On the Higher Order Statistics of the Channel Capacity in Dispersed Spectrum Cognitive Radio Systems Over Generalized Fading Channels

Theodoros A. Tsiftsis, Fotis Foukalas, George K. Karagiannidis, Tamer Khattab

School of Engineering

Abstract

This work is devoted to the study of dispersed spectrum cognitive radio (CR) systems over independent and nonidentically distributed (i.n.i.d.) generalized fading channels. More specifically, this is performed in terms of the high-order statistics (HOS) of the channel capacity over $\eta\text{-}\mu$ fading channels. A generic analytic expression is derived for the corresponding nth statistical moment, which is subsequently employed for deducing exact closed-form expressions for the first four moments. Using these expressions, important statistical metrics, such as the amount of dispersion, amount of fading, skewness, and kurtosis, are derived in closed form and can be efficiently used in providing insights on the performance of dispersed CR systems. The obtained numerical results reveal interesting outcomes that could be useful for the channel selection, either for sharing or aggregation in heterogeneous networks, which is the core structure of future wireless communication systems.

Original language English

Article number 7111364

Pages (from-to) 3818-3823

Number of pages 6

Journal <u>IEEE Transactions on Vehicular Technology</u>

Volume 65

Issue number 5

State Published - May 1 2016

Tsiftsis, T. A., Foukalas, F., Karagiannidis, G. K., & Khattab, T. (2016). *On the Higher Order Statistics of the Channel Capacity in Dispersed Spectrum Cognitive Radio Systems Over Generalized Fading Channels. IEEE Transactions on Vehicular Technology*, 65(5), 3818-3823. [7111364]. DOI: 10.1109/TVT.2015.2436341