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ABSTRACT

In the present work IsoGeometric Analysis is applied to the solution of the Boundary
Integral Equation associated with the Neumann-Kelvin problem and the calculation of the
wave resistance of ships. As opposed to low-order panel methods, where the body is
represented by a large number of quadrilateral panels and the velocity potential is assumed
to be piecewise constant (or approximated by low degree polynomials) on each panel, the
isogeometric concept is based on exploiting the same NURBS basis, used for representing
exactly the body geometry, for approximating the singularity distribution (and, in general,
the dependent physical quantities). In order to examine the accuracy of the present method,

numerical results obtained in the case of submerged and surface piercing bodies are
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compared against analytical solutions, experimetdé#h and predictions provided by the
low-order panel or other similar methods appearethe pertinent literature, illustrating
the superior efficiency of the isogeometric apphoathe present approach by applying
Isogeometric Analysis and Boundary Element Methmdhe linear NK problem has the
novelty of combining modern CAD systems for shipthdesign with computational

hydrodynamics tools.

Keywords. Isogeometric Analysis, high-order BEM, Neumann-Kelproblem, NURBS,

CAD-CFD integration

1. INTRODUCTION

Due to its specific importance in ship poweringdicgon and optimisation of ship hulls,
the investigation of ship resistance in calm waea significant problem. This problem is
complicated since ship resistance is dependentotim \ascous and gravitational effects.
For computational purposes, the calculation of aiscand wave-making resistance is
usually considered separately. Wave-making resistas a very important component,
which sometimes can contribute 50% or even morehef total resistance of a ship
(especially for relatively full hull forms and/ot high speeds). Experience has shown that
the wave-making resistance component is quite Hemsio design parameters and
significant reduction can be achieved without dffer cargo capacity. The capability to
predict and minimize wave resistance in the eaidyges of the design is therefore very

important.

During the last 50 years, the interest in numerio@thods for calculating ship wave
resistance has been constantly growing. Computatima performed using a variety of
techniques, ranging from the simple Michell's thship theory to fully non-linear

Reynolds-Averaged-Navier-Stokes Equations (RANSEthaods; recent advances are



presented in the reports by ITTC; see ITTC (20@®8 and the references cited therein.
The application of three-dimensional potential fldlaeory to the steady ship motion
problem results in an essentially non-linear boupdalue problem (due to the non-linear
character of the boundary condition at the fre¢ase), from which the unknown velocity
potential and the free-surface disturbance mustdleulated. The Boundary Element
Method (BEM) is a widely used approach to solveepbal flow problems in marine
hydrodynamics, with further application to the cdddion of the wave resistance and the
wave pattern of ships steadily advancing at fodasppeed. There exist two main types of
elementary singularities used in the implementatibthe method. The first type uses the
Kelvin wave source as the elementary singulariyis/ing the field equation and all the
boundary conditions except the body-boundary camdifThe major advantages of such a
scheme are the automatic satisfaction of the nadiatondition and the definition of the
resulting BIE only on the ship hull; see e.g., Weden (1973). The second type uses the
simple Rankine source, i.e., the fundamental smiutf the Laplace equation, as the
elementary singularity. The method was first présgfy Dawson (1977) and since then it
has been widely applied as a practical method tedipr wave resistance. Many
improvements have also been made to account folimear effects; see e.g., Nakos &
Sclavounos (1990), Raven (1996), Bertram (2000),(B208). Considerable efforts have
been devoted to increase efficiency and accuraagtigducing several variations, such as
the desingularized method and the RAPID method.allove methods have the advantage
of employing a simple elementary singularity, but the other hand, the resulting
Boundary Integral Equation (BIE) is extended avwr ship hull and part of the unlimited

free surface leading to increased computationalirempents.

In the present work, IsoGeometric Analysis (IGApmosed by Hughest al (2005, 2008)
and used in the context of Finite Element Methagt (®.g., Cottrekt al2007), is applied

to the solution of the BIE associated with the dimeed Neumann-Kelvin (NK) problem,



with application to the wave-making resistancelops and submerged bodies at constant
forward speed. A similar boundary-integral approamncerning problems governed by
the Laplace equation in infinite domains, has be®sented in Politist al (2009) and for
linear elastostatics and shape optimization problem Li & Qian (2011). In the NK
problem, the non-linear effects stemming from thespnce of the unknown free surface
are neglected, while the three-dimensional charasttehe fluid flow is fully retained.
Independent of its own practical interest, the siband accurate solution of this linear
problem represents a useful first stage beforeimgalith the complete non-linear
problem. For the solution we shall use a BEM impated by means of a Kelvin wave
source distribution over the wetted part of thel.hBllfilment of the body-boundary
condition leads to an integral equation with suppaoty on the wetted part of the hull and
its intersection with the unperturbed free surfaes, e.g., Brard (1972) and Baar & Price

(1988).

Integral equation formulation of Laplace boundagje problems has been established as
one of the standard tools for calculating invisdidgompressible flow characteristics
(velocity and pressure) around 2D and 3D bodiesgaminetrical systems; see, e.g., Hess
(1975), Katz-Plotkin (1991). Some of the most intpot advantages of this approach
include the reduction of dimensionality, facilitati of calculations around complex
geometrical configurations (especially in 3D), dstent handling of conditions at infinity,
high convergence rates when the domain boundarybanddary data are (relatively)
smooth and easy implementation to optimizationdise-type) problems. As concerns the
numerical solution, BEM (or panel methods) senaatoas valuable tools, especially for
non-linear and time-dependent problems; see, Brghbiaet al (1984), Paris & Canas
(1997), Brebbia (2002).

In low-order BEM the body surface is usuallyatétized by a finite number of elements

or patches, each carrying a simple distributiorthéf unknown function; see, e.g., Hess



(1975). On the contrary, high-order BEM, charasesti by an increased order of
approximation both with respect to geometry anddindace singularity distribution, has
the property of faster convergence as elementdiménishes, and yields more accurate
results with coarser grid resolutions; see, e.gnr@rettiet al (1998). The latter is found to
be quite important especially at places/subregiwhsre the solution presents physical
discontinuities and/or singularities, which are mall treated by low-order methods. In
this direction, high-order panel methods based @plBe and/or non-uniform rational B-
spline (NURBS) representations have recently apgukesr the literature, for potential-flow
problems. In the sequel, we briefly present soméhese works. The flow around 2D
bodies moving with constant speed under the freaselis studied by Okan & Umpleby
(1985) using B-splines. A 3D method for wave-bodyeraction through a Rankine
boundary element approach, based on Maniar (199&)satisfying the body-boundary
condition directly on the exact CAD surfaces, hasrbapplied to multi-body seakeeping
design optimization by Peltzett al (2008). The high-order BEM overlays the NURBS
geometry and yields stable wave and motion integrah time. Kring (1995) and Kim &
Shin (2003) solve the three-dimensional radiatiod diffraction problem using a NURBS
representation of the body geometry and a B-sjilases for the unknown potential. Datta
& Sen (2006, 2007) solve, in the time domain, tire¢-dimensional ship motions problem
with forward speed. The problem is formulated usihg transient free-surface Green
function. The body geometry is represented by eiBigpline or NURBS, depending on
the hull type, whereas the unknown field variabdee represented via B-spline basis
functions. Moreover, Kinet al (2007) use a higher-order panel method, based-spliBe
representation for both the geometry and the swiutivith application to the analysis of
steady flow around marine propellers. Also, Gao@i£2008) solve the 3-D radiation and
diffraction problem with forward speed, using thanRine source distribution method, in
conjunction with a NURBS surface to precisely reprdé the body geometry, whereas the

velocity potential on the body surface is represety B-splines.



As opposed to high-order BEM methods outlined abeaere the body and the associated
physical quantities are expressed via differenisbfasictions, the IGA approach (see, e.g.,
Hugheset al 2005, 2008, Cottrekt al 2007, 2009) is based on using the very same basis
for representing both the body geometry and thesiphy quantities, under the constraint
that the chosen basis is able to represent acbuthte geometry in question. In a recent
work by Politiset al (2009), the IGA-BEM is exploited for the solutiai the exterior
Neumann problem in 2D, governed by the Laplace temuareformulated as a boundary
integral equation by using source-sink formulatidlumerical results obtained for a
circular and a free-form contour, representedctdyx as NURBS curves, and various
types of forcing, are compared against analytical henchmark solutions. The error is

compared against low- and higher-order panel metiredictions, illustrating very high
rates of algebraic convergence, ranging frafiN*) to O(N™°), if mesh refinement,

through knot insertion, is combined with degreevaf®n, whereN is the number of

degrees of freedom. This result, compared withréte O(N‘l) of the low-order panel

method, is found to be promising for BIE of momplicated flow problems, like the
ones associated with ship and submerged bodigeadysmotion. Thus, in this paper, the
IGA-BEM is applied to the wave-making resistancehpem of surface piercing bodies
and ships. The present approach, although focusinghe linear NK problem, has the
novelty of combining modern CAD systems for shipthdesign with computational

hydrodynamics tools.

The rest of the paper is structured in four sesti@ec.2 summarizes the formulation of the
NK problem as a BIE. In Sec. 3 we develop in foubsections an isogeometrically-
oriented BEM for solving the BIE formulated in S& More specifically, in 8 3.1 we
introduce the multi-patch NURBS representation ilndtrate it for a triplet of geometries

that are used later in Sec. 4 for testing the ppegamethod. In § 3.2 we introduce the



isogeometric treatment of the present BIE, whil8.8 discusses the issue of stable
numerical handling of the involved integrals. Fipain 8§ 3.4 we formulate the linear
system arising from discretizing the BIE of Secin2a collocation setting and discuss
alternative refinement approaches for convergingatds the continuous solution.
Subsequently, Sec. 4 is devoted to presenting asclisbing the performance of the
proposed IGA-BEM for solving the NK problem for anety of geometries and physical
configurations. The material starts with two simigsts, namely a prolate spheroid moving
with constant speed in infinite homogeneous flgd4(1) and a submerged ellipsoid
moving at high speed under the free surface (8 432jpsection 4.3 presents results from
testing the proposed method in the case of a sigadeasrolate spheroid moving steadily
under the free surface, while the next two subsestideal with surface-piercing hulls,
namely a Wigley parabolic hull (§ 4.4) and a Sefi@shull (§ 4.5). The obtained results
are compared versus a variety of results availablle pertinent literature, e.g., analytical
solutions, experimental data and predictions predithy the low-order panel or other

similar techniques, illustrating the enhanced aacyiand efficiency of the present method.

2. FORMULATION OF THE PROBLEM

We consider a surface-piercing body moving withstant forward speed in an ideal
(homogeneous, incompressible, inviscid) fluid dinite depth, bounded above by a free
surface. In the body-fixed coordinate systémxyz with z- axis pointing vertically upwards
(see Fig. 1) this problem is equivalent to a umifastream with velocityU =(—U ,0,0)
incident on the bodyp. Following the formulation by Brard (1972) and Baa Price
(1988) for the linearized NK problem, the totaf field is decomposed to the parallel

inflow and the disturbance potential which satistiee Laplace equation,

Ap=0, in D7, 1)



where D is the fluid domain outside, limited above by the free surface. Eq. (1) is
supplemented by the body-boundary condition,

oplon=-U-n, on § (2a)

wheren =(nX n, ,nz) denotes the unit normal vector 8rlirected outwards the body and

S=0D denotes the wetted boundaryxf the kinematic condition on the free surface,
(VY +odn+on,-¢,=0, on z=p(x}y) , (2b)

the dynamic free-surface condition tating that pmessure on the free surface must be
constant

gn—Up, + 1/ 2)p; +9;+92)=0, on z=n(x}y), (2c)

and appropriate conditions at infinity. In the fadation of the NK problem, the above
conditions on the free surface are linearized, éylecting higher-order quantities and by
applying the resulting equations on the undisturtred surfacez=0. Egs.(2b,c) after

linearization, are combined to the following lingad free-surface boundary condition:
¢, +(g/U%p,=0, on z= 0 (3)

Thus, the linearized NK problem consists of Eqg®))X3), in conjunction with the
radiation condition, expressing the fact that tistuilbance potential decays at infinity and
there are no upstream waves. In the framework tdrpial theory (see also Baar & Price
1988, Marr & Jackson 1999), the disturbance figlds represented by

#(P)= [u(QG(PQdg @+ ﬁ[u( Qg PR R,( RM K, (42)

s
where ¢ denotes the waterline (corresponding to the ietdisn ofSwith the undisturbed
free-surfacez=0), u is the density of the source-sink distributiom & and, finally,g

denotes the acceleration due to gravity. In theval@muationG denotes the NK- Green’s

function which is defined as

47G(P,Q=r'-R'+G(RPQ, & & PeR\D, (4b)



where R®= {x y, z< O} is used to denote the half space below the untistl free
surface £=0), r =|QP|, R=|QR, where Q' is the image ofQ with respect to the=0

plane andG’ ( P, Q) stands for the regular part of the NK Green’s fiomg consisting of
components exhibiting z-exponential decaying aval/elike behavior (see Baar & Price
1988). Moreoverz :(Tx,ry,rz) the corresponding tangent vector along the watedi ,

directed as shown in Fig.1.

The integral representation of the disturbancemal o, provided by Egs. (4), permits us
to automatically satisfy the Laplace equation, amjanction with the linearized condition
on the undisturbed free surface and the conditangfinity. Substitution of integral
representation, Eq. (4a), to the body boundary itond Eq.(2a), and taking into account
the jump property of the normal derivative of thagte-layer potential, leads to the
equivalent reformulation of the NK problem as a Bli&ined on the wetted surfac8, as

follows

0 [ s 9l QZF S ol 91, @ d( @--u-n( ¥

P,QeS. (5)
The quantity k= g/U? is the characteristic wavenumber, controlling thevelength of
the transverse ship waves, that is directly comtkatith the squared inverse of the
corresponding Froude numbé&r=U /\/a, with L denotingthe max length of the body.

From the solution of the above integral equatioarious quantities, such as velocity,
pressure distribution and ship wave pattern canobtined. Specifically, total flow

velocity and pressure are calculated through thadtae



v=U+Vp, p= pw+§(U2—v2)—pgz, (6a)

where p denotes the fluid density. Moreover, the fredeste elevation is obtained as

n(xy)=(U/g)-p(xy z0). (6b)

In the case of a fully submerged body the aboventitaition should be modified by

dropping the waterline integral in Egs. (4a) &d

3. THEISOGEOMETRIC BEM

The IGA philosophy is based on approximating fledfquantities (dependent variables)
of the boundary-value problem in question by they\same basis that is being used for
representing the geometry of the involved body-lauy. In the case of BIE (5), the
dependent variable is the source-sink densitjistributed over the surfa& The latter is
accurately represented as a parametric NURBS sudaa collection of smoothly joined
NURBS patches — referred to as a multi-patch NURB$ace. In this connection it should
be stressed that, although NURBS is not a prergguA ingredient, we adopt it because

it is a thoroughly developed and widespread to@AD technology.

3.1 Representation of body geometry

To proceed we assume tl&is a multi-patch NURBS surfaoe(tl,tz) , represented as

o nP
X(tty)= 20 2AERY o (ht) = 2 dPR(L 1), (7a)
and
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R s (118) = RO (4, 1) = (RN e,

> Y wg N (1) N(1)

=0 1,=0

p=12:--,N, (7b)

where i=(i,i,) and k” =(kP", k) are multiple indices,p is the patch identifier,

d’:=d}  denote the control points of patchp, and NP(t)=N",(t),

iy .k

NP (t,)=N",(t) are the B-spline basis functions of degkeand k], respectively.

ip kP
The latter, in conjunction with the Weightqﬁz, are used in (7b) for building up the
rational B-spline functionsR”(t,t,) for patchp. Bold index notation is used to avoid

appearance of multiple indices, while the subsdkiptwill be henceforth omitted for the

sake of simplicity and without loss of accuracyrtRermore, the parametric intervals®,

| > are partitioned appropriately by knot vectds and J., respectively. Finally, in the
case of surface piercing bodies, we shall assurake tthe union of the isoparametric

segmentsx(t1 =tlE”d,t2) of the uppermost patché$) provides the waterline/().

As a first example, the NURBS representation fog ellipsoid can be generated by
applying a shear transformation to a bi-quadrhti¢RBS representation of the sphere
given in Piegl & Tiller (1997). Multi-patch modets the ellipsoid in Fig. 2(a), composed
from 2 and 4 patches (see Figs. 2(b) and 2(a)e lbeen used for testing the multi-patch
version of the code. The second example involvee B-spline representation of the

classical parabolic Wigley hull, defined analytigads
x ) z\*

s |2

B/2 { L/2 T
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wherelL, B, Tdenote the length, breadth and draft of the hudik $ingle and multi-patch
representations of this hull are depicted in Bg.The single patch is generated by
interpolation of the bow/stern profiles and a pafalrepresenting the hull mid section.
Multi-patch  NURBS representations of more complelips hull geometries and
geometrical configurations can be obtained via QABls and techniques. For example,
the B-spline representation of a Series 60 (Cb3Mhab, which is discussed below in §84.4,
is obtained using multiple patches, as illusttate Fig. 4. The semi-hull is &'
continuous surface, i.e., a continuous surface wihtinuously varying unit normal,
comprising 7 bicubic patches with a total count3@B5 control pointsin this case,
patches 1 and 2 have been generated with a |¢&kigning scheme) on the corresponding
ship sections while the remaining patches (3 toaf® the result of Gordon surface

construction schemes on corresponding sectionsvatetline and/or stern-profile parts.

3.2 The IGA - boundary integral equation method

In IGA context the unknown source-sink surfacerdistion () is approximated via the

very same NURBS basis used for the body boundangsentation (Eqgs. 7), that is:

nP+IP

utt)= 3 PR (), (tt)el?x1s p=12,.N ®)

where u” are the (unknown) coefficients associated with #ive expansion, and
I”=(,1)) denotes the additional knots with which theiahiknot vectorsJ” and

JJare enhanced in order to refine, by knot insertiba,initial NURBS basis and increase

12



its approximation power. The totalityM = dof =2(rf+ I1p+1)(nzp+ I2"+1) of

p

coefficients 1" constitutes the degrees of freedom (dof) associaitdapproximation (8).

Thus, sequences of spline spa&yJ” sz,p):z S can be produced, on which the

P!
boundary integral equation (5) will be projectedheSe spaces are nested, i.8 S}

if 17 <kP, j=1,2. Several methods are available for defining agmtdpn onto the finite-
dimensional spac8 and discretizing Eq. (5), like Galerkin and cofiion methods (see,
e.g., Kress 1989, Sec.13). In the present workplibaation scheme is adopted for
projecting (5) on SP. For this, letP® = PF. :X(Eﬂ-l,tz'j-z) denote a set of collocation
points onS, Where{tl‘fjl}, j;=0,...,n"+1f, and {tz‘sz}, j,=0,...,n0 +12, lie in 1 and
|}, respectively, fop=1,2,..N. For each patch, these collocation points, are chosen to

be the images of the Greville abscissas of thecegso knot vectors (see 83.4). As an
illustration, Fig. 5 depicts the distribution ofetireville collocation points on the Wigley
hull using the original knot vectors (upper-lefjdre) and after inserting 2 (upper right

figure) and 4 (lower-middle figure) knots per pagdric interval.

Next, we introduce the so-called “induced velodagtors” ui“(F}p) at the collocation
points P, namely the “velocity” atP® of patchp, which is induced by a source-sink

distribution (single layer potential) of densityuadto NURBS basis functiorR’, (tl,tz).

More accurately,

u? (R7)= J R (k) [V & Pxt )] Ja(tt) dudt, pa=12..N  (9a)

13



where a=|e xe,| is the metric tensor determinant, defined throtig covariant base
vectors, e =0dx/aot;, e,=0dx/ot,, and Qf =suppfR’,} denotes the support of the

R (t,.t,) contained inlxI]. In the case where the image of @ has an edge on the

undisturbed free-surface plane=Q), the above equation is modified by including a

waterline integral, as follows

u'q(ﬂp): J'R.qm (tl'tz) [VPG] O‘(trtz) dtdt, +

+ [ RL(LG) [VeG] n(b)r, (0B, dt, (9b)

9 (4=tf")

where }B(t,) :||e2||2 and G is the regular part of the NK-Green’s functiong($g. 4b).
Since R’ (t,t,) is Holder continuous, actually it is considerablpomther lying in
ckf*2(|f)xckf*2(|g), the above integrals exist everywhere except whery, i.e., if
P?eQ!, in which case they exist as Cauchy Principdu®¥dPV) integrals (see, e.g.,
Mikhlin et al 1965). This result breaks down atlechtion pointsP® that are images of
parametric points lying on the boundad®2! of the supportQ!of the NURBS basis
functions RY, (t.t,), as a result of the occurrence of multiple krintshe initial knot

vectors. To circumvent this problem, the presemplementation slightly shifts the

preimages of such collocation points to the intevicthe basis-function support.

3.3 Integration of singular kernels

The NK-Green’s functionG(P,Q), defined in Eq. (4b), can be decomposed into a

nonsingular and a singular part, as follows

14



G(P’Q)= C%ing( P’Q+ C?\1onsing( P1Q ’ P!@ ' (103)

where
47G,and P.Q=(-R*+ G( P.Q) . G, P.@= (47 ¥' ,£|PQ, R=|PQ (10b)

with Q" denoting the image of) with respect to the undisturbed free surface .
the calculation of the non-singular pa@ ) of the Green’s function, which involves z-
exponential decaying and wavelike components, agoiare based on Newman (1987a,b)
analysis is followed. However, the series expansamsociated with the wavelike
component becomes unstable as the pdhtQ approach thez=0 plane, leading to
numerical instabilities, particularly as concers derivatives; see also the discussion by
Marr & Jackson (1999). At present, this problemnigmerically treated by vertically
downshifting the whole hull by a small paramet&a= 1 / « of the order of wavelength
A=2n/k of the transverse component of the wave systemergéed by the moving ship,
where « is a factor. The optimum value of the latter factepends on ship geometry and
can be specified by numerical experimentation;3ee 4.5, where the case of a series 60
ship hull is treated. Future work will be focusing optimizing the calculation d& , as
described in ibid. Obviously, no such numericalrection is needed in the case of fully

submerged bodies. To proceed, in accordance #gh(10a), the integral of! in Egs.

(9a) and (9b) is split to two parts as follows

u, (Rp):ugnonsing(F]?p)+ui(sing)( F])p) ' (11)
The integration of the non-singular paft™*"?(PP) is easily obtained by using standard

numerical quadrature rules. In the present versgauss-Kronrod quadrature formulas are

implemented using points and weights ranging f&ino 51; see, e.g., Prestsal (1992),

15



Shampine (2008). For the evaluation of the sialgphrtui(S‘”g)(F}p) we distinguish three

cases as follows:

(i) far-field case: The preimage ofR” does not lie in Q and its Euclidean distance
d(Pjp ,con\i‘) from the convex hullcony of the control net of x(t,t,), (t,,t,)eQ! is

greater than twice its diameférdiam(cony). In this case, the integrand behaves

regularly and the same, as above, 21-51 points S=étsrod quadrature formulae are

applied.

(i) near-field cases The preimage  of p? remains outside Q!, but

d(PP,cony) < 2diam(cony'), in which case numerical experience has shovat th

numerical instabilities could occasionally appelar.the present work an alternative
scheme for the evaluation of the integral in thesecis used, based on transformation

techniques permitting the numerical grid (usedtha integration) to become finer at the
integration pointsQ which are closer toR”; see, e.g., Telles (1987), Telles & Oliveira

(1994) and Voutsinas & Bergeles (1992).

(iii) in-field case: The preimage of B® lies in the interior ofQ?, in which case the

kernel is singular and the integral should be ater®d in the Cauchy-PV sense, see, e.g.,

Mikhlin (1965). For the evaluation of the Cauchy;Pahe-neighborhood, cutting-off of

the singularity atP”, is introduced and subsequently the limitzas 0 is calculated; see,

e.g., Mikhlin (1965). An important aspect concaghthe implementation of the discrete

Cauchy-PV is that the discretization paramhbtérquivalent mesh size for the numerical

16



integration) should depend on the cut-off parameteo thath, -0 as ¢ - 0. More

details concerning the treatment of the singuldegrals and the achieved rates of

convergence are provided in the Appendix.

3.4 Thediscrete scheme

On the basis of the assumptions made in the gquesubsections, namely that the wetted

hull surfaceS is a multi-patch NURBS surface represented as ofs. [E7) and that the
unknown source-sink distributign onSis embedded in the spline spage by inheriting
the NURBS basis used for representi(see Eq. 8), the projectidni of the integrals in

the left hand side of Eq. (5) onS/ is materialized by evaluating them on selected

collocation pointsR® € S, namely,

n(R7)=3 3w [ut (R7)n(77)] a2

where uiq(Pjp),PjpeS, are the induced velocity factors defined bysE() and

n :quz/Ja is the outward unit normal vector & Using (12b) the projection of the
BIE (5) on S takes the form of a linear system with respectthe unknown

coefficients { 4’} as below:

@ The convex hull for a set of pointsis the minimal convex set containiXgIn our caseé is the
set of control vertices ofx(t,,t,), (t,,t,)e Q! and, as a resulgony'is a convex polytope. The

diameter diam(con\f) of cony is the maximum distance over all pairs of verticEsony .
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nP+P

z,ulpF\’lF:p( o) 2A1(RP)=—2U(P?)-n( P”), j=0,..n%+", p= 1.N. (13)

In order to ensure the solvability of the lineasteyn (13), we select the collocation points
to be the Greville abscissas of the associated NbUJR8ses; see, e.g., Farin (2001). As
noted previously, since some knots (including baupdnots) in initial knot vectors are
usually multiple, it is likely to arise that Greleil abscissas lie to the boundary of the
support of the NURBS bases, which, in turn, rendasblematic the evaluation of
integrals with Cauchy singularity. To overcome ttiiculty, these collocation points are
slightly shifted from the boundary inside the bdsisctions support, in such a way so that
the symmetry of the arrangement of the preimageakeotollocation points is maintained,
as far as possible. More details concerning theceff this shifting on the convergence

rate are provided at the end of Sec.4.1.

Convergence of the solution of thescreteBIE (13) to the solution of theontinuousBIE
(5) is materialized through-refinement consisting in enriching the family of collocatio
points through knot insertion. Alternative mecharss involve degree elevatiom-(
refinement or combing degree elevation with knot insertidardfinement see, e.g.,
Politis et al (2009). As an example, Fig. 5 depicts two leveigg. 5b,c) of enriching the

initial collocation net (Fig. 5a) for the Wigleyhthrough knot insertion.

After solving the linear system (13), induced vdies at the collocation points are

calculated using the induced velocity facto:&(Pjp), defined by Eqgs.(9), as follows

nd49

u(R®) = i m (2 Ilq( ., 'rzpjz) (RP)+ui( P )j j=0,...n°+1°, p=1.N, (14a)

g=1 i=0

including un/2 as the first term in the right-hand side, from fhmp relations of the

single layer potential (see, e.g., Glnter 1967 sK1E989). Moreover, total velocities at the

collocation points are obtained from Eq.(4) aofob
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v(RP)=U+u(RP). (14b)

J J

Also, free-surface elevation is calculated frome thx-component of the disturbance
velocity onz=0 using Eq.(6b), and pressure distribution onhihié surface is obtained by
Eqg. (6a). Finally, forces and moments are calcdlaiemeans of pressure integration®n

combined with the appropriate components of themabrvector and other geometrical

guantities.

4. NUMERICAL RESULTS AND DISCUSSION

In order to test the accuracy and robustnesseofItBA-BEM method presented in § 3,
this section provides a series of numerical redolt fully submerged and surface piercing

bodies in a variety of physical configurations.

4.1 A prolate spheroid in infinite domain

As a starting example, we consider a 3-axial @igswith axes ratio 5:1:1 (prolate
spheroid), moving at constant speed in infinite bgemeous fluid. In this case, an
analytical solution is available (see, e.g., LarBB2 or Milne-Thomson 1968) supporting
the calculation of absolute error and rate of cogerece of the present numerical solution.
In our study the f-error associated with the velocity field on thelpsurface is defined as

follows:

U2

|33 ] v Vaae, s)

(=1 p=1|Py P
2

where a(t,,t,) is the metric-tensor determinant of the ellipsoid's suefac

v=(v.% %)=( Y,y ,v) is the total velocity vector field on the surfasfethe body (see
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Eg. 4) and v" denotes its IGA-BEM approximation based on a paldr approximation

characterized by the total numbdt of degrees of freedom. Finally, the quantities

‘vk M ‘ /=123, represent the local error of each velocity congmnrespectively.

The distribution of thex-component of the velocity along a meridian conimgcthe

geometrical poles of the above ellipsoid, fan inflow parallel to its great axis, is
shown in Fig. 6, where it is compared against ahalytical solution. In particular, results
obtained by using two different single-patch pagterizations of the ellipsoid based on

rational quadratic NURBS are shown in Fig.6. In finst representation, namedaxis
parameterization, the poles are located at thetpoin L=(i0.5,0, O), wherelL is the

length of the ellipsoid, and coincide with thegstation points of the flow. Thus, in this

case, the, isoparametrics correspond to meridians. In ticerseé representation, named

axis parameterization, the poles are locatex/dt =(0,0,+0.).

In both cases the number of dof increases in ptmpality to the product of knots inserted

along each parametric directidp and t,. We observe in Fig.6 that as the number of

additional knots increased-fefinement) the error diminishes rapidly, except the
vicinity of the stagnation points (see Fig. 6a),iekthis more-or-less expected due to the
large variation of the solution in this region. €eThituation improves when using the
parameterization of the ellipsoid, in which calse poles of the geometry representation
do not coincide with the stagnation points; see. [6ig. In order to further improve
convergence, we could use graded parameterizatieaging to local refinement of
distributions of Greville (collocation) points netre stagnation points, or multi-patch

representations for removing the poles.
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The L*error (Eq. 15), as obtained using th@arameterization, is plotted in Fig.7(a)
against the number of dof. In order to approxintage integral in (Eq. 15) a trapezoidal
rule has been applied, based on data at the cbbagaoints with variable grid size. In the
same figure the corresponding result obtained @ the NURBS degree from 2 to 3
and 4 k-refinement) is also plotted. Results obtained ly low-order panel method,
based on quadrilateral boundary elements carryamgtant source-sink density, are also
including in the same figure using a black solreeliln this example, meaningful results by
the low-order panel method are obtained using elig@ations larger than 200 elements. In
order to better illustrate the behaviour of the Jomder panel method, an artificial
extension of the corresponding error line below @60is included in Fig.7(a) by using a

dashed black line.

We observe that the convergence rate associatbdhve proposed IGA-BEM method, is
several orders of magnitude higher than the losepopanel method. For example, we see
in the above figure that for an?rror level of 2%o, the present method requires kaan
200 dof depending on the NURBS degree, while thedader panel method necessitates
more than 1200 panels, and this difference rapidbreases for lower error levels.
Moreover, we observe in Fig.7 that our method prisse tendency for exponential
convergence, as indicated by the continuous ineredshe downslope of the error curve
measured in the logarithmic scale, in contrasthe low-order panel method, which
exhibits a slow algebraic convergence. Similar amions have been drawn by studying
two dimensional boundary value problems governethbyLaplace equation; see Polgis

al (2009).

As usual in BEM, the *%error is affected by several parameters. The firsl most
important one deals with the discretization (numifedof), which reflects the accuracy of

the approximation of the sought for solution by pi®jection in the finite dimensional
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NURBS spaceS’; see§ 3.2. A second significant parameter deals with @hccuracy of

calculation of the different types of integralsgilar and/or regular) involved in the BIE,
which is usually set to a fixed value. Therefors, dof increases, after a threshold
depending on the rate of convergence, the nunténiggration error dominates and the
L%error cannot be further improved, leading to agala behaviour, as indicated by the
thick dashed-dot line in Fig.7(a). Of course, thmmit (plateau) can be lowered, by
increasing the accuracy of numerical integratios, ilkustrated in Fig. 7(b), where
convergence rates for NURBS degrees 3 and 4 aseme for two choices of integration
parameters, specifically, for 1501 and 3501 poneispectively, for the calculation of
singular integrals. Also, the effect of slight simf the boundary collocation points by a
small parameter ¢ on the rate of convergence is illustrated iguFé 7(c). We clearly
observe that, as dof increases, the convergeraraathristics of the present scheme are

not affected, withe in the interval0.001<¢ < Q OE.

4.2 A rapidly moving submer ged ellipsoid

As a next example, we consider a 3-axial, totalliprserged ellipsoid, with axes ratio
2:1:0.5, moving at constant speed in semi-infidibenain, which is bounded above by a
horizontal plane, where a homogeneous Dirich@etdition is applied. This problem
asymptotically models the linearized solution esponding to flow around a rapidly
moving body under the free surface and its Greection comprises only the first two
terms in (Eqg. 4b), i.e., the Rankine source tend #&s image with respect to the=0
plane. Fig. 8 depicts the horizontal velocity disition (left Fig. 8) along the top meridian
on thexzplane of the above ellipsoid at low submergerZe=0.16, withL denoting the

length of the ellipsoid, and the velocity vectield over the surface (right Fig. 8).
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The present results have been obtained usingxdpas parameterization of the 3D
ellipsoid after inserting 2, 4 and 8 knots pergpaetric interval, which results in 153, 325
and 861 dof, respectively. In this case analytsalution is not available and thus,
convergence of the numerical solution is estichatsing the E relative error, defined as

follows:

12

R B W NS NET T (16

with K a fixed indexK<M.

4.3 A submerged prolate spheroid under the free-surface

In this subsection results are presented concemmi@gsolution of the linear NK wave-

making problem for the prolate spheroid of § 4ranslating steadily at low submergence
(d/L=0.16) with Froude numberF =U /@:0.5. Reference solutions of this problem

are available; see, e.g., Farell (1973), DoctoBe&k (1987). The resulting wave pattern

is depicted in Fig. 9. The wave resistari®e at various speeds is obtained by pressure

integration on the surface of the submerged bodg,the corresponding wave-resistance

coefficientCy is calculated by means of the following equation

T 050U,

PP
1715

Cu = %i(j cpafaqwzt}, an

where S, denotes the area of the wetted surfaoéthe body,n, is thex-component of

the unit-normal vector o8 andC, stands for the pressure coefficient defined as:

C,=L=P _1_(viuy-29z/ 2, (18)
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with v=||v|= |[U+V¢|| denoting the total flow velocity. Other importamuefficients, as

those concerning sinkage and trim, can be cakdlby similar formulas. The pressure

coefficient C, along a series of meridians of the prolate sper@s obtained by the

present method using=325 dof and Eg. (18), is shown in Fig. 10.

In Fig. 11 the wave resistance coeffici€n)} of the prolate spheroid at low submergence

d/L=0.16 is given for seven Froude numbers, as cledlby Eq. (17) and agawi=325
dof. We observe that the predictions obtaitgd the present method converge rapidly
to the reference solution by Doctors & BecR8Z), shown in the same figure by
using a thick line. It is clear that the preséBAlresults, obtained by inserting 2 and 4
knots per parametric interval, which correspondtel35 and 325 dof, respectively, are
much more accurate than the ones (depicted byespsbtained by the low-order panel
method using a grid of 16x20 elements (on theaserfof the whole body), which

corresponds to 320 dof.

4.4 A Wigley parabolic hull

In this subsection the performance of the propasethod for a surface-piercing hull is
presented and discussed. The hull in questiorheisstandard parabolic Wigley parabolic

hull (Sec.3.1), with main-dimension ratia$B = 10,L/T = 16 andB/T = 1.6.

In particular, various single- and multi-patch negentations of this hull have been used
in order to test the applicability and convergeatéhe IGA-BEM approach in the case of
surface piercing bodies moving at constant forvegeled. As an illustration, we present in
Fig. 12 numerical results concerning the calculadedrce-sink distribution: on the
surface of the hull, as obtained by using thelshpgtch representation of the Wigley hull
and refinement levels 1 and 4. Apparently, converged already at refinement level 1. In

order to test the multi-patch version of the codetificial multi-patch NURBS
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representations of the Wigley hull have been geedrby subdividing the single-patch
surface along specific isoparametrics. Selectsdlt®obtained by using two vertical, two
horizontal, and four patches are illustrated inE3g We clearly observe in this figure that
the colour plots of the computed source-sink distions apparently coincide (mean
difference, with respect to single-patch surfaessithan 1.2%) for all three alternative
multi-patch representations at the same refineneset (4), which ensures the robustness
of the proposed method. However, in the case ofeneamplex, realistic ship hulls,

different patch representations could give risedifferent performance, implying the

necessity of a preliminary study in order to achieptimum surface representation.

It is worth mentioning here that first comparisdnstween bi-quadratic isogeometric
NURBS and bi-quadratic Lagrange elements revealaimates of convergence. However,
for the same dof, the present IGA-BEM exhibits éetperformance, as for example
illustrated in Fig.14 concerning the Wigley hulinfiar behavior has been also recently
reported by Li & Qian (2011). This is due to thestfahat in the case of bi-quadratic
NURBS a C inter-element continuity of the sought for solutis obtained, while in the
case of Lagrange elements the (global) contingitgrily C. In addition, it is also to be
noted that in the present method the boundary ciifatreated exactly (as it is produced
by the CAD software), while in other approacheseokeither on low or high order BEM,
an additional error is introduced by the approxiorabf the geometry.

Using the single patch representation, the caledlatave pattern of the Wigley hull,
steadily advancing at Froude number=0.316, is shown in Fig. 15. In addition, color
plots of the pressure distributions on the hulfface for Froude number$=0.267 and
F=0.316, are presented in Fig. 16, respectivelytdained by the present method, using
N= 703 dof (refinement level 4). For the latter kle number, predictions of the wave
profile alongside the Wigley hull are compared ig.R7 against results by other methods

(Maskewet al, 1997) and experimental data. Results of thegmtesnethod are depicted
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in red, while results from the USAERO code (ipicare denoted by thin solid lines
connecting hollow triangles or circles, and, fipakexperimental data are depicted by
disconnected hollow circles. Fig. 17 implies tbat results agree relatively well with
theoretical predictions and measured data ovemithele length of the ship with the

exception of an area near the stern, where theeresethod overestimates the wave

profile. Finally, in Fig. 18, the wave resistanagefficient C,, of the Wigley hull is

depicted in red for various Froude numbers, &utaed by the present IGA method and
M=703 dof. We observe that our predictions liehmitthe range of experimental data
provided by ITTC (1987) (see also Nakos & Sclavaurdi®94) and agree well with
predictions by other BEM, as, e.g., those pravicecently by Bal (2008). As before, in
comparison with the low-order panel method, thes@mé method guarantees better

accuracy for the same dof.

We conclude this subsection by utilizing the ab®Wagley hull to provide additional
information concerning the efficiency of the prasd@A-BEM. Fig. 19 depicts
computation time versus dof for a computer clysteth 1+8 (front end + computing)
nodes, each one with 2 Xeon Quad CPUs @ 2.4MHz 1&%&b memory, connected
through 10GBiIt network, and storage capacity ab.4We observe that the computation
cost increases at least quadratically with dof.eflasn this and similar experimentations
we consider that the present method is applicdbtesystematic calculations involved in

hull optimization problems, provided that accuratéutions are obtained by using a total

number of dof ofO(lOg). First results in this direction have been presgim Ginniset al

(2011).

4.5 A Series 60 ship hull

As a final example, numerical results are presemmethis subsection concerning the

application of the IGA-BEM method to the calculatiof the wave field and wave
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resistance of a ship hull belonging to Series 6€h block coefficient Cbh=0.60. Extensive
experimental and theoretical results concerning thill model are available from 18

ITTC (1987); see also Nakos & Sclavounos (1994)riMbal (1994).

The main dimension ratios of the above Seriest0l are: L/B = 7.5,L/T = 18.75,
B/T= 2.5. A multipatch representation was developetidat this classical round stern
hull, composed by 7 patches, as previously dsslisn Sec.3.1 and illustrated in Fig.4.
In particular, the calculated source-sink distiidit on the hull surface, for Froude
number F=0.316, is presented in Fig. 20, as obtained by gresent method with
M=3285 dof, which is found to be enough for convaoge The above surface plot has
been obtained using the calculated valueg at the collocation points. The corresponding
surface velocities and distribution of the preestoefficient on the hull surface (for the
same as before Froude number) are shown in Fignéd122, respectively. In particular, in
Fig. 22 we observe the rapid increase of the presauthe stern area of the above hull
which is responsible for the relative decreaseéhefwave resistance in this regime of ship

speeds.

Finally, in Fig. 23 the wave resistance coeffici€l of the examined Series 60 hull is
depicted for various Froude numbers, as caladlbayethe present IGA method and using

M=3285 dof. Also, in the same figure, the effectdfficial sinkage(5z) introduced for

the numerical treatment of th& -part of the Green’s function and its derivatives i
illustrated. In particular, three values afz/A=a"=1/20, 1/ 25 1/3( are shown by
using green, blue and red lines, respectively. ddeclude from this and many similar
studies that reasonable predictions of the wawistence are obtained for Froude
numbers up to 0.35, which is considered to be mdhg high for this type of full-
displacement ship hulls. Moreover, we observe is éixample that our predictions based

on a =25+30, are in good agreement with other well-known asthblished methods,
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as the BEM developed by Nakos & Sclavounos (1284h)g their calculations obtained
by pressure integration on the hull surface. Bnagtesent method results are found to be
in conformity with experimental data provided byTKD (1987) survey, especially for

higher values of the Froude number.

5. CONCLUSIONS

In the present work IGA, initially proposed by Hagtet al (2005), is applied for solving
the BIE associated with the NK problem and thieutation of the wave resistance of
ships and steadily translated submerged bodiesisbigeometric concept is based on the
exploitation of the same NURBS basis for exaatgresenting the body geometry and for
approximating, through refinement process, thgusarity distribution of the associated
BIE or, in general, the dependent physical quagtitio this respect, the present approach,
although focusing on the linear NK problem, exlsititie novelty of providing a paradigm
of integrating contemporary CAD systems for shytl-design, that rely nowadays almost
exclusively on NURBS, with CFD solvers. The enhaheecuracy and efficiency of the
present method has been demonstrated by companmegrital results obtained in the case
of a prolate spheroid in infinite domain, a thre@hellipsoid in semi-infinite domain, a
submerged prolate spheroid under the free surfaee,two surface piercing hulls, the
standard Wigley parabolic hull and a Series-68=-0360) hull, against analytical solution,
experimental data and predictions provided by ledeo panel methods and other
established BEM from the pertinent literature. Fetwork is planned towards the detailed
analysis of rates of convergence of the presenthadetand its exploitation to the

optimization of ship hulls with respect to waveistance.
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APPENDIX. Treatment of thesingular integrals
In the in-field case, where the preimage of lawaition pointB” lies in the interior of

Q! (P'eQ), the 2D singular integral, Egs.(9), is writie the form

Bt

ut(RP)= [ [ (t.t,)dt t,, (A.1)

where f (t,t,)=R% (t,t,) [VoG] yJa(t,t,) . QF =[tht? [x[t)t]], and B* s the
image of(tf,tf) on the parameter space; see Fig. A.1. The idtey(A.1) is defined as

a Cauchy principal-value one, and for its numericallculation ane- neighborhood is

introduced, cutting-off the singularity, obtaining

th-s tf g
uf(RP _|.m{j jf t,t,)dt dt+j jf t, t,)dt, dt,+
-0
t; 1 t2+g ’(l
+2j j (t,t,)dt dt+2j j ) dt dt} (A.2)
tz—s tl -& t1+s
The domains of the above four integrals are denate#ig.A.1 as I, I, Il and 1V,

respectively. All these integrals are nearly siaguin the sense that the singularity is
outside the corresponding domain of integratiomd #hus, the method introduced by
Telles (1987) is used as described in the sequelinBar transformation of the involved

variables, each one of the above integrals isrptite following form
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1

J:_Jl; [f.(&.6,)d5ds,,  where fo=|dt/dg|f (A.3)

-1

and f.(&,&,) is singular at the point(gf,gz")z(él (t7tD), &,(ti 2")) Following
Telles & Oliveira (1994), we introduce now the nlorear transformation(s)
G(s)=as+hg+ ¢gr . k12 (A4)

where the coefficientsa, .y ,G ,d, , are calculated such that

:1,d§k(51<: i): 0, Cfgk( = 5)
ds, dg

&(sc=-1)=-1¢(s=1 = 0,k=1.2, (A.5)

and (s,s) denotes the point of singularity, i.€ =& (s7), k=12. Then the

coefficients of the transformation (A.4) are obtl as

a=Q.h=-3$Q,¢=3§) Q.¢=— band O=1 3%y %L1 (A.6)

Consequently, the integrals (A.3) are reducededahowing form

1 1 2 2
I=] Jr(a(s)a(s)(eqa(s- §) (s ¥ dsd (A7)
-1 -1
which are calculated by using standard quadratues tbased ol points. The advantage
of the above procedure relies to the fact thanthrelinear transformations (A.4) produce a

lumping effect of integration points as approachthg point of singularity. Extensive

numerical evidence from a variety of examples atergid has shown that the error decays
like [J(N)-J|= N, with m>1, suggesting thatd(N) exhibits fast rate of

convergence.
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Figure 1. Ship in a uniform stream with velocity = (-U, 0, 0).
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Figure 2. Multi-patch NURBS representation of a 5:1:1 ptelgpheroid using a) one , b)
two and c) four patches. The control net is degidy connecting with linear segments
the control points (gray spheres).
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Figure 3. Multi-patch B-spline representation of a Wiglawll using a) one , b) two ,
c) three and d) four patches.
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Figure 5. Greville collocation-points distribution on theighey hull using a) the original
knot vectors and those resulting after inserbb) 2 and c) 4 knots per parametric
interval.
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Figure 6. Velocity distribution along the top meridian bktxzplane of a prolate spheroid
(axes-ratio: 5:1:1) in infinite domain, for padlinflow along itsx-axis. Comparison of
the analytical solution versus the results obthibg using (a)x-axis and (b)z-axis
parameterizations. The corresponding local errongithe same meridian is shown in the
lower subplots.
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Ellipsoid in parallel flow
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Figure 7. Ellispsoid in parallel flow. (a) Decay of thé-krror with respect to dof and
degree elevation. The corresponding predictiotginbd by the low-order panel method, is
also shown using a black line. Plateau level isceteéd by the thick dashed-dot line. (b)
Dependence of the plateau level on the numeri¢agmtion accuracy (1501 and 3501
integration points are used). (c) Sensitivity asslyof the error due to slight shifting
(e=0.05,0.01,0.001) of the collocation points, in tlase of quadratic NURBS
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Velocity distribution along xz plane - Depth = 0.16
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Figure 8. Velocity field on the surface of 3-axial ellipdo{axes ratio: 2:1:0.5), at low
submergence d/L=0.16, using homogeneous Dirichlet boundary coowlition the
undisturbed free surface. Horizontal velocity aldhg top meridian (left) and 3D vector
plot of surface velocities (right).
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Figure 9. Free-surface elevation generated by a prolatersjgh with axes ratio 5
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Figure 10. Pressure coefficiel@l, along a series of meridians of the prolate sptero
in Fig. 9.
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Figure 12. Source-sink distribution obtained at refinemewels 0O (initial), 1 and 4 for the single-
patch representation of the Wigley hull,F&0.316. The upper-left part of the figure depidtts t
control net of the single-patch representatiorhefhull.
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Figure 13. Source-sink distribution obtained at the sameeefient level (4), for three
multi-patch representations of the Wigley hufF £ 0.316): (a) two vertical patches, (b)
two horizontal patches, (c) four patches. The peft of the figure depicts the control nets
of the three alternative multi-patch representatiohthe hull.
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Wigley 3x2 degree single patch rate of convergence (L2 )
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Figure 14. Relative E error (| s, —4 |, where i=dof ) of the numerical

solution as obtained by the present IGA-BEM (shdwrusing red lines) against
corresponding results obtained by bi-quadraticrhage BEM (black lines), in the
case of the Wigley hull.
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Figure 15. Free-surface elevation generated by the Wigleyll, lat Froude number
F=0.316, as calculated by the present method ussiggée-patch representation
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Figure 16. Pressure coefficienCp on the Wigley hull, for (aF = 0.267 and (b)

F =0.316, as calculated by the present method using dof£gi@gle patch, refinement
level 4).
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Wave profille alongside the Wigley Hull, F=0.316
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Figure 17. Wave profileat F = 0.316 alongside the Wigley hull. Comparison with
experimental data and computations by other pae#hoals.
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Wave resistance coefficient
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Figure 18. Wave resistance coefficienCy of the Wigley hull for various Froude
numbers, as calculated by the present method (rketd). Comparison with experimental
data (black squares) and another panel methodd#shed curve).
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Figure 19. Computation time versus dof in the case of thglgyi hull using the present
IGA-BEM.
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Figure 20. Source-sink distribution on the surface of 8eries 60 (6=0.60) hull at
Froude numbeF=0.316.
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Figure 21. Surface velocity distribution on the surfacetbe Series 60 ¢=0.60) hull at
Froude numbeF=0.316.
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Figure 22. Distribution of the pressure coefficie@b on the surface of the Series 60
(Cp=0.60) hull at Froude numbgr0.316.
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Figure 23. Wave resistance coefficienCy of the Series-60 (=0.60) hull for various
Froude numbers, as calculated by the present mefinsidg different values for the
submergencéz). Comparison with experimental data (shown by dyaes) and the BEM
by Nakos & Sclavounos (1994), shown by solid blaoé.
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Figure A1l: Numerical grid for the calculation of the 2D Chydgrincipal value integrals.
Thee- neighborhood, cutting-off the singulari@[ t;’) is denoted by a thick box.
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