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The Pauli approach to account for the mass-velocity and Darwin relativistic corrections has been
applied to the formalism for quantum mechanical molecular calculations that does not assume the
Born-Oppenheimer �BO� approximation regarding separability of the electronic and nuclear motions
in molecular systems. The corrections are determined using the first order perturbation theory and
are derived for the non-BO wave function of a diatomic system expressed in terms of explicitly
correlated Gaussian functions with premultipliers in the form of even powers of the internuclear
distance. As a numerical example we used calculations of the transition energies for pure vibrational
states of the HD+ ion. © 2006 American Institute of Physics. �DOI: 10.1063/1.2236113�
I. INTRODUCTION

In order to achieve in quantum mechanical calculations
of small molecular systems the accuracy matching that of
high-resolution spectral measurements not only does one
need to be able to accurately describe electronic correlations
but also to account for nuclear motion and coupling between
nuclear and electronic motions. Thus, it is very desirable to
depart from the Born-Oppenheimer �BO� approximation re-
garding the separability of the electronic and nuclear mo-
tions. Moreover, one also needs to include relativistic correc-
tions as their contribution to the total energy becomes quite
noticeable when a comparison with accurate experimental
data is made. In recent years we have been involved in de-
veloping an approach to perform quantum mechanical non-
relativistic molecular calculations without the BO
approximation.1–18 There have also been works of others in
this area �see, for example, Refs. 19–21 and references
therein�. The central part of our approach has been the use of
different forms of correlated Gaussian functions that are ex-
plicitly dependent on the distances between the particles �nu-
clei and electrons� forming the system under consideration.
In particular, we used correlated Gaussians with premultipli-
ers in the form of even powers of the distance between first
and second particles �usually nuclei�. We have demonstrated
that with such functions one can achieve very high accuracy
in ground- and excited-state calculations of diatomic systems
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with two or more electrons.3–6,10,12–14,16–18 The high accuracy
is facilitated by the variational optimization of the wave
function that involves analytical first derivatives of the en-
ergy with respect to nonlinear parameters of the Gaussians.

In general, it is not possible to take the Dirac relativistic
Hamiltonian and separate it into nonrelativistic and relativis-
tic parts. The simplest and most traditional way to calculate
the relativistic effect in atomic and molecular systems is
based on the Pauli approximation. It provides a framework
for describing a quantum particle with the accuracy of the
order of �2, where � is the fine structure constant. To get a
more accurate description of a quantum system going be-
yond the Pauli approximation one can use the Breit-Pauli
equation,22 which explicitly includes operators describing the
orbit-orbit and spin-orbit interactions, as well as other two-
particle magnetic interactions. However, since the Breit-
Pauli equation is not completely invariant with respect to the
Lorentz transformation, an approximation is introduced in
the calculation of the relativistic effects.

The Pauli approximation describes a state of a quantum
particle represented by a two-component wave function,
which is an eigenfunction of the nonrelativistic Hamiltonian.
In such an approach the relativistic effects �and their corre-
sponding operators� must be treated as perturbations and de-
termined as the first order corrections to the nonrelativistic
energy. This is a serious deficiency of the approach based on
the Pauli approximation. This deficiency is the result of sin-

gularities that appear in the operators representing the rela-
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tivistic corrections. Extending the applicability of the Pauli
approximation to systems with more than one particle can be
achieved provided that in the Darwin contact term, all Cou-
lombic interactions involving the particles in the system are
included. Also the nonrelativistic wave function used in the
calculations must give finite expectation values for all rela-
tivistic corrections involved in the Pauli approximation. In
this work we have calculated relativistic corrections using
the first order perturbation theory and the Pauli approxima-
tion. In the calculations we used the nonrelativistic wave
functions expressed in terms of explicitly correlated Gauss-
ian functions and obtained without assuming the Born-
Oppenheimer approximation. Such wave functions can be
generated for diatomic molecular systems with more that one
�sigma� electron with the approach we have developed. It is
important to mention that there were previous calculations
concerning H2

+ by Moss and Valenzano23 where electronic
relativistic corrections were determined using wave func-
tions obtained in nonadiabatic calculations. However, the ap-
proach of Moss and Valenzano was restricted to one-electron
diatomics and the possibility of its extension to systems with
more electrons seems unlikely.

The need to perform highly accurate quantum mechani-
cal calculations on small molecular systems is motivated by
the progress in the high resolution gas-phase measurements
of such molecular quantities as rovibrational and electronic
excitation energies, electron affinities, ionization potentials,
bond dissociation, and atomization energies that achieve the
precision exceeding a tenth or even a hundredth of a wave
number. This often presents a challenge to quantum me-
chanical studies of molecular systems because, in order to
reach such an accuracy, not only nonrelativistic wave func-
tion must be computed with very high accuracy but also,
even for small systems, the relativistic effects have to be
taken into account.

As will be described later in this work, our non-BO ap-
proach is based on separating the center-of-mass motion of
the system from the internal motion. The separation is
achieved by transforming the laboratory Cartesian coordinate
system to a new set of coordinates, the first three of which
are the laboratory center-of-mass coordinates and the rest are
internal Cartesian coordinates defined with respect to one of
the nuclei �called the reference particle�. Such a choice does
not restrict the types of the molecular systems that can be
calculated. Molecular systems with two and more nuclei can
be considered in this framework.

The approach developed in this work for calculating the
relativistic corrections to the non-BO energy within the Pauli
approximation is applied to all vibrational states of the HD+

ion with the zero total angular momentum. Such states are
usually called “vibrational states,” although if the Born-
Oppenheimer approximation is not assumed, the vibrational
motion is coupled with the electronic motion and the vibra-
tional quantum number is not a good quantum number. H2

+

and its isotopomers are the simplest model systems that show
some interesting non-BO effects when excited to vibrational
states near the dissociation threshold. As it had been known
before and also shown in our recent non-BO calculations of

14,16
average interparticle distances, in the highest two vibra-
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tional levels of HD+ and HT+, the electron charge density is
strongly polarized towards the deuteron and the systems can
be described as a proton interacting with either a D atom in
HD+ or a T atom in HT+. This very strong nonadiabatic
effect differentiates the behavior of the H2

+ ion, where in the
highest vibrational states the electronic density is symmetri-
cally distributed at the protons, from the asymmetric HD+

and HT+ ions. Due to these differences, it was interesting to
see how the lack of the symmetry in the electronic charge
distribution in HD+ in the highest vibrational states affects
the relativistic contributions to the energy, particularly those
which are expected to be sensitive to such an effect.

II. THE METHOD USED IN THE CALCULATIONS

The total nonrelativistic Hamiltonian for a system with
N particles �nuclei and electrons� in the laboratory Cartesian
coordinate system has the following form:

Ĥtot = − �
i=1

N
1

2Mi
�Ri

2 + �
i=1

N

�
j�i

N
QiQj

Rij
, �1�

with the masses, charges, and positions of the particles form-
ing the system denoted as Mi, Qi, and Ri ��R�
= �R1� ,R2� , . . . ,RN� ��, where � �� denotes vector transposition�,
respectively �in a diatomic system the first two particles are
the nuclei and the rest are electrons�. The laboratory frame
Hamiltonian includes the kinetic energy operator for each
particle and Coulombic interactions between each pair of the
particles. Rij = �R j −Ri� are interparticle distances. In the first
step we transform the Hamiltonian �1� by separating the
center-of-mass motion, thereby reducing the N-particle prob-
lem to an N−1=n pseudoparticle problem described by the

internal Hamiltonian Ĥ. In this transformation the laboratory
Cartesian coordinate system is replaced by a system whose
first three coordinates are the laboratory coordinates of the
center of mass r0 and the remaining 3n coordinates are the
Cartesian coordinates in the internal coordinate system
whose origin is placed at the heaviest nucleus �particle 1
with mass M1 called the reference particle�. The other par-
ticles are referred to the reference particle using the Carte-
sian position vectors ri defined as ri=Ri+1−R1. The internal

Hamiltonian Ĥ is

Ĥ = −
1

2
	�

i=1

n
1

mi
�ri

2 + �
i=1

n

�
i�j

n
1

M1
�ri

��rj
 + V�r� , �2�

where

V�r� = �
i=1

n
q0qi

ri
+ �

j�i

n
qiqj

rij
. �3�

The separation of the internal Hamiltonian and the Hamil-
tonian of the motion of the center of mass is exact. The
internal Hamiltonian �2� describes n pseudoparticles with
charges qi=Qi+1 and reduced masses mi=M1Mi+1 / �M1

+Mi+1� moving in the spherically symmetric potential of the
charge of the reference particle. The motions of the
pseudoparticles are coupled through the mass polarization

n
term �i�j�1/M1��ri
��rj

and through the Coulombic interac-
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tions dependent on the distances of the pseudoparticles from
the central charge, ri= �ri�, and their relative distances, rij

= �R j+1−Ri+1�= �r j −ri�.
In the calculation of the mass-velocity �MV� and the

Darwin �D� relativistic effects, we start with respective
Hamiltonians in the laboratory coordinate frame �R�,

ĤMV = −
�2

8 �
i=1

N
1

Mi
3�Ri

4 , �4�

ĤD =
�2

8 �
i=1

N

�
j�i

N
1

Mi
2�Ri

2 QiQj

Rij
. �5�

Upon the transformation of the laboratory coordinate system
to the internal system, the Darwin Hamiltonian �5� separates
into a term dependent on the position vector of the center of
mass in the laboratory frame, r0, and a term dependent on the
internal coordinates, �r�= �r1� ,r2� , . . . ,rn���,

ĤD�r,r0� = ĤD�r0� + ĤD�r� , �6�

where

ĤD�r0� =
�2

4

1

m0
�r0

2 V�r� = 0, �7�

because V�r� is independent of r0, and where

ĤD�r� =
�2

8 ��
i=1

n 	 1

M1
2 +

1

Mi+1
2 
�ri

2 q0qi

ri

+ �
i=1

n

�
j�i

n
1

Mi+1
2 �ri

2 qiqj

rij
� . �8�

The Darwin correction can be calculated either directly

using the operator �8�, ĤD
I �r�= ĤD�r� �we will call it here the

first approach�, or using an operator obtained from �8� by
applying the Poisson equations �the second approach�,

�ri

2 1

ri
= − 4���ri�, �ri

2 1

rij
= �rj

2 1

rij
= − 4���rij� . �9�

This results in the Darwin Hamiltonian in the following
form:

ĤD
II�r� = −

��2

2 ��
i=1

n 	 1

M1
2 +

1

Mi+1
2 
q0qi��ri�

+ �
i=1

n

�
j�i

n
1

Mi+1
2 qiqj��rij�� . �10�

In the present work we used both Darwin Hamiltonians,

ĤD
I �r� and ĤD

II�r�, in the calculations. This was done to make
sure that the algorithm for calculating the Darwin corrections
was correctly implemented.

Upon the transformation of the coordinate system ��R�
→ �r0� ,r���� the mass-velocity Hamiltonian can be repre-

sented as a sum of three terms,
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ĤMV�r,r0� = ĤMV�r0� + ĤMV�r� + ĤMV
coupl�r0,r� , �11�

where the term ĤMV�r� relevant to the present calculations of
the relativistic contribution to the internal energy has the
form

ĤMV�r� = −
�2

8 � 1

M1
3	�

i=1

n

�ri
4

+ �
i=1

n
1

Mi+1
3 �ri

4� . �12�

The last term in Eq. �11�, ĤMV
coupl�r0 ,r�, describes relativistic

coupling between the motion of the center of mass and the
internal motion. This effect is not considered in our calcula-
tions as we assume that the system as a whole is at rest, i.e.,
the center of mass is not moving.

The calculation of the relativistic correction to the en-
ergy of the internal motion of the system is performed for
each state using the first order perturbation theory as the
expectation value of the Hamiltonian representing the inter-
nal mass-velocity and Darwin contributions,

Ĥ��r� = ĤMV�r� + ĤD�r� . �13�

In our works concerning non-BO calculations on small
diatomic molecular systems3–6,10,12–14,16–18 we used the ex-
plicitly correlated Gaussians �ECGs� involving functions
with preexponential multipliers consisting of the internuclear
distance r1 raised to a non negative even power mk,

�k = r1
mk exp�− r��Ak � I3�r� = r1

mk exp�− r�Ākr� , �14�

where symbol Āk denotes the Kronecker product Āk=Ak

� I3, and I3 is 3�3 identity matrix. The above function is a
one-center correlated Gaussian with exponential coefficients
forming the symmetric matrix Ak. I3 in Eq. �14� is the 3
�3 identity matrix. �k are rotationally invariant functions as
required by the symmetry of the internal ground-state prob-
lem described by the Hamiltonian �2�. The presence of r1

mk

factor in �14� shifts the function peak away from the origin.
This shift depends on the value of mk and on the exponential
parameters, Ak. To describe a diatomic system, the maximum
of the trial wave function in terms of r1 should be around the
equilibrium internuclear distance of the system. In a varia-
tional calculation the maxima of �k’s are adjusted by opti-
mization of mk’s and Ak’s. More details on the Hamiltonian
transformation and the selection of the basis functions for
diatomic calculations the reader can obtain from our recent
reviews.1,2 The formulas for the matrix elements involving

ĤMV�r�, ĤD
I �r�, and ĤD

II�r� operators and basis functions �14�
are presented in the Appendixes.

In the present calculations we use the variational
method, and the energy and the wave function for each state
of HD+ were obtained by minimizing the Rayleigh quotient,

E��ck�,�mk�,�Ak�� = min
c�H��mk�,�Ak��c
c�S��mk�,�Ak��c

, �15�

with respect to the expansion coefficients of the wave func-
tion in terms of the basis functions ck, the basis-function
exponential parameters �Ak�, and the preexponential powers
�mk�. The optimization is done separately for each state using

an algorithm based on analytical derivatives of the energy,
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E��ck� , �mk� , �Ak��, with respect to elements of Ak.
In general, simultaneous optimization of the energy

functional �15� with respect to nonlinear parameters of all
basis functions represents a difficult and very time consum-
ing computational task when the number of basis functions
exceeds a few hundreds. To achieve the best results in the
parameter optimization with the least computational effort,
we have implemented a hybrid method that combines the
gradient based optimization with the stochastic selection
method.12,13 The strategy is based on alternating the gradient
based and the stochastic based optimizations in growing the
basis set from a relatively small initial set to a much larger
final set. The small initial basis set is obtained by means of
simultaneous optimization of all nonlinear parameters. The
basis set for each vibrational state was generated in a sepa-
rate calculation. To achieve high accuracy we used 2500 ba-
sis functions for all states, except v=23 state, where the
number of basis functions was 4000. The range of the pre-
exponential powers �mk� used was 0–250, and all the powers
were partially optimized for each state.

For all 23 �v=0, . . . ,22� vibrational states of HD+ we
calculated the expectation values of the relativistic Hamil-
tonian �11� and added it to the variational energy of that
state. Those values were used to calculate the transition en-
ergies. The nuclear masses used in the calculations were
mp=1836.152 672 61me and md=3670.482 965 2me, which
were taken from Ref. 25. Here, me stands for the mass of the
electron. The value of the fine structure constant was �

TABLE I. Total non-BO energies �Enon-BO�, mass-velocity and Darwin cor
+1→v transition energies that account ��Enon-BO� and do not account ��E
energies are in cm−1.

v Enon-BO Mass-velocity

0 −0.597 897 968 5 −4.191 71�10−5 3.46
1 −0.589 181 829 4 −4.097 82�10−5 3.38
2 −0.580 903 700 1 −4.010 31�10−5 3.31
3 −0.573 050 546 3 −3.928 69�10−5 3.24
4 −0.565 611 040 2 −3.850 76�10−5 3.17
5 −0.558 575 519 3 −3.781 02�10−5 3.11
6 −0.551 935 948 0 −3.717 41�10−5 3.05
7 −0.545 685 914 4 −3.659 02�10−5 3.00
8 −0.539 820 639 5 −3.603 23�10−5 2.95
9 −0.534 337 009 7 −3.552 60�10−5 2.91

10 −0.529 233 631 2 −3.507 30�10−5 2.87
11 −0.524 510 905 3 −3.468 16�10−5 2.83
12 −0.520 171 139 2 −3.430 58�10−5 2.80
13 −0.516 218 704 7 −3.400 66�10−5 2.77
14 −0.512 660 182 8 −3.372 80�10−5 2.74
15 −0.509 504 640 3 −3.349 54�10−5 2.72
16 −0.506 763 865 3 −3.331 05�10−5 2.69
17 −0.504 452 680 7 −3.316 57�10−5 2.68
18 −0.502 589 218 0 −3.308 81�10−5 2.66
19 −0.501 194 790 1 −3.307 44�10−5 2.66
20 −0.500 292 444 4 −3.309 48�10−5 2.65
21 −0.499 910 354 2 −3.319 63�10−5 2.65
22 −0.499 865 777 6 −3.323 65�10−5 2.65

D atom −0.499 863 815 2
=1/137.035 999 11.
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III. THE RESULTS AND DISCUSSION

The transition energies for all 23 rotationless bound vi-
brational states of HD+ are presented in Table I. Both non-
relativistic non-BO energies and energies including the rela-
tivistic corrections are shown. In the table we also include
the values of individual Darwin and mass-velocity correc-

tions. The Darwin corrections were calculated using both ĤD
I

and ĤD
II and the results agreed within the numerical accuracy.

The relativistic electronic corrections for HD+ were calcu-
lated before by Howells and Kennedy26 using the first order
perturbation theory and the BO wave functions obtained for
a wide range of interunclear distances. These results were
then averaged over vibrational wave functions obtained by
solving the vibrational equations with the potential energy
taken from the BO calculations. The comparison of our total
relativistic correction for each vibrational state �i.e., the sum
of the Darwin and mass-velocity corrections� with that ob-
tained by Howells and Kennedy26 is shown in Table II. As
one can notice, the results are not identical, but close. In
general our corrections are 0.005 cm−1 lower in magnitude
than the corrections of Howells and Kennedy. The differ-
ences may be caused by several factors such as the use of the
reduced electron mass in our calculations versus the use of
the real electron mass in their calculations, not assuming the
BO approximation in our approach versus assuming this ap-
proach in theirs, the differences in the basis functions and in
their abilities to describe the contact densities, etc. It is in-
teresting to mention here a comparison of the relativistic

+

ns, total energies that include relativistic corrections ��Enon-BO+rel�, and v
+rel� relativistic corrections. All energies are given in a.u., while transition

in Enon-BO+rel �Enon-BO �Enon-BO+rel

10−5 −0.597 905 241 8 1912.9714 1913.0032
10−5 −0.589 188 958 0 1816.8394 1816.8684
10−5 −0.580 910 696 4 1723.5680 1723.5943
10−5 −0.573 057 422 9 1632.7829 1632.8068
10−5 −0.565 617 807 6 1544.1184 1544.1395
10−5 −0.558 582 190 2 1457.2175 1457.2362
10−5 −0.551 942 533 8 1371.7238 1371.7401
10−5 −0.545 692 426 2 1287.2790 1287.2933
10−5 −0.539 827 086 5 1203.5176 1203.5291
10−5 −0.534 343 404 6 1120.0621 1120.0720
10−5 −0.529 239 981 2 1036.5185 1036.5253
10−5 −0.524 517 224 3 952.4686 952.4735
10−5 −0.520 177 435 8 867.4591 867.4614
10−5 −0.516 224 990 8 781.0053 781.0056
10−5 −0.512 666 467 5 692.5615 692.5594
10−5 −0.509 510 934 8 601.5306 601.5257
10−5 −0.506 770 181 9 507.2464 507.2391
10−5 −0.504 459 030 7 408.9828 408.9717
10−5 −0.502 595 618 3 306.0416 306.0291
10−5 −0.501 201 247 0 198.0420 198.0261
10−5 −0.500 298 9737 83.8591 83.8393
10−5 −0.499 916 973 9 9.7834 9.7791
10−5 −0.499 872 417 1 0.4307
rectio

non-BO

Darw

4 38�

4 97�

0 68�

1 03�

4 02�

393�

883�

7 84�

8 53�

3 11�

2 29�

6 26�

0 92�

205�

4 32�

009�

939�

1 57�

878�

175�

655�

765�

9 69�
corrections calculated for H2 by Howells and Kennedy in the
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same work where they presented the HD+ results with the
results obtained by Moss and Valenzano23 and shown in the
latter paper. This comparison shows similar differences be-
tween the relativistic corrections for the H2

+ vibrational ener-
gies obtained by the two teams to the differences between
our corrections and those obtained by Moss and Valenzano
for HD+. This seems to indicate that in calculating relativistic
corrections it is difficult to achieve higher accuracy than
about 0.005 cm−1 due to the nature of the operators involved
in the calculations �i.e., higher derivatives and Dirac delta
functions�.

The non-BO energies without the relativistic corrections
shown in Table I are virtually identical to those presented
before in Ref. 14. The transition energies corrected for the
relativistic effects in the lower part of the spectrum are lower
by 0.01–0.03 cm−1 than their uncorrected counterparts. This
trend reverses in the upper part where the transition energies
obtained from the energies corrected for the relativistic ef-
fects are lower than those obtained from uncorrected ener-
gies. Although in general the relativistic corrections to the
transition energies are small, they are not negligible and, for
most transitions, they are a little larger than the usual preci-
sion of the experiment. Thus, their inclusion should result in
improved accuracy of the predicted transition energies as
was the case for the transition energies we recently calcu-
lated for the HeH+ �Ref. 24� ion where a direct comparison
with the experimentally determined three lowest vibrational
transitions was possible.

There is one additional observation one can make upon
comparing the relativistically corrected transition energies

TABLE II. Comparison of the relativistic corrections �sum of MV and Dar-
win� obtained in this work with those of Howells and Kennedy.�Ref. 26�. All
quantities are in cm−1.

v This work Ref. 26

0 −1.5963 −1.6015
1 −1.5645 −1.5696
2 −1.5355 −1.5405
3 −1.5092 −1.5141
4 −1.4853 −1.4904
5 −1.4641 −1.4691
6 −1.4454 −1.4503
7 −1.4292 −1.4340
8 −1.4150 −1.4199
9 −1.4035 −1.4081
10 −1.3937 −1.3986
11 −1.3869 −1.3915
12 −1.3820 −1.3867
13 −1.3796 −1.3842
14 −1.3793 −1.3841
15 −1.3815 −1.3864
16 −1.3863 −1.3913
17 −1.3937 −1.3989
18 −1.4047 −1.4091
19 −1.4171 −1.4221
20 −1.4330 −1.4377
21 −1.4529 −1.4564
22 −1.4572 −1.4605
with the uncorrected ones. It concerns the highest transition
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in the spectrum between the v=22 and v=21 levels whose
relativistically uncorrected transition energy is 9.7790 cm−1

and the corrected one is 9.7743 cm−1. As we determined in
our previous work,14 in both v=21 and v=22 states, HD+ can
be described as a D atom interacting with a distant proton.
This is different than in the lower states, where the degree of
the electron charge polarization is much lower. The 22
→21 transition is somewhat an anomaly as far as the rela-
tivistic corrections are concerned. Based on the transitions
just below the 22→21 transition one would expect to see an
over 0.02 cm−1 decrease of the transition energies when the
relativistic effects are included. However, the relativistically
corrected and uncorrected transition energies are almost
identical. We attribute this lack of change to the unusually
high electronic polarization of HD+ in the v=21 and v=22
states.

IV. SUMMARY

In this work we described the algorithms for calculating
mass-velocity and Darwin relativistic corrections to the non-
Born-Oppenheimer energy of diatomic systems with � elec-
trons. With this, for the first time a general framework for
calculating these two relativistic effects for systems with
more than one electron was presented and implemented
within an approach that does not separate the electronic and
nuclear motions �as it happens when the BO approximation
is assumed�. Thus in the calculation we can describe on an
equal footing the relativistic effects due to electrons and nu-
clei, as well as effects due to interactions between these two
types of particles. The derivations of the integrals involving
explicitly correlated Gaussian functions for both the Darwin
and mass-velocity corrections are lengthy but lead to expres-
sions that can be readily programed. The code for the cor-
rections has been integrated into our non-BO diatomic com-
puter program that has been efficiently parallelized using
message passing interface �MPI�.

As we have demonstrated in the non-BO calculations for
some diatomic systems �see, for example, the recently pre-
sented calculations for HeH+ �Ref. 24��, our approach is ca-
pable of producing total and transition energies with accu-
racy that matches that of high resolution experiments. In our
pursuit to develop a predictive method for calculating di-
atomic rovibrational spectra with the accuracy of the state-
of-the-art high resolution experiment, we have to account for
the relativistic effects. Including the Darwin and mass-
velocity effects is the start. Next stage will be the inclusion
of magnetic spin-spin, spin-orbit, and orbit-orbit interactions.
It is definitely an exciting task to push the theoretical devel-
opment to its limits as described by the nonrelativistic and
relativistic quantum mechanics.

Finally, we hope that the relativistically corrected transi-
tion energies determined in this work will be helpful in as-
sisting the experiment. We need to add that at present time
the non-BO calculations such as those for HD+ �and to a
much higher degree for systems with more electrons� require
a lot of computational time. We hope that the progress in the

computer hardware will enable calculations of spectra of sys-
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tems with three and four electrons with a similar accuracy as
it is currently possible for diatomic systems with one or two
electrons.
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APPENDIX A: SOME AUXILIARY FORMULAS

Two types of functions are used in the derivations,

• fk=exp�−r�Ākr�,

• �k=r1
mk exp�−r�Ākr�= �r�J̄11r�mk/2 exp�−r�Ākr�,

where the matrix J̄11=J11 � I3 is a partial case of matrix J̄ij,
which we will define in the following way:

�Jij��	 = ��i�i	 + ��j� j	 − ��j�i	 − ��i� j	, i � j ,

�Jii��	 = ��i�i	, �A1�

and where ��	 is the Kronecker symbol. By setting mk=0
one gets the fk functions from the �k functions. In order to
simplify the notations we will be denoting the sum of the
powers of �k and �l as p
�mk+ml� /2
mkl /2.

For matrices B̄=B � I3 and B we will use the following
relations:

tr�B̄� = 3 tr�B� ,

�B̄� = �B�3.

Here and below vertical bars around a matrix denote the
determinant of the matrix, while tr�¯� stands for the trace of
a matrix.

To avoid any confusion, we will not assume that the
matrices appearing in the integrals below are symmetric un-
less explicitly stated.

The first and second differentials of the �k function have
the following forms:

���k = �k�mkr1
−2�J̄11r�� − 2�Ākr��� �A2�

and

���	�k = �k�mk�mk − 2�r1
−4�r�J̄11���J̄11r�	

− 2mkr1
−2��r�J̄11���Ākr�	 + �r�Āk���J̄11r�	�

+ 4�r�Āk���Ākr�	 + mkr1
−2�J̄11�	� − 2�Āk�	�� .

�A3�

It follows from here that

B̄�	�	�k = �k�mkr
−2�B̄J̄11r�� − 2�B̄Ākr��� , �A4�
1
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�r�B̄�r = ���B̄��	�	�k = �k�mk�mk + 1�r1
−2B11

− 2mkr1
−2r��J̄11B̄Āk + ĀkB̄J̄11�r

+ 4r�ĀkB̄Ākr − 6 tr�AkB�� . �A5�

Throughout our derivations we will extensively use the
relation

�
−





exp�− r�Ār�dr = �3n/2�Ā�−1/2, �A6�

which holds for positive definite symmetric matrix A. Ac-
cording to �A6� the overlap of fk and f l is

�fk�f l� = �3n/2�A�−3/2. �A7�

Expressing r1
2p and rij

−1 in the following way:

r1
2p = �− �p� �p exp�− ur�J̄11r�

�up �
u=0

�A8�

and

1

rij
=

2
��
�

0




exp�− t2r�J̄ijr�dt , �A9�

and using �A6� we can evaluate the following useful integral
�2p=mkl−q�:

��k�r1
−q 1

rij
��l� = � fk�r1

2p 1

rij
� f l�

=
2

��
�− �p �p

�up�
0


 �
−





exp�− r��Ākl + uJ̄11

+ t2J̄ij�r��drdt�u=0. �A10�

We can differentiate �A7� with respect to �Ākl��	,

��fk�f l�

��Ākl��	

= �
−



 �fkf l

��Ākl��	

dr , �A11�

which yields

�fk�r�r	�f l� = −
��fk�f l�

��Ākl��	

. �A12�

This result can be generalized as

��k�g�r�r�r	��l� = −
���k�g�r���l�

��Ākl��	

, �A13�

��k�g�r�r�r	r�r���l� =
�2��k�g�r���l�

��Ākl��	��Ākl���

, �A14�

where g�r� is an arbitrary function of r that does not depend

on �Ākl��	, for example, r1
−n or 1/rij.

Calculation of determinants can be handled using the
following theorem.

Theorem �on the inverse matrix and the determinant27�.
If
• G and G+H are nonsingular matrices,
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• rank �H�=r�0,

• H=H1+H2+ ¯ +Hr, where rank �Hk�=1, 1
k
r,
and

• Ck+1=G+H1+ ¯ +Hk is nonsingular for k=1, . . . ,
r �C1=G�.

then,

�1� Ck+1
−1 =Ck

−1−vkCk
−1HkCk

−1, where vk
−1=1+tr Ck

−1H,
1
k
r.

�2� �G+H�= �v1v2 , . . . ,vr�−1�G�.

Using the above theorem we can express determinants
�In+aH1� and �In+aH1+bH2� as a sum. To do this we will set

C1
−1 = In,

v1
−1 = 1 + a tr H1,

C2
−1 = �1 + a tr H1�−1H1,

v2
−1 = 1 + b tr H2 − �1 + a tr H1�−1ab tr�H1H2� .

The results are

�In + aH1� = 1 + a tr H1 �A15�

and

�In + aH1 + bH2� = 1 + a tr H1 + b tr H2 + a b�tr H1 tr H2

− tr�H H �� . �A16�
1 2

We start with the integral ��k�r1 ��l�. According to �A10� on
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We will also be using the Leibniz formula for the deriva-
tive of a product of two functions f and g,

�q

�xq f�x�g�x� = �
s=0

q
��q + 1�

��s + 1���q − s + 1�
f �q−s�g�s�. �A17�

APPENDIX B: MASS-VELOCITY „MV… TERM

After the transformation from the laboratory coordinate
system to the internal coordinate system the MV Hamil-
tonian has the following form �n is the number of pseudopar-
ticles, in the case of HD+ n=2�:

ĤMV�r� = −
�2

8 � 1

M1
3	�

i=1

n

�ri
4

+ �
i=1

n
1

Mi+1
3 �ri

4� . �B1�

The matrix elements that need to be calculated are

��k�ĤMV��l� = −
�2

8
	 1

M1
3 ��r�J̄�r�k��r�J̄�r�l�

+ �
i=1

n
1

Mi+1
3 ��r�J̄ii�r�k��r�J̄ii�r�l�
 , �B2�

where we used the matrix J �with no indices�, whose ele-
ments are equal to one: J�	=1. Matrix Jii is defined in �A1�.

Only one type of integral appears in the expression for

the ĤMV matrix elements: ��r�D̄�r�k ��r�D̄�r�l�, where D̄ is

either J̄ or J̄ii. To compute it we can express it through the

following elementary integrals:
��r�D̄�r�k��r�D̄�r�l� = 36 tr�AkD�tr�AlD� � ��k��l� − 24 tr�AkD� � ��k�r�ĀlD̄Ālr��l� − 24 tr�AlD� � ��k�r�ĀkD̄Ākr��l�

+ 16 � ��k�r�ĀkD̄Ākrr�ĀlD̄Ālr��l� − 6mk�mk + 1�tr�AlD�D11 � ��k�r1
−2��l� − 6ml�ml

+ 1�tr�AkD�D11 � ��k�r1
−2��l� + 4mk�mk + 1�D11 � ��k�r1

−2r�ĀlD̄Ālr��l� + 4ml�ml + 1�D11

� ��k�r1
−2r�ĀkD̄Ākr��l� + 12mk tr�AlD� � ��k�r1

−2r��ĀkD̄J̄11 + J̄11D̄Āk�r��l� + 12ml tr�AkD�

� ��k�r1
−2r��ĀlD̄J̄11 + J̄11D̄Āl�r��l� − 8mk � ��k�r1

−2r��ĀkD̄J̄11 + J̄11D̄Āk�rr�ĀlD̄Ālr��l� − 8ml

� ��k�r1
−2r��ĀlD̄J̄11 + J̄11D̄Āl�rr�ĀkD̄Ākr��l� + mk�mk + 1�ml�ml + 1��D11�2 � ��k�r1

−4��l�

− 2mk�mk + 1�mlD11 � ��k�r1
−4r��ĀlD̄J̄11 + J̄11D̄Āl�r��l� − 2mkml�ml + 1�D11 � ��k�r1

−4r��ĀkD̄J̄11

+ J̄11D̄Āk�r��l� + 4mkml � ��k�r1
−4r��ĀkD̄J̄11 + J̄11D̄Āk�rr��ĀlD̄J̄11 + J̄11D̄Āl�r��l� .

Thus, to carry out the calculations of the MV correction one needs the following integrals: ��k �r1
−q ��l�, ��k �r1

−qr�B̄r ��l�,
and ��k �r1

−qr�B̄rr�C̄r ��l�, where q=0, 2, and 4. We present the expressions for those integrals below.

1. Integral Š�k�r1
−q��l‹

−q
 e can write
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��k�r1
−q��l� = �− 1�p �p

�ap�
−





exp��− r��Ākl + aJ̄11�r�dr�a=0�− 1�p�Akl�−3/2�3n/2 �p

�ap ��In + aJ11Akl
−1�−3/2�a=0

= �− 1�p�Akl�−3/2�3n/2 �p

�ap ��1 + a tr�J11Akl
−1�−3/2��a=0 = �− 1�p�fk�f l��− �p 2

��
��p + 3/2��Akl

−1�11
p

=
2

��
�fk�f l����mkl − q�/2 + 3/2��Akl

−1�11
�mkl−q�/2, �B3�
where �A6�, �A8�, and �A15� were used. After simplification
we obtain

��k�r1
−q��l� =

2
��

�fk�f l����mkl − q�/2 + 3/2��Akl
−1�11

�mkl−q�/2.

�B4�

In the case of q=0, 2, and 4 the corresponding expressions
are

��k��l� =
2

��
�fk�f l���mkl + 3/2��Akl

−1�11
mkl/2, �B5�

��k�r1
−2��l� = 2�mkl + 1�−1�Akl

−1�11
−1��k��l� , �B6�

��k�r1
−4��l� = 4�mkl

2 − 1�−1�Akl
−1�11

−2��k��l� . �B7�

2. Integral Š�k�r1
−qr�B̄r��l‹

This integral is evaluated using the following relation:

��k�r1
−qr�B̄r��l� = ��k�r1

−qr�r	��l�B̄�	. �B8�

Together with �A13� we have

��k�r1
−qr�r	��l� = −

���k�r1
−q��l�

��Ākl��	

. �B9�

To determine the above derivative the following identities
are used �for details see Ref. 28�:

��Ākl
−1���

��Ākl��	

= − �Ākl
−1����Ākl

−1�	� �B10�

and
The final result is
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� tr�J̄11Ākl
−1�

��Ākl��	

= − �Ākl
−1J̄11Ākl

−1��	. �B11�

After some transformations we obtain

���k�r1
−q��l�

��Ākl��	

= − ��k�r1
−q��l��mmk − q

2
tr−1�J̄11Ākl

−1�

��Ākl
−1J̄11Ākl

−1��	 +
1

2
�Ākl

−1��	� �B12�

and

��k�r1
−qr�B̄r��l� = 1

2 ��k�r1
−q��l��3 tr�Akl

−1B� + �mkl − q�

��Akl
−1�11

−1�Akl
−1BAkl

−1�11� . �B13�

3. Integral Š�k�r1
−qr�B̄rr�C̄r��l‹

Similarly to �B8� we can write

��k�r1
−qr�B̄rr�C̄r��l� = ��k�r1

−qr�r	r�r���l�B̄�	C̄��,

�B14�

which, combined with �A14�, gives

��k�r1
−qr�r	r�r���l� =

�2��k�r1
−q��l�

��Ākl��	��Ākl���

. �B15�

In addition to some expressions derived above we also need
the relation

��Ākl
−1J̄11Ākl

−1��	

��Ākl
−1���

= − ��Ākl
−1����Ākl

−1J̄11Ākl
−1��	

+ �Ākl
−1J̄11Ākl

−1����Ākl
−1��	� . �B16�

We use it to evaluate the following derivative
�2��k�r1
−q��l�

��Ākl�����Ākl��	

=
1

4
��k�r1

−q��l���mkl − q��mkl − q − 2�tr−2�J̄11Ākl
−1��Ākl

−1J̄11Ākl
−1��	�Ākl

−1J̄11Ākl
−1��� + �mkl − q�tr−1�J̄11Ākl

−1�

���Ākl
−1J̄11Ākl

−1��	�Ākl
−1��� + �Ākl

−1J̄11Ākl
−1����Ākl

−1��	� + 2�mkl − q�tr−1�J̄11Ākl
−1���Ākl

−1J̄11Ākl
−1��	�Ākl

−1���

+ �Ākl
−1J̄11Ākl

−1����Ākl
−1��	� + �Ākl

−1��	�Ākl
−1��� + 2�Ākl

−1����Ākl
−1��	� . �B17�
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��k�r1
−qr�B̄rr�C̄r��l� = 1

4 ��k�r1
−q��l���mkl − q��mkl − q − 2��Akl

−1�11
−2�Akl

−1BAkl
−1�11�Akl

−1CAkl
−1�11 + 3�mkl − q�

��Akl
−1�11

−1��Akl
−1BAkl

−1�11 tr�Akl
−1C� + �Akl

−1CAkl
−1�11 tr�Akl

−1B�� + 2�mkl − q��Akl
−1�11

−1��Akl
−1BAkl

−1C�Akl
−1�11

+ �Akl
−1B�Akl

−1CAkl
−1�11� + 9 tr�Akl

−1B�tr�Akl
−1C� + 6 tr�Akl

−1BAkl
−1C��� . �B18�

APPENDIX C: DARWIN TERM

In the first approach based on the ĤD
I �r� Hamiltonian the matrix element to calculate is

��k�ĤD
I ��l� =

�2

8 ��
i=1

n

q0qi	 1

M1
2 +

1

Mi+1
2 
	��r�J̄ii�r�k� 1

ri
��l� + ��k� 1

ri
��r�J̄ii�r�l� + 2�J̄ii�r�k� 1

ri
�J̄ii�r�l�


+ �
i=1

n

�
j�i

n
qiqj

Mi+1
2 	��r�J̄ii�r�k� 1

rij
��l� + ��k� 1

rij
��r�J̄ii�r�l� + 2�J̄ii�r�k� 1

rij
�J̄ii�r�l�
� . �C1�
In the second approach �HD
II�r�� the following matrix element

that needs to be calculated is

��k�ĤD
II��l� = −

��2

2 ��
i=1

n 	 1

M1
2 +

1

Mi+1
2 
q0qi��k���ri���l�

+ �
i=1

n

�
j=1,j�i

n
1

Mi+1
2 qiqj��k���rij���l�� . �C2�

APPENDIX D: DARWIN CORRECTION: THE FIRST
APPROACH

In the expression for the matrix element involving the

ĤD
I �r� operator the following sum of integrals appears:

��k�ĤD
I ��l� = ��r�J̄ii�r�k� 1

rg
��l�

+ ��k� 1

rg
��r�J̄ii�r�l�

+ 2�J̄ii�r�k� 1

rg
�J̄ii�r�l� , �D1�

where g stands for either i or ij.
Using �A4� and �A6� and simplifying the resulting ex-

pression, we obtain

��r�J̄ii�r�k� 1

rg
��l� + ��k� 1

rg
��r�J̄ii�r�l�

+ 2�J̄ii�r�k� 1

rg
�J̄ii�r�l� =

− 6�Akl�ii��k� 1

rg
��l� + 4��k�

1

rg
r�ĀklJ̄iiĀklr�l�

+ �i1mkl�mkl + 1���k�r1
−2 1

rg
��l�

− 2�i1mkl��k�r1
−2 1

rg
r��ĀklJ̄11 + J̄11Ākl�r��l� .
To complete the above formula we need to determine the
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following four integrals:

��k� 1

rg
��l�, ��k�r1

−2 1

rg
��l�, ��k� 1

rg
r�B̄r��l�,

��k�r1
−2 1

rg
r�B̄r��l� .

In the expressions we derive next we use the following
notation:

ā = tr�J̄11Ākl
−1�, a = tr�J11Akl

−1� , �D2�

b̄ = tr�J̄gĀkl
−1�, b = tr�JgAkl

−1� , �D3�

c̄ = tr�J̄11Ākl
−1J̄gĀkl

−1�, c = tr�J11Akl
−1JgAkl

−1� , �D4�

�2�q� =
��q + 1�

��q + 3/2�
, �D5�

�3�q� =
��q + 1/2�

��q + 1���1/2�
, �D6�

where matrix Jg for g= �i� becomes Jii and for g= �ij� be-
comes Jij.

1. Integral Š�k�r1
−q
„1/rg…��l‹
From �A10� we have
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��k�r1
−q 1

rg
��l� =

2
��

�− �p �p

�up�
0


 �
−





exp�− r��Ākl + uJ̄11 + t2J̄g�r�drdtu=0

=
2

��
�− �p �p

�up�
0




�3n/2�Akl + uJ11 + t2Jg�−3/2�dt�u=0 =
2

��
�− �p�fk�f l�

�p

�up�
0




�In + uJ11Akl
−1

+ t2JgAkl
−1�−3/2�dt�u=0. �D7�
Using �A16� and definitions �D2�–�D4� one obtains

�In + uJ11Akl
−1 + t2JgAkl

−1� = 1 + ua + t2b + ut2�ab − c�

�D8�

and

�
0




�1 + ua + t2b + ut2�ab − c��−3/2dt = �1 + au�−1�b

+ u�ab − c��−1/2. �D9�

Now using the Leibniz formula �A17� one may evaluate the
following derivatives:

�p−s

�up−s ��1 + au�−1�u=0 = �− �p−s��p − s + 1�ap−s, �D10�

�s

�us ��b + u�ab − c��−1/2�u=0

= �− �s��s + 1/2�
��1/2� 	1 −

c

ab

s as

�b
, �D11�

and

�s

�us ��1 + au�−1�b + u�ab − c��−1/2�u=0

= �− �p��p + 1�
ap

��
�
s=0

p

�3�s�	1 −
c

ab

s

. �D12�

−q
With the expression for ��k�r1 ��l� �B4�,

kl kl kl kl
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2

�
�fk�f l�ap =

��k�r1
−q��l�

��p + 3/2�
, �D13�

we obtain the following final expression for the integral
��k�r1

−q�1/rg���l�:

��k�r1
−q 1

rg
��l� = ��k�r1

−q��l�
�2�p�
�b

�
s=0

p

�3�s�	1 −
c

ab

s

.

�D14�

2. Integral Š�k�r1
−q
„1/rg…r�B̄r��l‹

We first need to calculate the following derivative:

���k�r1
−q�1/rg���l�

��Ākl��	

= − ��k�r1
−q 1

rg
r�r	��l� . �D15�

Using the previously determined derivatives and the follow-
ing derivative:

�c̄

��Ākl��	

=
� tr�J̄11Ākl

−1J̄gĀkl
−1�

��Ākl��	

= − ��Ākl
−1J̄11Ākl

−1J̄g��	

+ �Ākl
−1J̄gĀkl

−1J̄11��	� , �D16�
we have
���k�r1
−q�1/rg���l�

��Ākl��	

= −
1

2
��k�r1

−q 1

rg
��l��2

p

ā
�Ākl

−1J̄11Ākl
−1��	 + �Ākl

−1��	 −
1

b̄
�Ākl

−1J̄gĀkl
−1��	�

+ ��k�r1
−q��l�

3�3�2�p�

ā2b̄2�b̄
�
s=1

p

�3�s�s	1 −
3c̄

āb̄

s−1

� �āb̄�Ākl
−1J̄11Ākl

−1J̄gĀkl
−1��	 + āb̄�Ākl

−1J̄gĀkl
−1J̄11Ākl

−1��	

− āc̄�Ākl
−1J̄gĀkl

−1��	 − b̄c̄�Ākl
−1J̄11Ākl

−1��	� . �D17�

Using the above we obtain the final expression for the ��k�r1
−q�1/rg�r�B̄r��l� integral,

��k�r1
−q 1

rg
r�B̄r��l� =

1

2
��k�r1

−q 1

rg
��l��mkl − q

a
�Akl

−1BAkl
−1�11 + 3 tr�Akl

−1B� −
1

b
tr�Akl

−1JgAkl
−1B��

− ��k�r1
−q��l�

�2��mkl − q�/2�
a2b2�b

�
s=1

�mkl−q�/2

�3�s�s	1 −
c

ab

s−1

� �ab�Akl
−1BAkl

−1JgAkl
−1�11

+ ab�A−1JgA−1BA−1�11 − ac tr�A−1JgA−1B� − bc�A−1BA−1�11� . �D18�
kl kl kl
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APPENDIX E: DARWIN CORRECTION: THE SECOND
APPROACH

In the expression for the matrix element involving the

ĤD
II operator the following integrals need to be evaluated:

��k�ĤD
II��l� = −

�

2c2��
i=1

n 	 1

M1
2 +

1

Mi+1
2 
q0qi��k���ri���l�

+ �
i=1

n

�
j�i

n
1

Mi+1
2 qiqj��k���rij���l�� . �E1�

To evaluate the above formula we need to determine the
following integrals:

��k���ri���l�, ��k���rij���l� .

1. Integral Š�k��„r1…��l‹

The integral has the following form:

��k���ri���l� = �
−





r1
mk+ml exp�− r�Āklr���ri�dr .

Since for an arbitrary function F�x�,

�
−





F�x���x�dx = F�0� ,

we have
• if i=1,

��j1 � �� − s� � . �E5�

Downloaded 02 Apr 2012 to 129.59.117.186. Redistribution subject to AIP lic
��k���r1���l� = �
−





r1
mkl exp�− r�Āklr���r1�dr

� 0 Û mkl = 0,

• if i�1,

��k���ri���l� = �
−





r1
mkl exp�− r�Āklr���ri�dr

� 0 Û for any mkl.

The matrix element of the Dirac delta function with simple
spherical Gaussians can be obtained using the Gaussian rep-
resentation of the delta function,15

��r1 − �� = lim
s→


	 s

�

3/2

exp�− s�r1 − ��2� . �E2�

With this,

�fk���r1 − ���f l� = lim
s→


	 s

�

3/2

�fk�exp�− sr1
2

+ 2sr1�� − s�2��f l� . �E3�

If j1 is an n-component vector whose first element is equal to

1 and the rest are zeros, then
�fk���r1 − ���f l� = lim
s→


	 s

�

3/2

exp�− s�2��fk�exp�− sr�J̄11r + 2s�j1 � ���r��f l� = lim
s→


	 s

�

3/2

exp�− s�2��
−





exp�− r��sJ̄11

+ Ākl�r + 2s�j1 � ���r�dr = lim
s→


	 s

�

3/2

exp�− s�2�� �n

�Akl + sJ11�
�3/2

exp�s2�j1 � ����Ākl + sJ̄11�−1�j1 � ��� .

�E4�
In the last expression we used the relation

�
−





exp�− r�B̄r + y�r�dr = ��n

�B��3/2

exp�1

4
y�B̄−1y� .

We can rewrite the determinant �Akl+sJ11� as

�Akl + sJ11� = �Akl��In + sJ11Akl
−1� = �Akl��1 + s tr�J11Akl

−1�� .

Then,

�fk���r1 − ���f l� = ��n−1

�Akl�
�3/2

lim
s→


� 1

1/s + tr�J11Akl
−1��3/2

�exp�s2�j1 � ����Ākl + sJ̄11�−1

2

Since the limit of the preexponential part of �E5� is a finite
number, the limit of the exponent must be equal to −	�2 with
	 being a finite number. Otherwise the entire expression �E5�
would have been either zero or infinity, which is not the case.
Hence,

�fk���r1 − ���f l� = ��n−1

�Akl�
�3/2 1

tr�Akl
−1J11�3/2 exp�− 	�2�

= �fk�f l�
1

�3/2

1

tr�Akl
−1J11�3/2 exp�− 	�2� .

�E6�
Making use of the normalization condition,
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�
−





�fk���r1 − ���f l�d� = �fk�f l� , �E7�

we find that 	=tr�Akl
−1J11�−1. Thus,

�fk���r1 − ���f l� = �fk�f l�
1

�3/2

1

tr�Akl
−1J11�3/2

�exp�−
�2

tr�Akl
−1J11�

� . �E8�

The last relationship is now used to evaluate the matrix ele-
ment ��k���r1−����l. To do that we define p=mkl /2 and ac-
cording to �A8� we obtain

��k���r1 − ����l�

= �fk�r1
2p��r1 − ���f l� = �− 1�p �p

�up ��fk�

�exp�− ur�J̄11r���r1 − ���f l��u=0

= �− 1�p �p

�up

�3n/2

�Akl + uJ11�3/2

�
1

�3/2

1

tr��Akl + uJ11�−1J11�3/2

�exp��−
�2

tr��Akl + uJ11�−1J11�
��

u=0
. �E9�

Applying the following formulas:

�

�u
�Akl + uJ11� = �Akl + sJ11�tr��Akl + sJ11�−1J11� , �E10�

�

�u
tr��Akl + uJ11�−1J11� = − tr��Akl + uJ11�−1

�J11�Akl + uJ11�−1J11� , �E11�

and using tr�XJ11XJ11�=tr�XJ11�2= �X11�2 for an arbitrary
matrix X lead to the final result,

��k���r1 − ����l� = �fk�f l�
1

2�

1

��p + 3/2�
1

�Akl
−1�11

3/2

�� �2

�Akl
−1�11

�p

exp�−
�2

�Akl
−1�11

� .

�E12�

In the above expression we used the following:

��k��l� = �fk�r1
2p�f l� =

2
��

��p + 3/2��Akl
−1�11

p �fk�f l� . �E13�

So if we put �=0 and p=0, we have

��k���r1 − ����l� = �fk�f l�
1

2�

1

��p + 3/2�
1

�Akl
−1�11

3/2 . �E14�
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2. Integral Š�k��„rij…��l‹

The matrix elements of ��rij� can be obtained by
straightforward integration. The procedure is very similar to
the evaluation of the overlap integral and yields

��k���rij���l� =
2

��
��p + 3/2��Dkl

−1�11
p ��n−1

�Dkl�
�3/2

= ��k��l�
1

�3/2� �Akl�
�Dkl�

�3/2� �Dkl
−1�11

�Akl
−1�11

�p

,

�E15�

where Dkl is an �n−1�� �n−1� matrix formed from Akl by
adding the jth row to the ith row, then adding the jth column
to the ith column, and then crossing out the jth column and
the jth row.

3. Integral Š�k��„ri…��l‹

In the case of ��k���ri���l� we obtain the same expres-
sion as in �E15� but Dkl is formed from Akl by crossing out
the ith column and the ith row �without adding anything�.
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