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A polymerizable room temperature ionic liquid (RTIL), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) —
triethylamine (TEA), was synthesized by neutralization of AMPS with TEA in acetone followed by evaporation of the
solvent under a reduced pressure at room temperature. The RTIL was characterized with fourier transform infrared
spectroscopy, differential scanning calorimetry (DSC), and 'H NMR. Co-polymeric gels of the RTIL with acrylamide
(AAm) were prepared by aqueous solution polymerization using N,N’-methylenebisacrylamide as a crosslinker, and
ammonium persulfate as an initiator. Superabsorbency of the gels in aqueous and a series of organic liquids was investi-
gated gravimetrically. DSC data showed that the glass transition temperature of AMPS — TEA was —59.4°C. Poly
(AMPS — TEA-co-AAm) gels exhibited superabsorbency in both water and a series of organic solvents. The mechanism
for swelling in aqueous and organic media of the gels was critically discussed.
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Introduction

Being melting salts at room temperature and com-
pletely composed of discrete cations and anions, room
temperature ionic liquids (RTILs) have received much
interest due to their unique properties such as negligi-
ble vapor pressure, thermal stability, chemical stability
and nonflammability, relatively high ionic conductivity
and wide potential window.[1-13] Based on such
properties, a large amount of applications, such as
solvent in synthesis, catalysis, biocatalysis and in elec-
trochemistry, have been explored.[14—18] Recently,
using of RTILs to form polymeric materials was found
to take an enabling role in some fields of polymer
chemistry and material science.[19-23] This includes
immobilizing RTILs in solid devices and polymerizing
RTILs with unsaturated bonds to give a special type
of polyelectrolytes that carry an RTIL species in each
of the repeating units.[24—34] In this work, a polymer-
izable RTIL, 2-acrylamido-2-methyl-1-propane sulfonic
acid (AMPS), and triethylamine (TEA) was synthesized
by neutralization of AMPS and TEA, the co-polymeric
gels of the RTIL with acrylamide (AAm) was

synthesized, and it was found that the gels showed
superabsorbency for both water and a variety of
organic solvents. The molecular structures of the
chemicals used in this work are shown in Scheme 1.

Experimental

Materials

AMPS, Sigma—Aldrich; AAm, N,N'-methylenebisacryla-
mide (MBAm), ammonium persulfate (APS), TEA,

acetone, they were analytical reagent grade and used as
received without further purification.

Synthesis of AMPS — TEA

About 20 g acetone was added to a flask, then added 5 g
AMPS, and 2.50 g TEA was added to the flask in drops
under stirring. When the powder in the solution
disappeared and the solution turned clear, stopped
stirring and evaporated the solvent under a reduced
pressure at room temperature, to give a transparent and
pale yellow liquid.
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Scheme 1. Structure of the chemicals to synthesize poly(AMPS — TEA-co-AAm) gels.

Characterizations of AMPS — TEA

Differential scanning calorimetry (DSC) analysis was
preformed for AMPS — TEA with Mettler Teledo DSCI.
The measurement conditions were with a scanning rate
of 10°C/min and nitrogen gas flow rate of 50 ml/min.
Fourier transform infrared spectroscopy (FT-IR) spectro-
photometer (Bruker Vector) was used to characterize
AMPS — TEA as well. '"H NMR (nuclear magnetic
resonance) characterization for AMPS — TEA was per-
formed with Bruker AV400 using CDCl; as a solvent.

Synthesis of poly(AMPS — TEA-co-AAm) gels

AMPS — TEA, AAm, MBAm, and APS were dissolved in
water successively to give reaction solution. The dosage
of APS was 0.1% gross weight of the reaction solution.
The total monomers concentration of the reaction solution
was 40% by weight. The dosage of MBAm and the propo-
ration of AMPS — TEA (calculated by AMPS) and AAm
varied to give hydrogels with different compositions.

The reaction solution was heated in a water bath with
50°C for 24 h. The resulted hydrogels was immersed in
distilled water for 7 days and the water was changed every
24h to remove water-soluble materials, followed by
drying the hydrogels in an oven at 105 °C to give xerogel.

Swelling measurements of poly(AMPS — TEA-co-AAm)
gels

The xerogel of poly(AMPS — TEA-co-AAm) was immersed
in water and a variety of organic solvents to test the swell-
ing characteristics. The equilibrium swelling behavior of
the samples was measured by a gravimetric method. The
samples were made to swell with distilled water and vari-
ous organic solvents at room temperature until the swell-
ing equilibrium were reached, followed by being removed
and blotted with filter paper to remove the overloaded lig-
uids on the surface, and weighed. The equilibrium swell-
ing ratio was defined as follows:

Wy — Wy

Equilibrium swelling ratio (Q, g/g) = 7
d

where W,, was weight of the swollen gels and Wy was
weight of the xerogel.

Results and discussion
Synthesis of AMPS — TEA

In the present work, AMPS — TEA was prepared by
neutralizing AMPS with TEA in acetone followed by
evaporation of the solvent under a reduced pressure at
room temperature; the reaction can be expressed by
Scheme 2. It was found that the resulted salt was trans-
parent liquids with pale yellow at room temperature,
DSC showed that the glass transition temperature was
about —59.4°C, as shown in Figure 1.

Characterization of AMPS — TEA

The resulted salt was characterized with FT-IR and
'"H NMR. The FT-IR spectrum and the 'H NMR
spectrum of the salt were shown in Figures 2 and 3,
respectively. In Figure 2, characteristic peaks of —SO;
were shown. Peak 620cm™' is absorption of the C—S
bond, peak 1040cm ' is absorption of the S—O bond,
and peak 1200cm™' was the absorption of —S=O.
Other characteristic peaks of the salt are also shown.
Peak 1640cm™' is absorption of the —C=C bond,
and peak 1560cm™' is absorption of the —C-N
bond. Combining with the values of chemical shift of
the resulted salt shown in Figure 3, the structure
of the resulted salt can be decided, as shown in
Figure 4.

Synthesis of poly(AMPS — TEA-co-AAm) gels

Poly(AMPS — TEA-co-AAm) gels were prepared by
free radical aqueous solution co-polymerization of
AMPS — TEA, MBAm, and AAm. The resulted poly
(AMPS — TEA-co-AAm) was transparent and glassy
hydrogels. The formation of the crosslinked networks
can be expressed by Scheme 3.
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Figure 1. DSC characterization of AMPS — TEA.
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Figure 2. FT-IR characterization of AMPS — TEA.
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Figure 3. 'H NMR characterization of AMPS — TEA.
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Figure 4. Structure of the resulted RTIL deducted from FT-IR and '"H NMR.
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Swelling of poly(AMPS — TEA-co-AAm) gels in organic
solvents

The swelling characteristic of poly(AMPS — TEA-co-AAm)
gels in water and a variety of organic solvents was investi-
gated. It showed poly(AMPS — TEA-co-AAm) gels can not
only swell in water, but also in a variety of polar and non-
polar organic solvents. The superabsorbency of the poly
(AMPS — TEA-co-AAm) gels with the composition of
AAm 30%, AMPS 70%, and MBAm 0.20% (all of them
calculated by the gross weight of AAm and AMPS) was
investigated. A series of most conventional alcohols, chlo-
rinated methanes, amines, and acetone, acetoneitril,
dimethylsulfoxide were examined because these organic
solvents are of significant importance commercially in
wide varieties of applications. Surveying and studying
new materials to highly imbibe these organic solvents will
be of great potential importance. The dielectric constant
(¢) and the absorbency by the poly(AMPS — TEA-co-
AAm) gels of these solvents are shown in Table 1.

It was found that the poly(AMPS — TEA-co-AAm)
gels showed superabsorbency for both water and a vari-
ety of organic solvents, irrespective of their polarity
(dielectric constant). It has been widely known that super
absorbent polymers swell and absorb water up to several
hundred times their dried weights and have become
ubiquitous and indispensable materials in many applica-
tions — their high swelling abilities in water originate
from the electrostatic repulsion between the ions fixed
on the polymer chains and osmotic pressure induced
by freely mobile counterions in the networks of the

Table 1. The dielectric constant (¢) and the absorbency by the
poly(AMPS — TEA-co-AAm) gels of the solvents.

Dielectric constant Absorbency
Solvent (e) (g/2)

Hexane 1.8865 0 (Collapse)
Carbon tetrachloride 2.24 0 (Collapse)
Butylamine 4.71 35
Chloroform 4.81 0 (Collapse)
Dichloromethane 8.93 0 (Collapse)
Tert-butanol 12.47 23
1-Butanol 17.8 37
2-Propanol 20.18 38
Acetone 20.7 0 (Collapse)
1-Propanol 20.8 40
Ethanol 24.5 51
1,2-Propanediol 27.5 38
1-Methyl-2- 32.55 42
pyrrolidone

Methanol 32.7 76
1,3-Propanediol 35.1 35
Acetoneitrile 37.5 0 (Collapse)
Ethylene glycol 41.4 50
Glycerol 46.53 41
Dimethylsulfoxide 46.7 68
Water 80.1 218

polyelectrolyte gels — charged polymers with associated
counterions, while such polyelectrolyte gels hardly swell
in organic liquids as a result of aggregation of ion pairs.
[35-39] In this case, dissociation ability of the ionic
partners on the polymer chains plays an important role
during swelling of polyelectrolyte gels in a solvent.
Rationalized by this principle, the incorporation of
polymerizable RTILs that are melting salts at room tem-
perature completely composed of discrete cations and
anions into the chains of polyelectrolyte gels ought to
inhibit aggregation of the ionic partners both in water
and in organic liquids, which in turn would allow
RTILs-based gels to behave as superabsorbent gels
irrespective of their liquid environment.

In addition, it has been discussed that the swelling of
a crosslinked neutral polymer without any charges on the
backbones in a solvent is caused by the imbalance
between the repulsive forces among the polymer chains
and the contractile forces due to stretching of elastically
active networked structures.[40,41] Thus, both the
compatibility of the polymer chains with the solvents
and the crosslinking density of the networked structures
play a key role in the swelling and collapsing of neutral
polymer gels. In the same way, for polyelectrolyte gels,
poor solvent compatibility with the backbones will not
allow penetration of the solvent molecules into the
polymer networks, while poor solvent compatibility with
the counterions will not allow the dissociation of the
ionic partners. As a result, the polymer gels collapses,
even though the ion pairs would be easily dissociated.
Alexander-Katz and Leibler [42] have been theoretically
discussing the effect of counterion solubility, instead of
backbone solubility, on the stability of polyelectrolyte
solutions. Therefore, it was thought that the solubility
of counterion as well as the backbone of poly(AMPS —
TEA-co-AAm) gels resulted in the superabsorbency for
both water and some organic solvents.

Influence of AAm content in the gels on the swelling
characteristic

Various poly(AMPS — TEA-co-AAm) gels with different
compositions were prepared by changing MBAm and
AAm feeding during preparation of the reaction solution.
It was found that the superabsorbency of poly(AMPS —
TEA-co-AAm) gels were seriously influenced by the
composition. The effect of AAm feeding on the superab-
sorbency is shown in Figure 5. It was found that without
AAm feeding, crosslinked homo-polymer of AMPS —
TEA was not transparent and glassy gel but muddy
mixture without any strength, it did not absorb any sol-
vent. Crosslinked poly(AMPS — TEA-co-AAm) also did
not absorb any solvent as the AAm feeding was less than
15% (calculated by the gross weight of AMPS and AAm).
Increased AAm feeding in the range of 15-30 wt.% (for
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Figure 5. The effect of AAm (a) feeding on the absorbency.

water, methanol, and ethanol), 40 wt.% (for butylamine and
1-methyl-2-pyrrolidone) or 45 wt.% (for dimethylsulfoxide),
the absorbency of the gels increased accordingly; while
the absorbency of the gels decreased as the AAm
feeding continued to increase. The gels did not swell any
more as the AAm feeding was more than 60wt.%
(for butylamine), 70 wt.% (for 1-methyl-2-pyrrolidone),
90 wt.% (for dimethylsulfoxide), or 95 wt.% (for methanol
and ethanol).

Influence of MBAm content in the gels on the swelling
characteristic

The effect of MBAm feeding on the superabsorbency is
shown in Figure 6. In the range of 0.05-0.20 wt.%, the
absorbency to water, methanol, and ethanol of poly
(AMPS — TEA-co-AAm) gels increased with the
increase in the dosage of MBAm, while the absorbency
decreased with the increase in the dosage of MBAm in
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Figure 6. The effect of MBAm feeding on the absorbency.

the range of 0.20-0.30 wt.%. It was clear that a higher
MBAm feeding induced an increased crosslinking
density which resulted in a decreased absorbency;
reducing the amount of crosslinker increased the swell-
ing ability, but stable networks cannot form if the
crosslinking density was too low.

Conclusion

A polymerizable RTIL, AMPS — TEA, was synthesis
and characterized. DSC showed that the glass transition
temperature of AMPS — TEA was about —59.4°C.
Co-polymeric gels of AMPS — TEA with AAm were
synthesized. Poly(AMPS — TEA-co-AAm) gels were
transparent and glassy. The gels can swell in both water
and a variety of organic solvents, irrespective of their
polarity. The swelling mechanism of poly(AMPS -
TEA-co-AAm) gels lies in the dissociation ability of the
ionic partners on the polymer chains as a result of incor-
poration of AMPS — TEA which is completely composed
of discrete cations and anions into main chains of the
polyelectrolyte gels, as well as the solubility of both
counterion and the backbone in the solvents.
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