
  1 

 

 

A BEM-ISOGEOMETRIC method for the  

ship wave-resistance problem     

 

 

K.A.  Belibassakis(1,*),  Th.P. Gerostathis(2),  K.V. Kostas(2),  C.G. Politis(2)   

P.D.  Kaklis(1),   A.I. Ginnis(1)  and  C. Feurer(1) 

 

(1) School of Naval Architecture and Marine Engineering,   

National Technical University of Athens, Zografos 15773, Athens, Greece.   

(2) Dept. of Naval Architecture, Technological Educational Institute of Athens 

Ag. Spyridonos 12210, Athens, Greece 

 

 
 
ABSTRACT 

In the present work IsoGeometric Analysis is applied to the solution of the Boundary 

Integral Equation associated with the Neumann-Kelvin problem and the calculation of the 

wave resistance of ships. As opposed to low-order panel methods, where the body is 

represented by a large number of quadrilateral panels and the velocity potential is assumed 

to be piecewise constant (or approximated by low degree polynomials) on each panel, the 

isogeometric concept is based on exploiting the same NURBS basis, used for representing 

exactly the body geometry, for approximating the singularity distribution (and, in general, 

the dependent physical quantities). In order to examine the accuracy of the present method, 

numerical results obtained in the case of submerged and surface piercing bodies are 
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compared against analytical solutions, experimental data and predictions provided by the 

low-order panel or other similar methods appeared in the pertinent literature, illustrating 

the superior efficiency of the isogeometric approach. The present approach by applying 

Isogeometric Analysis and Boundary Element Method to the linear NK problem has the 

novelty of combining modern CAD systems for ship-hull design with computational 

hydrodynamics tools.  

 

Keywords:  Isogeometric Analysis, high-order BEM, Neumann-Kelvin problem, NURBS, 

CAD-CFD integration 

 

1. INTRODUCTION 

 

Due to its specific importance in ship powering prediction and optimisation of ship hulls, 

the investigation of ship resistance in calm water is a significant problem. This problem is 

complicated since ship resistance is dependent on both viscous and gravitational effects. 

For computational purposes, the calculation of viscous and wave-making resistance is 

usually considered separately. Wave-making resistance is a very important component, 

which sometimes can contribute 50% or even more of the total resistance of a ship 

(especially for relatively full hull forms and/or at high speeds). Experience has shown that 

the wave-making resistance component is quite sensitive to design parameters and 

significant reduction can be achieved without affecting cargo capacity. The capability to 

predict and minimize wave resistance in the early stages of the design is therefore very 

important.   

 

During the last 50 years, the interest in numerical methods for calculating ship wave 

resistance has been constantly growing. Computations are performed using a variety of 

techniques, ranging from the simple Michell's thin ship theory to fully non-linear 

Reynolds-Averaged-Navier-Stokes Equations (RANSE) methods; recent advances are 
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presented in the reports by ITTC; see ITTC (2005, 2008) and the references cited therein. 

The application of three-dimensional potential flow theory to the steady ship motion 

problem results in an essentially non-linear boundary value problem (due to the non-linear 

character of the boundary condition at the free surface), from which the unknown velocity 

potential and the free-surface disturbance must be calculated. The Boundary Element 

Method (BEM) is a widely used approach to solve potential flow problems in marine 

hydrodynamics, with further application to the calculation of the wave resistance and the 

wave pattern of ships steadily  advancing at forward speed. There exist two main types of 

elementary singularities used in the implementation of the method. The first type uses the 

Kelvin wave source as the elementary singularity, satisfying the field equation and all the 

boundary conditions except the body-boundary condition. The major advantages of such a 

scheme are the automatic satisfaction of the radiation condition and the definition of the 

resulting BIE only on the ship hull; see e.g., Wehausen (1973). The second type uses the 

simple Rankine source, i.e., the fundamental solution of the Laplace equation, as the 

elementary singularity. The method was first presented by Dawson (1977) and since then it 

has been widely applied as a practical method to predict wave resistance. Many 

improvements have also been made to account for non-linear effects; see e.g., Nakos & 

Sclavounos (1990), Raven (1996), Bertram (2000), Bal (2008). Considerable efforts have 

been devoted to increase efficiency and accuracy by introducing several variations, such as 

the desingularized method and the RAPID method. The above methods have the advantage 

of employing a simple elementary singularity, but on the other hand, the resulting 

Boundary Integral Equation (BIE)  is extended over the ship hull and part of the unlimited 

free surface leading to increased computational requirements. 

 

In the present work, IsoGeometric Analysis (IGA), proposed by Hughes  et al (2005, 2008) 

and used in the context of Finite Element Method (see, e.g., Cottrell et al 2007), is applied 

to the solution of the BIE associated with the linearized Neumann-Kelvin (NK) problem, 
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with application to the wave-making resistance of ships and submerged bodies at constant 

forward speed. A similar boundary-integral approach, concerning problems governed by 

the Laplace equation in infinite domains, has been presented in Politis et al (2009) and for 

linear elastostatics and shape optimization problems  in Li & Qian (2011).  In the NK 

problem, the non-linear effects stemming from the presence of the unknown free surface 

are neglected, while the three-dimensional character of the fluid flow is fully retained. 

Independent of its own practical interest, the robust and accurate solution of this linear 

problem represents a useful first stage before dealing with the complete non-linear 

problem. For the solution we shall use a  BEM implemented by means of a Kelvin wave 

source distribution over the wetted part of the hull. Fulfilment of the body-boundary 

condition leads to an integral equation with support only on the wetted part of the hull and 

its intersection with the unperturbed free surface; see, e.g.,  Brard (1972) and  Baar & Price 

(1988). 

 

Integral equation formulation of Laplace boundary-value problems has been established as 

one of the standard tools for calculating inviscid, incompressible flow characteristics 

(velocity and pressure) around 2D and 3D bodies and geometrical systems; see, e.g., Hess 

(1975), Katz-Plotkin (1991). Some of the most important advantages of this approach 

include the reduction of dimensionality, facilitation of calculations around complex 

geometrical configurations (especially in 3D), consistent handling of conditions at infinity, 

high convergence rates when the domain boundary and boundary data are (relatively) 

smooth and easy implementation to optimization (inverse-type) problems. As concerns the 

numerical solution, BEM (or panel methods) serve today as valuable tools, especially for 

non-linear and time-dependent problems; see, e.g., Brebbia et al (1984), Paris & Canas 

(1997),  Brebbia (2002).  

In  low-order  BEM  the body surface is usually discretized by a finite number of elements 

or patches, each carrying a simple distribution of the unknown function; see, e.g., Hess 
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(1975). On the contrary, high-order BEM, characterised by an increased order of 

approximation both with respect to geometry and the surface singularity distribution, has 

the property of faster convergence as element-size diminishes, and yields more accurate 

results with coarser grid resolutions; see, e.g., Gennaretti et al (1998). The latter is found to 

be quite important especially at places/subregions where the solution presents physical 

discontinuities and/or singularities, which are not well treated by low-order methods. In 

this direction, high-order panel methods based on B-spline and/or non-uniform rational B-

spline (NURBS) representations have recently appeared in the literature, for potential-flow 

problems. In the sequel, we briefly present some of these works.  The flow around 2D 

bodies moving with constant speed under the free surface is studied by Okan & Umpleby 

(1985) using B-splines. A 3D method for wave-body interaction through a Rankine 

boundary element approach, based on Maniar (1995) and satisfying the body-boundary 

condition directly on the exact CAD surfaces, has been applied to multi-body seakeeping 

design optimization by Peltzer et al (2008). The high-order BEM  overlays the NURBS 

geometry and yields stable wave and motion integration in time. Kring (1995) and Kim & 

Shin (2003) solve the three-dimensional radiation and diffraction problem using a NURBS 

representation of the body geometry and a B-spline basis for the unknown potential.  Datta 

& Sen (2006, 2007) solve, in the time domain, the three-dimensional ship motions problem 

with forward speed. The problem is formulated using the transient free-surface Green 

function. The body geometry is represented by either B-spline or NURBS, depending on 

the hull type, whereas the unknown field variables are represented via B-spline basis 

functions. Moreover, Kim et al (2007) use a higher-order panel method, based on B-spline 

representation for both the geometry and the solution, with application to the analysis of 

steady flow around marine propellers. Also, Gao & Zou (2008) solve the 3-D radiation and 

diffraction problem with forward speed, using the Rankine source distribution method, in 

conjunction with a NURBS surface to precisely represent the body geometry, whereas the 

velocity potential on the body surface is represented by B-splines.  
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As opposed to high-order BEM methods outlined above, where the body and the associated 

physical quantities are expressed via different basis functions, the IGA approach (see, e.g., 

Hughes et al 2005, 2008, Cottrell et al 2007, 2009) is based on using the very same basis 

for representing both the body geometry and the physical quantities, under the constraint 

that the chosen basis is able to represent accurately the geometry in question. In a recent 

work by Politis et al (2009), the IGA-BEM is exploited for the solution of the exterior 

Neumann problem in 2D, governed by the Laplace equation, reformulated as a boundary 

integral equation by using source-sink formulation. Numerical results obtained  for a 

circular   and a free-form  contour, represented exactly as NURBS curves, and various 

types of forcing, are compared against analytical and benchmark  solutions. The error is 

compared against low- and higher-order panel method predictions, illustrating very high 

rates of algebraic convergence, ranging from ( )4O N−  to ( )10O N− , if mesh refinement, 

through knot insertion, is combined with degree elevation, where N is the number of 

degrees of freedom. This result, compared with the rate ( )1O N−  of the low-order panel 

method, is found to be promising for BIE  of more complicated flow problems, like the 

ones associated with ship and submerged bodies in steady motion.  Thus, in this paper,  the 

IGA-BEM is applied to the wave-making resistance problem of surface piercing bodies 

and ships. The present approach, although focusing on the linear NK problem, has the 

novelty of combining modern CAD systems for ship-hull design with computational 

hydrodynamics tools. 

 

The rest of the paper is structured in four sections. Sec.2 summarizes the formulation of the 

NK problem as a BIE. In Sec. 3 we develop in four subsections an isogeometrically-

oriented BEM  for solving the BIE formulated in Sec. 2. More specifically, in § 3.1 we 

introduce the multi-patch NURBS representation and illustrate it for a triplet of geometries 

that are used later in Sec. 4 for testing the proposed method. In § 3.2 we introduce the 
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isogeometric treatment of the present BIE, while § 3.3 discusses the issue of stable 

numerical handling of the involved integrals. Finally, in § 3.4 we formulate the linear 

system arising from discretizing the BIE of Sec. 2 in a collocation setting and discuss 

alternative refinement approaches for converging towards the continuous solution. 

Subsequently, Sec. 4 is devoted to presenting and discussing the performance of the 

proposed IGA-BEM for solving the NK problem for a variety of geometries and physical 

configurations. The material starts with two simple tests, namely a prolate spheroid moving 

with constant speed in infinite homogeneous fluid (§ 4.1) and a submerged ellipsoid 

moving at high speed under the free surface (§ 4.2).  Subsection  4.3 presents results from 

testing the proposed method in the case of a submerged prolate spheroid moving steadily 

under the free surface, while the next two subsections deal with surface-piercing hulls, 

namely a Wigley parabolic hull (§ 4.4) and a Series 60 hull (§ 4.5). The obtained results 

are compared versus a variety of results available in the pertinent literature, e.g., analytical 

solutions, experimental data and predictions provided by the low-order panel or other 

similar techniques, illustrating the enhanced accuracy and efficiency of the present method. 

 

2. FORMULATION OF THE PROBLEM 

 

We consider a surface-piercing body moving with constant forward speed U  in an ideal 

(homogeneous, incompressible, inviscid) fluid of infinite depth,  bounded  above by a free 

surface. In the body-fixed coordinate system Oxyz, with z- axis pointing vertically upwards 

(see Fig. 1) this problem is equivalent to a uniform stream with velocity ( )0 0U , ,= −U  

incident on the body D. Following the formulation by Brard (1972) and Baar & Price 

(1988) for the linearized  NK problem,  the total flow field is decomposed to the parallel 

inflow and the disturbance potential which satisfies the Laplace equation,    

0,   ϕ∆ =        in    ,D+                                                                                                         (1) 
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where D+  is the fluid domain outsideD ,  limited above by the free surface. Eq. (1) is 

supplemented by the body-boundary condition,  

/ ,  nϕ∂ ∂ = − ⋅U n            on    S,                                                                                         (2a) 

where ( )x y zn ,n ,n=n  denotes the unit normal vector on S directed outwards the body and 

S D= ∂  denotes the wetted boundary of D,  the kinematic condition on the free surface,  

( ) 0x x y y zU ϕ η ϕ η ϕ− + + − = ,       on       ( , )z x yη=    ,                                                     (2b) 

the dynamic free-surface condition tating that the pressure on the free surface must be 

constant 

2 2 2(1/ 2)( ) 0,x x y zg Uη ϕ ϕ ϕ ϕ− + + + =    on    ( , )z x yη= ,                                                    (2c) 

and appropriate conditions at infinity. In the formulation of the NK problem, the above 

conditions on the free surface are linearized, by neglecting higher-order quantities and by 

applying the resulting equations on the undisturbed free surface 0.z=  Eqs.(2b,c) after  

linearization, are combined to  the following linearized free-surface boundary condition: 

2( / ) 0,    on   0.xx zg U zϕ ϕ+ = =                                                                                          (3) 

Thus, the linearized NK problem consists of Eqs.(1),(2),(3), in conjunction with the 

radiation condition, expressing the fact that the disturbance potential decays at infinity and 

there are no upstream waves. In the framework of potential theory (see also Baar & Price 

1988, Marr & Jackson 1999), the disturbance field  φ  is represented by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 *, , x y

S

P Q G P Q dS Q k Q G P Q n Q Q d Qϕ µ µ τ−= +∫ ∫
ℓ

ℓ  ,              (4a)  

where  ℓ  denotes the waterline (corresponding to the intersection of S with the undisturbed 

free-surface z=0),  µ is the density of the source-sink  distribution  on  S  and, finally, g 

denotes the acceleration due to gravity. In the above equation  G  denotes the NK- Green’s 

function which is defined as 

 

( ) ( )1 1 *4 , , ,G P Q r R G P Q Q Sπ − −= − + ∈ ,     3 \P IR D−∈ ,                                            (4b) 
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where { }3 , , 0IR x y z− = ≤  is used to denote the  half space below the undisturbed free 

surface (z=0),  ,r QP R Q P′= = , where  Q′  is the image of  Q  with respect to the z=0 

plane  and ( )* ,G P Q  stands for the regular part of the NK Green’s function, consisting  of  

components  exhibiting  z-exponential decaying and  wavelike behavior  (see Baar & Price 

1988).  Moreover, ( )x y z, ,τ τ τ=τ  the corresponding tangent vector along the waterline ℓ  , 

directed as shown in Fig.1. 

 

The integral representation of  the disturbance potential φ, provided  by Eqs. (4), permits us 

to automatically satisfy the Laplace equation, in conjunction with the linearized condition 

on the undisturbed free surface and the conditions at infinity. Substitution of integral 

representation, Eq. (4a), to the body boundary condition, Eq.(2a), and taking into account 

the jump property of the normal derivative of the single-layer potential, leads to the 

equivalent reformulation of the NK problem as a BIE defined on the wetted surface   S,  as 

follows 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
*, ,1

,
2 x y

S

P G P Q G P Q
Q dS Q Q n Q Q d Q P

n P k n P

µ
µ µ τ

∂ ∂
− − = − ⋅

∂ ∂∫ ∫ U n
ℓ

ℓ  

,P Q S∈ .    (5) 

The quantity  2/k g U=  is the characteristic wavenumber, controlling the wavelength of 

the transverse ship waves, that is directly connected with the squared inverse of the 

corresponding Froude number /F U gL= , with L denoting the max length of the body. 

From the solution of the above integral equation, various quantities, such as velocity, 

pressure distribution and ship wave pattern can be obtained. Specifically, total flow 

velocity and pressure are calculated through the formulae 
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( )2 2,
2

p p U v gz
ρ

ϕ ρ∞= +∇ = + − −v U  ,                                                                  (6a)  

 where  ρ denotes the fluid density. Moreover,  the free-surface elevation is obtained as 

( ) ( ) ( ), / , ; 0xx y U g x y zη ϕ= ⋅ =  .                                                                                     (6b) 

In the case of a fully submerged body the above formulation should be modified  by 

dropping the waterline integral in  Eqs. (4a)  and (5). 

 

3.  THE ISOGEOMETRIC  BEM  

 

The IGA philosophy is based on  approximating the field quantities (dependent variables) 

of the boundary-value problem in question by the very same basis that is being used for 

representing the geometry of the involved body-boundary. In the case of  BIE (5),  the 

dependent variable is the source-sink density µ, distributed over the surface S. The latter is 

accurately represented as a parametric NURBS surface or a collection of smoothly joined 

NURBS patches – referred to as a multi-patch NURBS surface. In this connection it should 

be stressed that, although NURBS is not a prerequisite IGA ingredient, we adopt it because 

it is a thoroughly developed and widespread tool in CAD technology.  

 

3.1 Representation of  body  geometry                                                                          

To proceed we assume that S is  a multi-patch NURBS surface ( )1 2,t tx , represented as  

( ) ( )
1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2,
00 0

, , : ( , ),

p p p

p p

n n
p p p p
i i i i k k

i i

t t R t t R t t
== =

= =∑∑ ∑ i i
i

x d d
n

                                                         (7a) 

and        
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( ) ( )
( ) ( )

( ) ( )

1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2
1 2 1 2,

1 2

0 0

, : , ,p p p p

p p p
i i i ip p

i i k k n n
p p p
l l

l l

l l

w N t N t
R t t R t t

w N t N t
= =

= =

∑ ∑
i      1 2 1 2( , ) ,p pt t I I∈ ×  

 1,2, , , p N= ⋯      (7b) 

 

where 1 2= ( , )i ii  and 1 2( , )p p pk k=k  are multiple indices,  p   is the patch identifier, 

1 2
:p p

i i=id d   denote  the control points of patch  p, and ( ) ( )
1 1 1

1 1,
: p

p p
i i k

N t N t= , 

( ) ( )
2 2 2

2 2,
: p

p p
i i k

N t N t=   are   the B-spline basis functions of degree 1
pk  and 2

pk ,  respectively.  

The latter,  in conjunction with the weights 
1 2

p
i iw , are used in (7b) for building up the 

rational B-spline functions ( )1 2,pR t ti  for patch p. Bold index notation is used to avoid 

appearance of multiple indices, while the subscript pk  will be henceforth omitted for the 

sake of simplicity and without loss of accuracy. Furthermore,  the parametric intervals 1  pI , 

2
pI  are partitioned appropriately by knot vectors 1

pJ  and 2
pJ , respectively. Finally,  in the 

case of surface piercing bodies, we shall assume that  the union of the isoparametric 

segments  ( )1 1 2,Endt t t=x  of the uppermost patches ( )p̂   provides the waterline (ℓ ).  

     

As  a first example, the NURBS representation for the ellipsoid can be generated by 

applying  a shear transformation to a bi-quadratic NURBS representation of the sphere 

given in Piegl & Tiller (1997). Multi-patch models of the ellipsoid in Fig. 2(a), composed 

from 2  and 4  patches (see Figs. 2(b) and 2(c)), have been used  for testing  the multi-patch 

version of the code. The second example involves  the B-spline representation of the 

classical parabolic Wigley hull, defined analytically as 

 

2 2

1 1
/ 2 / 2

y x z

B L T

     = − −            
,                                                                                   
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where L, B, T denote the length, breadth and draft of the hull. The single and multi-patch 

representations of this hull are depicted  in Fig. 3. The single patch is generated by 

interpolation of the bow/stern profiles and a parabola representing the hull mid section. 

Multi-patch NURBS representations of more complex ship hull geometries and 

geometrical configurations can be obtained via  CAD tools and techniques. For example, 

the B-spline representation of a Series 60 (Cb=0.60) hull, which is discussed below in §4.4, 

is obtained using multiple patches,  as  illustrated in Fig. 4. The semi-hull is a G1-

continuous surface, i.e., a continuous surface with continuously varying unit normal, 

comprising 7 bicubic patches  with a total count of 3285 control points. In this case, 

patches 1 and 2 have been generated with a lofting (skinning scheme) on the corresponding 

ship sections while the remaining patches (3 to 7) are the result of Gordon surface 

construction schemes on corresponding sections and waterline and/or stern-profile parts.                        

 

 

3.2  The  IGA - boundary integral  equation method                                                         

 

In IGA context the unknown source-sink surface distribution  (µ)  is approximated via the 

very same NURBS basis used for the body boundary representation (Eqs. 7), that is: 

 

( ) ( )1 2 1 2 1 2 1 2,
0

, ( , ) ,   ,,     

p p

p
p p p pt t R t t t t I Iµ µ

+

=

= ∈ ×∑
n l

i i l
i

 p=1,2,…N  ,                                          (8) 

 

 

where pµi  are the (unknown) coefficients associated with the above expansion, and  

1 2, )(p p pl l=l  denotes   the additional knots with which the initial knot vectors 1
pJ  and 

2
pJ are enhanced in order to refine, by knot insertion, the initial NURBS basis and increase 
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its approximation power. The totality ( )( )1 1 2 21 1p p p p

p

M dof n l n l= = + + + +∑  of 

coefficients pµi constitutes the degrees of freedom (dof) associated with approximation (8). 

 

 

Thus, sequences of spline spaces 
1 21, 2,

( , ) :p p

p p p p

l l
J J = lS S   can be produced,  on which the 

boundary integral equation (5) will be projected. These spaces are nested, i.e.,  p p⊂l kS S       

if  , 1,2.p p
jjl k j =<   Several methods are available for defining a projection onto the finite-

dimensional space plS  and discretizing Eq. (5), like Galerkin and collocation methods (see, 

e.g., Kress 1989, Sec.13). In the present work, a collocation scheme is adopted for 

projecting (5)  on  p
lS .  For this, let ( )

1 2 1 21, 2,,p p p p
j j j jP P t t= =j x  denote a set of  collocation 

points on S,  where { }
11,

p
jt , 1j =0,…, 1 1

p pn l+ , and { }
22,

p
jt , 2j =0,…, 2 2

p pn l+ ,  lie in  1
pI  and  

2
pI , respectively, for p=1,2,…N.  For each patch p,  these collocation points, are chosen to 

be the images of the Greville abscissas of the associated knot vectors (see §3.4). As an 

illustration, Fig. 5 depicts the distribution of the Greville collocation points on the Wigley 

hull using the original knot vectors (upper-left figure)   and after inserting 2 (upper right 

figure) and 4 (lower-middle figure) knots  per parametric interval.  

 

Next, we introduce  the so-called “induced velocity factors”  ( )pq Pi ju  at the collocation 

points pPj ,   namely the “velocity” at pPj   of patch p, which is induced by a source-sink 

distribution (single layer potential) of density equal to NURBS basis function  ( )1 2,
,q

q tR t
i l

. 

More  accurately, 

( ) ( ) ( ) ( )1 2 1 2 1, 21 2

Ω

, , ( , , , 1,2,...)  , ,,q

p q p
P

q P R G P tt t t t t dt dt p q Nα ∇ = =∫
q
i

ji li ju x          (9a) 
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where  
2

1 2a = ×e e   is  the metric tensor determinant, defined through the covariant base 

vectors, 1 1 2 2/ , /t t= ∂ ∂ = ∂ ∂e x e x ,  and  
,

supp{Ω }q
qR=q

i i l
 denotes the support of the   

( )1 2,
,q

q tR t
i l

 contained in 1 2 q qI I× . In the case where the image of the Ω
q
i  has an edge on the 

undisturbed free-surface plane (z=0), the above equation is modified by including a 

waterline integral, as follows    

 ( ) ( ) [ ] ( )
, 1 2 1 2 1 2

Ω

, , q

q p q
PP R Gt t t t dt dtα= +∇∫

q
i

j i liu                         

                + ( )
1 1

*
2 2 2, 2 2

Ω

1

( )

 ( ) ( ) ( ),q

End

q
P y

t

x

t

R G n t tt tt dtτ β
=

 ∇ ∫
q
i

i l
,                                      (9b) 

 

 

where  22

2
( )tβ = e    and  *G  is the regular part of the NK-Green’s function (see Eq. 4b). 

Since ( )1 2,
,q

q tR t
i l

 is Hölder continuous, actually it is considerably smoother lying in 

1 12 2
1 2) ) ( (

q qq k qkC I C I− −× , the above integrals exist everywhere except when  p=q, i.e.,  if  

Ω
qP ∈j

q
i ,  in which case they exist as  Cauchy Principal Value (PV) integrals (see, e.g., 

Mikhlin et al 1965). This result breaks down at collocation points qPj   that are images of 

parametric points lying on the boundary Ω∂ q
i  of the support Ωq

i of  the NURBS basis 

functions  ( )1 2,
,q

q tR t
i l

,  as a result of the occurrence of multiple knots in the initial knot 

vectors.   To circumvent this problem, the present implementation slightly shifts the 

preimages of such collocation points to the interior of the basis-function support.  

 

3.3 Integration of singular kernels                                                                           

 

The NK-Green’s function ( )G P,Q , defined in Eq. (4b), can be decomposed into a 

nonsingular and a singular part, as follows 
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( ) ( ) ( )sin g nonsingG P,Q G P,Q G P,Q , P,Q S= + ∈ ,                                                      (10a) 

where  

( ) ( )( ) ( ) ( ) 114 4*
nonsin g singG P,Q R G P,Q , G P,Q r , r PQ , R PQ ,π π −−= − + = = ′=     (10b) 

with  Q′  denoting the image of  Q  with respect to the undisturbed free surface z=0. For 

the calculation of the non-singular part (G*) of the Green’s function, which involves z-

exponential decaying and wavelike components, a procedure based on Newman (1987a,b) 

analysis is followed. However, the series expansion associated with the wavelike 

component becomes unstable as the points P, Q approach the z=0 plane, leading to 

numerical instabilities, particularly as concerns  G*  derivatives; see also the discussion by 

Marr & Jackson (1999). At present, this problem is numerically treated by vertically 

downshifting the whole hull by a small parameter z /δ λ α=  of the order of  wavelength 

λ=2π/k  of the transverse component of the wave system generated by the moving ship, 

where α  is a factor. The optimum value of the latter factor depends on ship geometry and 

can be specified by numerical experimentation; see Sec. 4.5, where the case of a series 60 

ship hull is treated. Future work will be focusing on optimizing the calculation of G*, as 

described in ibid. Obviously, no such numerical correction is needed in the case of fully 

submerged bodies.  To proceed, in accordance with  Eq. (10a), the integral on Ωq
i  in Eqs. 

(9a) and (9b) is split to two parts as follows 

 

( ) ( ) ( ) ( ) ( )nonsingp p sing pP P P= +j i ij jiu u u .                                                                                   (11) 

 

The integration of the non-singular  part ( ) ( )nonsi g pn Pi ju  is easily obtained by using standard 

numerical quadrature rules. In the present version, Gauss-Kronrod  quadrature formulas are 

implemented using  points and weights ranging from 21 to 51; see, e.g., Press et al (1992), 
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Shampine (2008).  For  the evaluation of the singular part ( ) ( )sing pPi ju  we distinguish three 

cases as follows: 

 

(i)   far-field case: The preimage  of  pPj   does not lie in    Ωq
i  and its  Euclidean distance 

( )p q
j id ,convP   from the convex hull  q

iconv   of the control net of   1 2( , ), ( , ) Ωt t ∈ q
1 2 ix t t  is 

greater than  twice its diameter(1) ( )diam q
iconv . In this case, the integrand behaves 

regularly and the same, as above, 21-51 points Gauss-Kronrod quadrature formulae are 

applied. 

 

(ii) near-field case: The preimage  of   pPj   remains outside  Ωq
i , but 

( ) ( )2diamp q q
j i id ,conv conv<P , in which case  numerical  experience has shown that 

numerical instabilities  could occasionally appear. In the present work an alternative 

scheme for the evaluation of the integral in this case is used, based on transformation 

techniques permitting the numerical grid (used for the integration) to become finer at the 

integration points Q which are closer to  pPj ; see, e.g., Telles (1987), Telles & Oliveira 

(1994) and Voutsinas & Bergeles (1992). 

 

 (iii)  in-field case:  The preimage  of   pPj   lies  in  the interior of  Ωq
i ,   in which case the 

kernel is singular and the integral should be considered in the Cauchy-PV sense, see, e.g., 

Mikhlin (1965). For the evaluation of the Cauchy-PV, an ε-neighborhood, cutting-off of 

the singularity at pPj ,  is introduced and subsequently the limit as 0ε →  is calculated; see, 

e.g.,  Mikhlin (1965). An important aspect concerning the implementation of the discrete 

Cauchy-PV  is  that  the discretization parameter h (equivalent mesh size for the numerical 
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integration) should depend on the cut-off parameter ε so that 0hε →  as 0ε → . More 

details concerning the treatment of the singular integrals and the achieved rates of 

convergence are provided in the Appendix. 

 

3.4 The discrete scheme                                                                                         

On the  basis of  the assumptions made in the previous subsections, namely that the wetted 

hull surface S  is a multi-patch NURBS surface represented as in  Eqs. (7) and that the 

unknown source-sink distribution µ  on S is embedded in the spline space p
lS  by inheriting 

the NURBS basis used for representing S (see Eq. 8), the projection Π of the integrals in 

the left hand side of Eq. (5) on  plS  is materialized by evaluating them on selected 

collocation points pP S∈j , namely, 

( ) ( )
( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

*, ,1
p

yp
S

p

x
p

p

G Q G Q
Q dS Q Q n Q Q d Q

kn n

P P
P

P P
µ µ τ

∂ ∂
Π = +

∂ ∂∫ ∫
j j

j

j jℓ

ℓ ,        (12a) 

 

which, after some straightforward calculus, takes the following form: 

 

( ) ( ) ( )
1 0

 
q qN

p q p p

q

qP P Pµ
+

= =

 Π = ⋅ ∑ ∑
n l

j i j j
i

iu n   ,                                                                        (12b) 

 

where ( )pq Pi ju , pP S∈j , are  the  induced velocity factors  defined by Eqs. (9) and 

1 2 / a= ×n e e  is the outward unit normal vector  on S. Using (12b) the projection of  the 

BIE (5)  on  p
lS  takes   the form of a linear system with respect to the unknown 

coefficients  { }pµi  as below:         

                                                                                                                                                                                
(1) The convex hull for a set of points X  is the minimal convex set containing X. In our case X is the 

set of control vertices of  1 2( , ), ( , ) Ωt t ∈ q
1 2 ix t t  and, as a result, q

iconv is a convex polytope. The 

diameter  ( )diam q
iconv  of q

iconv  is the maximum distance over all pairs of vertices of q
iconv . 
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( ) ( ) ( )
1 21, 2,,

0

, 2 ( ) 2 , 0,...., ,   1,...
p p

p
p p p p p p p p p

j jR t t P P P p Nµ
+

=

− Π = + =⋅− =∑
n l

i j j ji l
i

U n j n l  .         (13) 

 

In order to ensure the solvability of the linear system (13), we select the collocation points 

to be the Greville abscissas of the associated NURBS bases; see, e.g., Farin (2001). As 

noted previously, since some knots (including boundary knots) in initial knot vectors are 

usually multiple, it is likely to arise that Greville abscissas lie to the boundary of the 

support of the NURBS bases, which, in turn, renders problematic the evaluation of 

integrals with Cauchy singularity. To overcome this difficulty, these collocation points are 

slightly shifted from the boundary inside the basis-functions support, in such a way so that 

the symmetry of the arrangement of the preimages of the collocation points is maintained, 

as far as possible. More details concerning the effect of this shifting on the convergence 

rate are provided at the end of Sec.4.1. 

Convergence of the solution of the discrete BIE (13) to the solution of the continuous BIE 

(5) is materialized through h-refinement,  consisting in enriching the family of collocation 

points through knot insertion. Alternative mechanisms involve degree elevation (p-

refinement) or combing degree elevation with knot insertion (k-refinement); see, e.g., 

Politis et al (2009). As an example, Fig. 5 depicts two levels (Figs. 5b,c) of enriching the 

initial collocation net  (Fig. 5a) for the Wigley hull through knot insertion. 

 

After solving the linear system (13), induced velocities at the collocation points are 

calculated  using the induced velocity factors  ( )pq Pi ju , defined by Eqs.(9),  as follows   

( ) ( ) ( ) ( )
1 21, 2,,

1 0

1
 ,

2

q q

q

q
N

p q p p p p
j

q

q
jP R t t P Pµ

+

= =

 = + 
 

∑ ∑
n l

j i j ji
i

il
u n u , 0,...., ,   1,...p p p N= + =j n l , (14a) 

 

including / 2µ n  as the first term in the right-hand side,  from the jump relations of the 

single layer potential (see, e.g., Günter 1967, Kress 1989). Moreover, total velocities  at the 

collocation points are obtained from Eq.(4)  as follows 
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( ) ( )p pP P= +j jv U u .                                                                                                        (14b) 

Also, free-surface elevation is calculated from  the  x-component of the disturbance 

velocity  on z=0  using Eq.(6b), and pressure distribution on the hull surface is obtained by 

Eq. (6a). Finally, forces and moments are calculated by means of pressure integration on S, 

combined with the appropriate components of the normal vector and other geometrical 

quantities.  

 

 

4.  NUMERICAL RESULTS  AND  DISCUSSION  

In order to test the accuracy and  robustness of the  IGA-BEM  method presented in § 3, 

this section provides a series of  numerical results for fully submerged and surface piercing 

bodies in a variety of physical configurations. 

4.1 A prolate spheroid in infinite domain 

As a starting example, we consider a 3-axial ellipsoid with axes ratio 5:1:1 (prolate 

spheroid), moving at constant speed in infinite homogeneous fluid. In this case, an 

analytical solution is available (see, e.g., Lamb 1932 or Milne-Thomson 1968) supporting 

the calculation of absolute error and rate of convergence of the present numerical solution. 

In our study the L2-error associated with the velocity field on the body surface is defined as 

follows: 

1 2

3

1

1 2

2

1
1

2
p p

N

p

/

M M

I I

v v a d d  t t
= = ×

 
 − = −
 
 

∑ ∫∑v v
ℓ

ℓ

ℓ
,                                                                 (15) 

where ( )1 2a t ,t  is the metric-tensor determinant of the ellipsoid’s surface,   

( ) ( )1 2 3 x y zv ,v ,v v ,v ,v= =v  is the total velocity vector field on the surface of the body (see 
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Eq. 4)  and  Mv  denotes its IGA-BEM approximation based on a particular approximation 

characterized by the total number M of degrees of freedom. Finally, the quantities 

1 2 3Mv v , , ,− =
ℓ ℓ

ℓ , represent the local error of each velocity component, respectively. 

The  distribution of the x-component of the velocity along a meridian connecting the  

geometrical  poles  of  the above  ellipsoid,  for  an inflow parallel  to  its great axis, is 

shown in Fig. 6, where it is compared against  the analytical solution. In particular, results 

obtained by  using two different single-patch parameterizations  of the ellipsoid based on 

rational quadratic NURBS are shown in Fig.6. In the first representation, named x-axis 

parameterization, the poles are located at the points ( )0 5 0 0/ L . , ,= ±x , where L is the 

length of the ellipsoid,  and coincide with the stagnation points of the flow. Thus, in this 

case, the 1t  isoparametrics  correspond to meridians. In the second representation, named z-

axis parameterization, the poles are located at ( )0 0 0 1/ L , , .= ±x . 

 

In both cases the number of dof increases in proportionality to the product of knots inserted 

along each parametric direction 1t  and 2t . We observe in Fig.6  that as the number of 

additional knots increases (h-refinement) the error diminishes rapidly, except in the 

vicinity of the stagnation points (see Fig. 6a), which is  more-or-less expected due to the 

large variation of the solution in this region.  The situation improves  when using the z-

parameterization of the ellipsoid, in which  case the poles of the geometry representation 

do not coincide with the stagnation points; see Fig. 6b. In order to further improve 

convergence, we could use graded parameterizations, leading to local refinement of 

distributions of Greville (collocation) points near the stagnation points, or  multi-patch 

representations for removing the poles. 
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The  L2-error (Eq. 15), as obtained using the z-parameterization,  is plotted in Fig.7(a) 

against the number of dof. In order to approximate the integral in (Eq. 15) a trapezoidal 

rule has been applied, based on data at the collocation points with variable grid size.  In the 

same figure the corresponding result obtained by raising the NURBS degree from 2 to 3 

and  4 (k-refinement) is also plotted. Results obtained by the low-order panel method, 

based on quadrilateral boundary elements carrying constant source-sink density, are also 

including in the same figure using a black solid line. In this example, meaningful results by 

the low-order panel method are obtained using discretizations larger than 200 elements. In 

order to better illustrate the behaviour of the low-order panel method, an artificial 

extension of the corresponding error line below 200 dof is included in Fig.7(a)  by using a 

dashed black line.  

 

We observe that the convergence rate  associated with the proposed  IGA-BEM method, is 

several orders of  magnitude higher than the low-order panel method.  For example, we see 

in the above figure that for an  L2-error level of 2‰, the  present method requires less than 

200 dof depending on the NURBS degree, while the low-order panel method necessitates 

more than 1200 panels, and this difference rapidly increases for lower error levels. 

Moreover, we observe in Fig.7 that our method presents a tendency for exponential 

convergence, as indicated by the continuous increase of the downslope of the error curve 

measured in the logarithmic scale, in contrast to the low-order panel method, which 

exhibits a slow algebraic convergence. Similar conclusions have been drawn by studying  

two dimensional boundary value problems governed by the Laplace equation; see Politis et 

al (2009). 

 

As usual in BEM, the  L2-error is affected by several parameters. The first and most 

important one deals with the discretization (number of dof), which reflects the accuracy of 

the approximation of the sought for solution by its projection in the finite dimensional 
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NURBS space p
lS ; see § 3.2. A second significant parameter deals with the  accuracy of 

calculation of the different types of integrals (singular and/or regular) involved in the BIE, 

which is usually set to a fixed value. Therefore, as dof increases, after a threshold 

depending on the rate of convergence, the  numerical-integration error  dominates and the  

L2-error cannot be further improved, leading to a plateau behaviour, as indicated by the 

thick dashed-dot line in Fig.7(a). Of course, this limit (plateau) can be lowered, by 

increasing the accuracy of numerical integration, as illustrated in Fig. 7(b), where 

convergence rates for NURBS degrees 3 and 4 are presented for two choices of integration 

parameters, specifically, for 1501 and 3501 points respectively, for the calculation of 

singular integrals. Also, the effect of slight shifting the boundary collocation points by a 

small parameter  (ε)  on the rate of convergence  is illustrated in Figure 7(c). We clearly 

observe that, as dof increases,  the convergence characteristics of the present scheme  are 

not affected, with  ε in the interval 0 001< 0 05. .ε < . 

 

4.2 A rapidly moving submerged ellipsoid  

 

As a next example, we consider a 3-axial, totally submerged ellipsoid, with axes ratio 

2:1:0.5, moving at constant speed in semi-infinite domain, which is bounded above by  a  

horizontal  plane, where a  homogeneous  Dirichlet condition is applied. This problem 

asymptotically models  the linearized solution corresponding to flow around a rapidly 

moving body under the free surface and its Green function comprises only the first two 

terms in (Eq. 4b),  i.e., the Rankine source term and its image with respect to the z=0 

plane.  Fig. 8 depicts the horizontal velocity distribution (left Fig. 8) along the top meridian 

on the xz-plane of the above ellipsoid at low submergence  d/L=0.16, with L denoting the 

length of the ellipsoid, and the  velocity vector field  over the surface (right Fig. 8).  
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The present  results have been obtained using the x-axis parameterization of the 3D 

ellipsoid  after inserting 2, 4 and 8 knots per parametric interval, which  results in 153, 325 

and 861 dof, respectively. In this case analytical solution is not  available  and thus,  

convergence of  the numerical  solution is estimated using the L2 relative error, defined as 

follows: 

 

1 2

1

2

1
1

2

2

3

1 p p

/

M M K M M K

I

N

Ip

v v a dt dt  − −

×= =

 
 − = −
 
 
∑ ∫∑v v
ℓ

ℓ ℓ
,                                                     (16) 

with K a fixed index, K<M . 

 

4.3   A submerged prolate spheroid under the free-surface 

 

In this subsection results are presented concerning the solution of the linear NK wave-

making problem for the prolate spheroid of § 4.1, translating steadily at low submergence 

(d/L=0.16)  with Froude number  /F U gL= =0.5. Reference solutions of this problem 

are  available; see, e.g., Farell (1973), Doctors & Beck (1987). The resulting wave pattern 

is depicted in  Fig. 9.  The wave  resistance WR  at various speeds is obtained by pressure 

integration on the surface of the submerged body, and the corresponding wave-resistance  

coefficient CW  is calculated by means of the following equation 

1 2

1
2

1
120.5

  
p p

W
W W P

Ip
x

W

N

I

R
C S C n a dt dt

U Sρ =

−

×

 
 = =
 
 
∫∑ ,                                                           (17) 

where  WS    denotes the area of the wetted surface S of the body, xn  is the x-component of 

the unit-normal vector on S and PC  stands for the pressure coefficient defined as: 

( )2 2
2

1 / 2 / ,
0.5p

p p
C v U gz U

Uρ
∞−

= = − −                                                                         (18) 
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with v ϕ= = +∇v U  denoting the total flow velocity. Other important coefficients, as  

those concerning sinkage and trim, can be  calculated by similar formulas.  The pressure 

coefficient PC  along a series of  meridians of the prolate spheroid,  as obtained by the 

present method using M=325 dof and Eq. (18), is shown in Fig. 10. 

 

In Fig. 11 the wave resistance coefficient WC  of the  prolate spheroid at low submergence 

d/L=0.16 is given for seven Froude numbers,  as calculated by Eq. (17) and again M=325 

dof. We observe  that  the  predictions  obtained  by  the present method converge  rapidly  

to  the  reference  solution  by Doctors &  Beck (1987),  shown  in the same figure by  

using a thick line. It is clear that  the present IGA results,  obtained by inserting 2 and 4 

knots per parametric interval, which correspond to M=135 and 325 dof, respectively, are 

much more accurate than the ones (depicted by crosses) obtained by the low-order panel 

method using a grid of  16x20 elements (on the surface of the whole body), which 

corresponds to 320 dof. 

 

4.4   A  Wigley parabolic hull 

In this subsection the performance of the proposed method for a surface-piercing hull is 

presented and discussed. The hull in question  is the standard parabolic Wigley parabolic 

hull (Sec.3.1), with  main-dimension ratios: L/B = 10, L/T = 16 and B/T = 1.6.  

In particular, various single-  and multi-patch representations of  this hull have been used 

in order to test the applicability and convergence of the IGA-BEM approach in the case of 

surface piercing bodies moving at constant forward speed. As an illustration, we present in 

Fig. 12 numerical results concerning the calculated source-sink distribution µ on the 

surface of the hull,  as obtained by using the single-patch  representation of the Wigley hull 

and refinement levels 1 and 4. Apparently,   µ  converged already at refinement level 1.  In 

order to test the multi-patch version of the code, artificial multi-patch NURBS 
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representations of the  Wigley hull have been generated by subdividing the single-patch 

surface along specific isoparametrics.  Selected results obtained by using  two vertical, two 

horizontal, and four patches are illustrated in Fig.13. We clearly observe in this figure that 

the colour plots of the computed source-sink distributions apparently coincide (mean 

difference, with respect to single-patch surface, less than 1.2%) for all three alternative 

multi-patch representations at the same refinement level (4), which ensures the robustness 

of the proposed method. However, in the case of more complex, realistic ship hulls, 

different patch representations could give rise to different performance, implying the 

necessity of a preliminary study in order to achieve optimum surface representation. 

It is worth mentioning here that first comparisons between bi-quadratic isogeometric 

NURBS and bi-quadratic Lagrange elements reveal similar rates of convergence. However, 

for the same dof, the present IGA-BEM exhibits better performance, as for example 

illustrated in Fig.14 concerning the Wigley hull. Similar behavior has been also recently 

reported by Li & Qian (2011). This is due to the fact that in the case of bi-quadratic 

NURBS a C1 inter-element continuity of the sought for solution is obtained, while in the 

case of Lagrange elements the (global) continuity is only  C0. In addition, it is also to be 

noted that in the present method the boundary surface is treated exactly (as it is produced 

by the CAD software), while in other approaches, based either on low or high order BEM, 

an additional error is introduced by the approximation of the geometry.  

Using the single patch representation, the calculated wave pattern of the Wigley hull, 

steadily advancing at Froude number 0.316F = , is shown in Fig. 15. In addition, color 

plots of the pressure distributions on the hull surface for Froude numbers  F=0.267  and 

F=0.316, are presented in Fig. 16, respectively, as obtained by the present method,   using   

N= 703 dof (refinement level 4).  For the latter Froude  number, predictions of the wave 

profile alongside the Wigley hull are compared in Fig. 17 against results by other methods 

(Maskew et al, 1997)  and experimental data. Results of the present  method are depicted 
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in red,   while  results from the USAERO code (ibid.)  are  denoted  by thin solid lines   

connecting hollow triangles or circles,  and, finally, experimental data  are depicted by 

disconnected  hollow circles. Fig. 17 implies  that our results agree relatively well with 

theoretical predictions and measured data over the whole length of the ship with  the 

exception of an area near the stern, where the present method overestimates  the wave 

profile. Finally, in Fig. 18, the wave resistance coefficient WC  of the  Wigley  hull  is 

depicted  in red for various  Froude numbers, as calculated by the present IGA method and 

M=703 dof. We observe  that our predictions  lie within the range of experimental data  

provided by ITTC (1987) (see also Nakos & Sclavounos 1994) and agree well with 

predictions by other  BEM, as, e.g., those  provided recently by Bal (2008). As before, in 

comparison with the low-order panel method, the present method guarantees better 

accuracy for the same dof.   

 

We conclude this subsection by utilizing the above Wigley hull to  provide additional 

information concerning the efficiency of the present IGA-BEM. Fig. 19 depicts  

computation time versus  dof  for a computer cluster, with 1+8 (front end + computing) 

nodes, each one with 2 Xeon Quad CPUs @ 2.4MHz and 12Gb memory, connected 

through 10GBit network, and storage capacity  of 4Tb.  We observe that the computation 

cost increases at least quadratically with dof. Based on this and similar experimentations  

we consider  that the present method is applicable  for systematic calculations involved in 

hull optimization problems, provided that accurate solutions are obtained by using a total 

number of dof of ( )310O . First results in this direction have been presented in Ginnis et al 

(2011).   

 

4.5  A Series 60 ship hull   

As a final example, numerical results are presented in this subsection concerning the 

application of the IGA-BEM method to the calculation of the wave field and wave 
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resistance of a ship hull belonging to Series 60, with block coefficient Cb=0.60. Extensive 

experimental and theoretical results concerning this hull model are available from 18th 

ITTC (1987); see also Nakos & Sclavounos (1994), Mori et al (1994). 

 

The  main dimension ratios of the above  Series 60  hull are:  L/B = 7.5, L/T = 18.75, 

B / T =  2.5.  A multipatch representation was developed to treat this classical round stern 

hull, composed by 7  patches, as  previously discussed in Sec.3.1 and illustrated in Fig.4.  

In particular, the calculated source-sink distribution µ on the hull surface, for  Froude 

number  F=0.316, is presented in Fig. 20, as obtained by the present method  with   

M=3285 dof, which is found to be enough for convergence. The above surface plot has 

been obtained using the calculated values of  µ at the collocation points. The corresponding 

surface velocities  and  distribution of the pressure coefficient on the hull surface (for the 

same as before Froude number) are shown in Fig. 21 and 22, respectively. In particular, in 

Fig. 22 we observe the rapid increase of the pressure at the stern area of the above hull 

which is responsible for the relative decrease of the wave resistance in this regime of ship 

speeds.  

 

Finally, in Fig. 23 the wave resistance coefficient WC  of the  examined Series 60 hull  is 

depicted  for various  Froude numbers, as calculated by the present IGA method and using 

M=3285 dof. Also, in the same figure, the effect of artificial sinkage ( )zδ  introduced for 

the numerical treatment of the *G -part of the Green’s function and its derivatives is 

illustrated. In particular, three values of  1 1 20  1 25  1/30z / / , / ,δ λ α −= =  are shown by 

using  green, blue and red lines, respectively. We conclude from this and many similar 

studies that  reasonable predictions of the wave resistance are obtained  for Froude 

numbers up to 0.35, which is considered to be extremely high  for this type of full-

displacement ship hulls. Moreover, we observe in this example that our predictions based 

on  25 30α = ÷ ,  are in good agreement with other  well-known and established methods, 
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as the BEM  developed by Nakos & Sclavounos (1994) using their calculations obtained 

by pressure integration on the hull surface. Finally, present method results are found to be 

in conformity with experimental data provided by ITTC (1987) survey,  especially for 

higher values of the Froude number. 

 

5. CONCLUSIONS  

In the present work IGA, initially proposed by Hughes et al (2005), is applied for solving 

the BIE  associated with the NK  problem and the calculation of the wave resistance of 

ships and steadily translated submerged bodies. The isogeometric concept is based on the 

exploitation of the same NURBS basis for  exactly representing the body geometry and for 

approximating, through  refinement process, the singularity distribution of the associated 

BIE or, in general, the dependent physical quantities. To this respect, the present approach, 

although focusing on the linear NK problem, exhibits the novelty of providing a paradigm 

of  integrating contemporary CAD systems for ship-hull design, that rely nowadays almost 

exclusively on NURBS, with CFD solvers. The enhanced accuracy and efficiency of the 

present method has been demonstrated by comparing numerical results obtained in the case 

of a prolate spheroid in infinite domain, a three-axial ellipsoid in semi-infinite domain, a 

submerged prolate spheroid under the free surface, and two surface piercing hulls, the 

standard Wigley parabolic hull and  a Series-60 (Cb=0.60) hull, against analytical solution, 

experimental data and predictions provided by low-order panel methods and other 

established BEM from the pertinent literature. Future work is planned towards the detailed 

analysis of rates of convergence of the present method and its exploitation to the 

optimization of ship hulls with respect to wave resistance.  
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APPENDIX.  Treatment of the singular integrals 

In the in-field case,  where the preimage  of   collocation point pPj   lies  in  the interior of  

Ω
q
i   ( Ω

qP ∈ q
j i ),  the 2D  singular integral, Eqs.(9), is   written in the form 

 ( ) ( )
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2 1
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where ( ) ( ) [ ] ( )1 2 1, 2 1 2, , , q

q
Pt t t t tR G tα= ∇

i l
f ,  1 1 2 2,Ω ,A B A Bt t t t   = ×   

q
i , and pPj   is the 

image of ( )1 2
P Pt ,t  on the parameter space; see Fig. A.1.  The integral in (A.1) is defined as 

a Cauchy principal-value one, and for its numerical calculation an ε- neighborhood is 

introduced,  cutting-off the singularity, obtaining 

( ) ( ) ( )
2 1 2 1

2 1 2 1

1 2 1 2 1 2 1 2
0

, ,lim

P B B B

A A P A

t t t t
pq

t t t t

t t dt dt t t dtP dt
ε

ε

ε

−

→
+


= + +


∫ ∫ ∫ ∫ji fu f         

                                                        ( ) ( )
2 1 2 1

2 1 2 1

1 2 1 2 1 2 1 2, ,

P P P B

P A P P

t t t t

t t t t

t t dt dt t t dt dt
ε ε ε

ε ε ε

+ − +

− − +


+ + 


∫ ∫ ∫ ∫f f  .            (A.2) 

The domains of the above four integrals are denoted in Fig.A.1 as I, II, III and IV, 

respectively. All these integrals are nearly singular (in the sense that the singularity is 

outside the corresponding domain of integration), and thus, the method introduced by 

Telles (1987) is used as described in the sequel. By linear transformation of the involved 

variables, each one of the above integrals is put in the following form  
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( )
1 1

1 2 1 2*

1 1

, d dξ ξ ξ ξ
− −

= ∫ ∫J f ,        where               * d / d= tf ξ f       ,                                (A.3) 

and  ( )2* 1,ξ ξf  is singular at the point  ( ) ( ) ( )( )1 2 1 1 2 2 1 2, , , ,P P P P P Pt t t tξ ξ ξ ξ= . Following  

Telles & Oliveira (1994), we introduce now the non-linear transformation(s) 

( ) 3 2 1 2k k k k k k k k ks a s b s c s d , k , ,ξ = + + + =                                                                       (A.4) 

where the coefficients   k k k ka ,b ,c ,d , are calculated such that 

( ) ( )
( ) ( )2

2
1 1 1 1 0 0

P P
k k k k k k

k k k k
k k

d s s d s s
s , s , , ,

ds ds

ξ ξ
ξ ξ

= =
= − = − = = = = 1 2k , ,=           (A.5) 

and  ( )1 2
P Ps ,s   denotes the point of singularity, i.e. ( ) 1 2P P

k k ks , k ,ξ ξ= = .  Then the 

coefficients  of the transformation (A.4) are obtained as 

( ) ( )2 213 3 and 1 3 1 2P P P
k k k k k k k k k k k ka Q , b s Q , c s Q , d b , Q s , k ,−= = − = = − = + = .           (A.6) 

Consequently, the integrals (A.3) are reduced to the following form 

( ) ( )( ) ( ) ( )( )
1 1

* 1 2

2 2

1 1 2 2 1 1 2 2

1

1 2

1

9, P Ps s s s s s ds dsQ Qξ ξ
− −

−= −∫ ∫J f ,                                       (A.7) 

which are calculated by using standard quadrature rules based on N points. The advantage 

of the above procedure relies to the fact that the non-linear transformations (A.4) produce a 

lumping effect of integration points as approaching the point of singularity. Extensive 

numerical evidence from a variety of examples considered has shown that the error decays 

like  ( ) mN N−− ≈J J , with  1m> , suggesting that ( )NJ  exhibits fast  rate of  

convergence. 
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Figure 1. Ship in a uniform stream with velocity  ( ,0,0)U= −U . 
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Figure 2. Multi-patch NURBS representation of a 5:1:1 prolate spheroid using a) one , b)  

two and c)   four patches. The control net is depicted by connecting with linear segments 

the control points  (gray spheres).  
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Figure 3.  Multi-patch B-spline representation of a Wigley  hull using a) one , b) two , 
 

c)   three and d)   four patches. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 
(b) 

(c) 
(d) 



  38 

 

 

 

 

 

 
 

 
 
 
 

 

 
 

Figure 4.  (a)  A multi-patch (using 7 patches)  1G  -representation of a Series 60, Cb=0.60 

hull, and  (b) its control net. A zoom on the stern part (c) is also included.  
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Figure 5. Greville collocation-points distribution on the Wigley hull using a) the original  

knot vectors  and  those resulting after  insertion of b)  2 and c)  4 knots per parametric 

interval.  
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Figure 6. Velocity distribution along the top meridian of the xz-plane of a prolate spheroid 

(axes-ratio: 5:1:1) in infinite domain, for  parallel inflow along  its x-axis. Comparison  of 

the analytical solution  versus the results obtained by using (a) x-axis and (b) z-axis 

parameterizations. The corresponding local error along the same meridian is shown in the 

lower subplots. 
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Figure 7. Ellispsoid in parallel flow. (a) Decay of  the L2-error with respect to dof and 

degree elevation.  The corresponding prediction, obtained by the low-order panel method, is 

also shown using a black line. Plateau level is indicated by the thick dashed-dot line. (b) 

Dependence of the plateau level on the numerical-integration accuracy (1501 and 3501 

integration points are used). (c) Sensitivity analysis of the error due to slight shifting 

(ε=0.05,0.01,0.001) of the collocation points, in the case of quadratic NURBS 

(a) 

(c) 

(b) 
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Figure 8. Velocity field on the surface of 3-axial ellipsoid (axes ratio: 2:1:0.5), at low 

submergence  d/L=0.16, using homogeneous Dirichlet boundary condition on the 

undisturbed free surface. Horizontal velocity along the top meridian (left) and 3D vector 

plot of surface velocities (right). 
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Figure 9. Free-surface elevation generated by a prolate spheroid  with axes ratio 5:1:1, 

translating steadily  at low submergence  (d/L=0.16)  with Froude number F=0.5. 
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Figure 10. Pressure coefficient Cp along a series of meridians of the  prolate spheroid  

in  Fig. 9. 
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Figure 11. Wave-resistance coefficient CW  of the  prolate spheroid in Fig. 9, for various 

Froude numbers. 
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Figure 12. Source-sink distribution obtained at refinement levels 0 (initial), 1 and 4 for the single-

patch representation of the Wigley hull, at F=0.316. The upper-left part of the figure depicts the 

control net of the single-patch representation of the hull. 

refinement level 1 refinement  level 4 

initial 
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Figure 13. Source-sink distribution obtained at the same refinement level (4), for three 

multi-patch representations of the Wigley hull  (F = 0.316):  (a) two vertical patches, (b) 

two horizontal patches, (c) four patches. The left part of the figure depicts the control nets 

of the three alternative multi-patch representations of the hull.  
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Figure 14.  Relative L2 error ( )1 , wherei i i dofµ µ+ − =   of the numerical 

solution as obtained by the present IGA-BEM (shown by using  red lines) against 
corresponding results obtained by  bi-quadratic Lagrange BEM (black lines), in the 
case of  the Wigley hull. 
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Figure 15. Free-surface elevation generated by the Wigley  hull, at Froude number 

F=0.316, as calculated by the present method using a single-patch representation 
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Figure 16. Pressure coefficient Cp on the Wigley hull, for (a) F = 0.267 and (b)  

0 316F .= , as calculated by the present method using dof=703 (single patch, refinement 
level 4). 
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Figure 17. Wave profile at F = 0.316 alongside the Wigley hull. Comparison with 
experimental data and computations by other panel methods. 
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Figure 18. Wave resistance coefficient  CW of the Wigley  hull for various  Froude 

numbers, as calculated by the present method (red bullets). Comparison with experimental 

data (black squares) and another panel method (thin dashed curve). 
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Figure 19. Computation time versus dof in the case of the Wigley hull using the present 

IGA-BEM. 
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Figure 20.   Source-sink distribution on the surface of the Series 60 (Cb=0.60)  hull at 

Froude number F=0.316.  
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Figure 21.  Surface velocity distribution on the surface of  the Series 60  (Cb=0.60) hull at 

Froude number F=0.316. 
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Figure 22.  Distribution of the pressure coefficient CP on the surface of  the Series 60 

(Cb=0.60)  hull at Froude number F=0.316.  
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Figure 23. Wave resistance coefficient  CW of the Series-60 (Cb=0.60) hull for various  

Froude numbers, as calculated by the present method (using different values for the 

submergence δz). Comparison with experimental data (shown by cyan lines) and the BEM 

by Nakos & Sclavounos (1994), shown by solid black line. 
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Figure A1: Numerical grid for the calculation of the 2D Cauchy principal value integrals.   

The ε- neighborhood,  cutting-off the singularity ( )1 2
P Pt ,t , is denoted by a thick box. 

 
 

 

 

 

 

 

 

 

 

 


