let to a decrease in the total interaction energy. Moreover, to 

check its sulfur extraction abilities DES was mixed with model fuel (n-octane) with 

2000 ppm DBT concentration and it was observed that all sulfur molecules were 

captured by solvents. Additionally, different parameters such as temperature, sulfur 

concentration, composition of model oil and DES were varied to observe the 

behavior of desulfurization process. And as a result, it can be said that 

TBAC:PEG:FeCl3 was effective at desulfurization of diesel with even high level of 

sulfur concentration and also it could remove other thiophenic compounds (BT and 

TS). Moreover, it was proved that DES is more effective at room temperature, while 

at high temperatures interaction between solvents and sulfur becomes weaker. 

Finally, DES composition was varied by removing PEG and FeCl3 from the system 

and the results showed that TBAC:FeCl3 can have even higher extraction abilities 

than TBAC:PEG:FeCl3.  

 



56 

 

Although use of molecular dynamics simulation allowed us to observe the 

mechanism of DES formation and desulfurization process, there are some aspects 

left undiscovered which requires additional study. One of them could be variation of 

model oil composition. In this work n-octane was used as a fuel compound with 

single sulfur compound (DBT). So as an option, n-octane can be mixed other 

hydrocarbons such as decane and dodecane to better mimic the actual fuel. 

Additionally to that, DBT, BT and TS can be added simultaneously to the mixture.  

Chemistry of the desulfurization process must further be studied, as Li et al. did not 

give answers why exactly FeCl3 has better performance in extraction in comparison 

with other metallic salts, which were also transit metals from the same period. And 

also taking into account that FeCl3 did not interact with sulfur compounds it 

somehow changed the properties of mixture so that extract efficiency increased 

significantly. Our assumption was that this salt may affect acidity by making a 

reference to the paper written by Yin et al. in 2016.  

Finally, this paper covers only simulation, therefore if it is combined with an 

experimental part it might give justified results. Especially, in the part where 

composition of DES was varied to check if TBAC:FeCl3 is really more effective than 

TBAC:PEG:FeCl3. Furthermore, the recovery of the DES by using anti-solvent 

needs to be analyzed.  
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Appendix A   

The results generated at 298 K and 1 bar which are shown below, indicate that oil and DES are 

immiscible. 
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Figure A1. Rdfs between PEG-octane and TBA-octane indicating low peak values (less than 0.) 

show that the interaction between DES and octane is weak. 
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Figure A2. Rdfs for PEG-PEG and TBA-TBA with peak values 70 and 18 respectively, indicate 

that interaction inside DES’s molecules is strong even in the presence of octane. 



61 

 

Distance (Å)

0 2 4 6 8 10

R
d

f'
s
 (

g
(r

))
 f

o
r 

o
c
ta

n
e
 

0

5

10

15

20

 

Figure A3. Rdf for octane-octane with peak value 19 results in high interaction between octane 

molecules in fuel in the presence of DES. 

 

Figure A4. A box with octane (red) and DES (blue) at 298 K and 1 bar. With addition of plots 

above it summarizes that DES and octane are not mixable. 
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