
Geostatistical Simulation of Cross-Correlated 

Variables: a Case Study through Cerro Matoso 

Nickel-Laterite Deposit  
 

Nasser Madani
1
, Julian Ortiz

2 

1 
Department of Mining Engineering, School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan 

2
 The Robert M. Buchan Department of Mining, Queen’s University, Kingston, ON, Canada 

 

 

Abstract— Geostatistical methods have been 

increasingly used as powerful techniques for predicting 

spatial attributes and modelling the uncertainty of 

predictions in un-sampled locations, especially through 

multi-element deposits. Independent Gaussian simulation 

constructs precise outputs over each variable, in most cases 

by simulating using the multi-Gaussian assumption. 

However, this approach does not consider the underlying 

correlations between the variables. Spatial uncertainty can 

also be quantified by co-simulation, where the relationship 

of the co-regionalized variables is accounted for and the 

spatial relationships between variables are reproduced. In 

this study, we apply the two aforementioned approaches 

(independent simulation and co-simulation) for modelling 

two correlated elements (Fe & MgO) at Cerro Matoso S.A. 

Nickel laterite deposit located in Colombia. Results show 

that co-simulation provides a reasonable outcome in regards 

to the correlation coefficient parameter and relative error as 

expected.  

 

Keywords: Multivariate geostatistics, Co-simulation, Nickle-

Laterite Deposits. 

 

1. Introduction 

Geostatistical methods have been increasingly used as 

powerful techniques for predicting spatial attributes and 

modeling the uncertainty of predictions in un-sampled 

locations, especially through multi-element deposits, which 

are important in mineral resource estimation and ore reserve 

evaluation [1, 2, 3, 4, 5, 6, 7, 8, 9 and 10]. Independent 

Gaussian simulation construct precise outputs over each 

variable [11, 12, 13], and most of them can be simulated 

separately by transformation to the Gaussian (or multi-

Gaussian) distribution. But the problem of applying this 

approach in multi-element deposits is that it does not consider 

the intrinsic correlation coefficients between co-regionalized 

variables. In a nutshell, ore body evaluation in multi-element 

deposits requires considering the characterization of cross-

correlated variables observed at available datasets. 

Quantifying the uncertainty at un-sampled locations 

encourage geostatistical modeling of these co-variables. This 

modeling can be divided into two parts. The first one uses co-

kriging methods [14, 15] and the second one assessing the 

local uncertainty by applying co-simulation. The later 

generates some realizations, in which they can reproduce the 

desired spatial continuity and the desired correlation. The 

objective of this work is to assess the performance and check 

the accuracy of independent simulation and co-simulation for 

modeling two co-regionalized attributes (Fe & MgO) 

meanwhile they are cross-correlated significantly, in a nickel-

laterite actual case study located in Colombia. 

 

2. Material and Methods 

 

2.1. Methodology 

Several Gaussian simulation algorithms have been 

developed. Generally speaking, they are divided into two 

types; exact and approximate algorithms [16]. The applied 

simulation and co-simulation algorithm in this paper is 

turning band proposed by Emery (2008) following Matheron 

(1973) and Mantoglou (1987). This method was first 

introduced by Chentsov (1957) in a special case of Brownian 

random functions, but has been extended for the Gaussian 

simulation of stationary and intrinsic random functions by 

Emery and Lantuejoul (2006) for independent simulation and 

by Emery (2008) for co-simulation. These methods aim at 

simplifying the Gaussian simulation problem in 

multidimensional spaces, using simulations in one dimension 

and spreading them to 2-D or 3-D spaces. This method is 

extremely fast with parallelizable computations and one can 

simulate as many locations as desired. The Gaussian 

simulation also exactly reproduces the desired covariance 

model [21, 22, 23, 24 and 25]. In co-simulation, the 

relationship is being characterized by examining the cross-

variogram together with direct-variogram. There exist a range 

of various methodologies for modeling such a variogram [26, 

27, 28, 29, 30, 31 and 32]. In this research, the linear model of 

coregionalization has been proposed of the following form 

[14]: 

 

𝐶(ℎ) = ∑ 𝐵𝑛𝜌𝑛(ℎ)𝑁
𝑛=1                                                            (1) 

 

where {𝜌𝑛, 𝑛 = 1 … 𝑁} is a set of positive semi-definite 

covariance functions and {𝐵𝑛 , 𝑛 = 1 … 𝑁} is a set of 

symmetric positive semi-definite matrices.  

 



2.2. Presentation of dataset 

The Cerro Matoso S.A. Nickel laterite deposit is an 

important resource of Ni in the world located in northwest 

Colombia [32 and 33]. Cauca ophiolite complex belonging to 

Cretaceous age shows some peridotite outcrops in the region 

which is the main house of the Cerro Matoso deposit [34]. 

The principal tectonic feature of this deposit is Romeral fault 

system with approximately 500 km that hosted this ophiolitic 

complex in the time of Pre-Andean orogeny. For instance, the 

regional boundary among accreted pre-Tertiary ophiolitic 

sequences and polymetamorphic core of the Central 

Cordillera can be detected through this structural 

discontinuity. Furthermore, the Geophysical surveys confirm 

that the Romeral fault system separate continental crust to the 

east from oceanic crust to the west. This deposit manifests 

itself through a hill range about 2.5 km length and 1.5 width 

and is evolved during a variably serpentinized ultramafic 

body [35]. The mineralogical and chemical alteration system 

is Lateritization and Saprolitization according to the 

geographical extent of the deposit. The dataset is composed of 

3000 records of blasting holes belongs to this deposit. In 

which seven variables are assayed for each sample. In this 

research, two co-regionalized variables (Fe and MgO) out of 

these seven variables have been selected due to the presence 

of the satisfactory correlation coefficient. The sampling zone 

covers approximately 180×200×70 meters. Table 1 

summarizes statistical parameters of these variables through 

collecting the corresponding samples in entire deposit. The 

frequency of each variable has been also depicted in Figure 1 

to assess the shape and spread of the sample data. This bar 

chart is necessary before or during any analysis. As can be 

seen from the figure, Fe shows a distribution with two peaks, 

pretending some bimodality. The MgO seems to bear 

lognormal distribution with one peak which demonstrates that 

the low values are further fluctuating in the region.   

Correlation coefficient as another important yardstick in 

multivariate analysis turns out the linear relationship 

(proportionality relationship) enclosed by Fe and MgO 

through a value between -1 and 1. This coefficient for Fe and 

MgO is -84.04%, which means that there is a considerable 

relationship between these two variables. Scatter plot (Figure 

2) is an intuitively determination of the dependence 

relationship between two variables that can also be used to 

detect the possible anomalous data. 

 

Table 1: Statistical parameters of two variables 

Statistical 

Parameter 
Fe MgO 

Mean 27.95% 8.95% 

Median 26.1 3.6 

Std. Deviation 15.74 10.23 

Variance 247.839 104.699 

Minimum 5.2 0.1 

Maximum 57.2 39.43 

 

 
 

 
Figure 1. Histogram of Fe and MgO distributions 

 

 
 

Figure 2. Scatter plot between Fe and MgO 

 

 

 

2.3. Geostatistical Modeling 

The initial analysis parts of the modeling are, first, 

implementing independent simulation for each variable and, 

second, co-simulating both variables simultaneously. For this 

purpose, the primary data should be declustered and 

transformed to the normal score Gaussian distribution [1]. The 

technique allows us assign each datum a weight based on 

closeness to surrounding data for alleviating the high pseudo 

frequency occurring in high graded areas [36]. These 

declustered data are then should be transformed to the 



standard normal distribution. So the analysis data (Fe & Mgo) 

have been transformed to normal score N(0,1) by nscore 

subroutine of Gslib [11]. Each variogram-based geostatistical 

modeling including these two simulation and co-simulation 

approaches require learning the model of spatial continuity 

[1]. In simulation, direct-variogram plays an important role 

and in co-simulation; the cross-variogram is needed to be 

modeled as well. Hence, the initial step is to analyze the direct 

experimental variogram for deriving the potential isotropy or 

anisotropy of the variables of interest in the region. One 

technique is to calculate the direct experimental variogram in 

alternative directions with narrow tolerances. The differences 

in range values through the variograms give the idea of 

geometric anisotropy. So, for this purpose, the experimental 

variograms are calculated along the specific directions. The 

results showed that there is isotropy variability in the horizon 

and anisotropy in the vertical direction. As mentioned earlier, 

spatial continuity structure for employing the co-simulation 

can be represented by cross-variogram associated with the 

information obtained from the direct-variograms for co-

regionalized variables. The cross-variogram was first 

introduced by Matheron (1965) as the natural generalization 

of the variogram [1]. This coregionalization matrix can be 

modeled by several methods. The most common and 

widespread approach is known as “Linear Coregionalization 

Model (LCM)” applicable to any multivariate spatial data 

analysis [37, 14]. In this model, the sample variograms should 

be fitted by semidefinite coregionalization matrices which 

indeed are mathematically consistent [14]. The difficulty of 

obtaining a semidefinite model has been covered somewhat 

by automatic or semi-automatic fitting method which are 

often used for modeling this type of spatial correlation 

structure [38]. This protocol makes the process of fitting 

somehow convenient. In this study, direct and cross-

variogram model for Fe and MgO are calculated and depicted 

in Fig. 3.  The theoretical model of LCM is also fitted to the 

experimental ones:  

 

Cross-Variogram: (
𝛾𝐹𝑒(ℎ) 𝛾𝐹𝑒−𝑀𝑔𝑜(ℎ)

𝛾𝐹𝑒−𝑀𝑔𝑜(ℎ) 𝛾𝑀𝑔𝑜(ℎ)
) =

(
0.05 0.05
0.05 0.05

) 𝑁𝑢𝑔𝑔𝑒𝑡 +

(
0.45 −0.25

−0.025 0.25
) 𝑆𝑝ℎ(80𝑚, 27𝑚) +

 (
0.65 −0.65

−0.65 0.75
) 𝑆𝑝ℎ(∞, 27𝑚) 

 

 

 
 

Figure 3. Direct and cross-variogram analysis (top: Fe; 

middle: MgO; bottom: cross-variogram 

 

 

In this part, our objective is to model the Fe and MgO via 

two commented methodologies. The first one considers the 

independent simulation for each variable and the second one 

acknowledges the correlation coefficient between two 

dependent variables by co-simulation. So, for independent 

simulation, one just needs to apply the direct-variograms of 

Fe and MgO, while the co-simulation is dealing with the 

cross-variogram as well as the direct ones. The applied 

simulation and co-simulation methodologies as explained 

above; are turning band simulation and co-simulation in 

which they have priority to other approximate approaches of 

simulation [39]. In Figure 4 and 5, one realization of 

simulation and co-simulation for each, have been provided. 

Visually consideration, one is not able to find out bolded 

diversity among the simulation and co-simulation results. But 



in the upcoming sections, we will discuss about the statistical 

parameters of them.   

 

 

 
Figure 4. Simulation results (top: Realization No. 1 (Fe); 

bottom: Realization No. 2 (MgO)) 

 

 

 
Figure 5. Co-simulation results (top: Realization No. 1 (Fe); 

bottom: Realization No. 2 (MgO)) 

 

3. Results and Discussion 

In this part, for making a comparison between two 

approaches statistically, Table 2 is presented to show the 

correlation coefficient as an important key factor calculated 

over 100 realizations for each variable. As can be acquired 

from this table, the obtained correlation coefficient from co-

simulation in average; is closer to the correlation coefficient 

of primary data.  

 

Table 2: Correlation coefficients 

Variable Primary data Simulation Co-Simulation 

Fe vs. MgO -0.84 -0.53 -0.76 

 

Based on the definition of relative error which is an 

absolute measure of difference between the true value and its 

approximation divided by the magnitude of that true value, 

one should consider these true and approximation values. For 

this purpose, the dataset of this case study are divided into 

two parts, one analysis dataset (30% of all the primary data) 

and one test data set (70% of all the primary data). In 

Geostatistical literatures, this methodology is known as jack-

knife [11]. In a nutshell, the test dataset are quantified by 

these two methodologies. As the true value of these test 

dataset are known, the approximation values can be obtained 

from this quantification.  As can be seen from the Table 3, the 

absolute relative error for simulation is higher than the co-

simulation.  

 

Table (3): Relative error between the methods for 

Validation dataset 

Variable Simulation Co-Simulation 

Fe 0.278 0.175 

MgO 0.756 0.659 

 

4. Conclusions 
Multivariate Geostatistics offers a flexible framework for 

modeling the continuous variables when the variables convey 

a satisfactory correlation. The current methodology such as 

independent simulation in this case suffers from reproducing 

the expected correlation among the co-regionalized variables. 

Co-simulation as an alternative flexible technique, is dealing 

with quantifying linear coregionalization model which hold 

much acceptable results statistically. This approach 

overcomes the limitation of independent simulation and 

increases the model versatility.  The priority of this method is 

attractive because of its capability to accept any number of 

nested structures. However, this method is concerned with 

quantifying linear coregionalization model, in which the 

process of modeling is somewhat time consuming and not 

very easy to use.  
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